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Abstract
Small jobs, that are typically run for interactive data anal-

yses in datacenters, continue to be plagued by dispropor-

tionately long-running tasks called stragglers. In the pro-

duction clusters at Facebook and Microsoft Bing, even

after applying state-of-the-art straggler mitigation tech-

niques, these latency sensitive jobs have stragglers that

are on average 8 times slower than the median task in that

job. Such stragglers increase the average job duration by

47%. This is because current mitigation techniques all

involve an element of waiting and speculation. We in-

stead propose full cloning of small jobs, avoiding waiting

and speculation altogether. Cloning of small jobs only

marginally increases utilization because workloads show

that while the majority of jobs are small, they only con-

sume a small fraction of the resources. The main chal-

lenge of cloning is, however, that extra clones can cause

contention for intermediate data. We use a technique, de-

lay assignment, which efficiently avoids such contention.

Evaluation of our system, Dolly, using production work-

loads shows that the small jobs speedup by 34% to 46%
after state-of-the-art mitigation techniques have been ap-

plied, using just 5% extra resources for cloning.

1 Introduction

Cloud computing has achieved widespread adoption due

to its ability to automatically parallelize a job into multi-

ple short tasks, and transparently deal with the challenge

of executing these tasks in a distributed setting. One

such fundamental challenge is straggling tasks, which is

faced by all cloud frameworks, such as MapReduce [1],

Dryad [2], and Spark [3]. Stragglers are tasks that run

much slower than other tasks, and since a job finishes

only when its last task finishes, stragglers delay job com-

pletion. Stragglers especially affect small jobs, i.e., jobs

that consist of a few tasks. Such jobs typically get to run

all their tasks at once. Therefore, even if a single task is

slow, i.e., straggle, the whole job is significantly delayed.

Small jobs are pervasive. Conversations with datacen-

ter operators reveal that these small jobs are typically

used when performing interactive and exploratory anal-

yses. Achieving low latencies for such jobs is critical

to enable data analysts to efficiently explore the search

space. To obtain low latencies, analysts already re-

strict their queries to small but carefully chosen datasets,

which results in jobs consisting of only a few short tasks.

The trend of such exploratory analytics is evident in

traces we have analyzed from the Hadoop production

cluster at Facebook, and the Dryad cluster at Microsoft

Bing. Over 80% of the Hadoop jobs and over 60% of the

Dryad jobs are small with fewer than ten tasks1. Achiev-

ing low latencies for these small interactive jobs is of

prime concern to datacenter operators.

The problem of stragglers has received considerable

attention already, with a slew of straggler mitigation

techniques [1, 4, 5] being developed. These techniques

can be broadly divided into two classes: black-listing

and speculative execution. However, our traces show that

even after applying state-of-the-art blacklisting and spec-

ulative execution techniques, the small jobs have strag-

glers that, on average, run eight times slower than that

job’s median task, slowing them by 47% on average.

Thus, stragglers remain a problem for small jobs. We

next explain the limitations of these two approaches.

Blacklisting identifies machines in bad health (e.g.,

due to faulty disks) and avoids scheduling tasks on

them. The Facebook and Bing clusters, in fact, blacklist

roughly 10% of their machines. However, stragglers oc-

cur on the non-blacklisted machines, often due to intrin-

sically complex reasons like IO contentions, interference

by periodic maintenance operations and background ser-

vices, and hardware behaviors [6].

For this reason, speculative execution [1, 4, 5, 7] was

explored to deal with stragglers. Speculative execution

waits to observe the progress of the tasks of a job and

launches duplicates of those tasks that are slower. How-

ever, speculative execution techniques have a fundamen-

tal limitation when dealing with small jobs. Any mean-

ingful comparison requires waiting to collect statistically

significant samples of task performance. Such waiting

limits their agility when dealing with stragglers in small

jobs as they often start all their tasks simultaneously. The

problem is exacerbated when some tasks start straggling

when they are well into their execution. Spawning a

speculative copy at that point might be too late to help.

In this paper, we propose a different approach. Instead

of waiting and trying to predict stragglers, we take spec-

ulative execution to its extreme and propose launching

multiple clones of every task of a job and only use the

result of the clone that finishes first. This technique is

both general and robust as it eschews waiting, speculat-

ing, and finding complex correlations. Such proactive

1The length of a task is mostly invariant across small and large jobs.
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cloning will significantly improve the agility of straggler

mitigation when dealing with small interactive jobs.

Cloning comes with two main challenges. The first

challenge is that extra clones might use a prohibitive

amount of extra resources. However, our analysis of pro-

duction traces shows a strong heavy-tail distribution of

job sizes: the smallest 90% of jobs consume as less as 6%
of the resources. The interactive jobs whose latency we

seek to improve all fall in this category of small jobs. We

can, hence, improve them by using few extra resources.

The second challenge is the potential contention that

extra clones create on intermediate data, possibly hurting

job performance. Efficient cloning requires that we clone

each task and use the output from the clone of the task

that finishes first. This, however, can cause contention

for the intermediate data passed between tasks of the dif-

ferent phases (e.g., map, reduce, join) of the job; frame-

works often compose jobs as a graph of phases where

tasks of downstream phases (e.g., reduce) read the out-

put of tasks of upstream phases (e.g., map). If all down-

stream clones read from the upstream clone that finishes

first, they contend for the IO bandwidth. An alternate that

avoids this contention is making each downstream clone

read exclusively from only a single upstream clone. But

this staggers the start times of the downstream clones.

Our solution to the contention problem, delay assign-

ment, is a hybrid solution that aims to get the best of both

the above pure approaches. It is based on the intuition

that most clones, except few stragglers, finish nearly si-

multaneously. Using a cost-benefit analysis that captures

this small variation among the clones, it checks to see

if clones can obtain exclusive copies before assigning

downstream clones to the available copies of upstream

outputs. The cost-benefit analysis is generic to account

for different communication patterns between the phases,

including all-to-all (MapReduce), many-to-one (Dryad),

and one-to-one (Dryad and Spark).

We have built Dolly, a system that performs cloning to

mitigate the effect of stragglers while operating within a

resource budget. Evaluation on a 150 node cluster using

production workloads from Facebook and Bing shows

that Dolly improves the average completion time of the

small jobs by 34% to 46%, respectively, with LATE [5]

and Mantri [4] as baselines. These improvements come

with a resource budget of merely 5% due to the afore-

mentioned heavy-tail distribution of job-sizes. By pick-

ing the fastest clone of every task, Dolly effectively re-

duces the slowest task from running 8× slower on aver-

age to 1.06×, thus, effectively eliminating all stragglers.

2 The Case for Cloning

In this section we quantify: (i) magnitude of stragglers

and the potential in eliminating them, and (ii) power law

distribution of job sizes that facilitate aggressive cloning.

Facebook Microsoft Bing

Dates Oct 2010 May-Dec∗ 2009
Framework Hadoop Dryad

File System HDFS [9] Cosmos

Script Hive [10] Scope [11]

Jobs 375K 200K

Cluster Size 3,500 Thousands

Straggler– LATE [5] Mantri [4]

mitigation
∗ One week in each month

Table 1: Details of Facebook and Bing traces.

Production Traces: Our analysis is based on traces from

Facebook’s production Hadoop [8] cluster and Microsoft

Bing’s production Dryad [2] cluster. These are large

clusters with thousands of machines running jobs whose

performance and output have significant impact on pro-

ductivity and revenue. Therefore, each of the machines

in these clusters is well-provisioned with tens of cores

and sufficient (tens of GBs) memory. The traces cap-

ture the characteristics of over half a million jobs running

across many months. Table 1 lists the relevant details

of the traces. The Facebook cluster employs the LATE

straggler mitigation strategy [5], while the Bing cluster

uses the Mantri straggler mitigation strategy [4].

2.1 Stragglers in Jobs

We first quantify the magnitude and impact of stragglers,

and then show that simple blacklisting of machines in the

cluster is insufficient to mitigate them.

2.1.1 Magnitude of Stragglers and their Impact

A job consists of a graph of phases (e.g., map, reduce,

and join), with each phase executing the same type of

tasks in parallel. We identify stragglers by comparing

the progress rates of tasks within a phase. The progress

rate of a task is defined as the size of its input data di-

vided by its duration. In absence of stragglers, progress

rates of tasks of a phase are expected to be similar as

they perform similar IO and compute operations. We use

the progress rate instead of the task’s duration to remain

agnostic to skews in work assignment among tasks [4].

Techniques have been developed to deal with the prob-

lem of data skews among tasks [12, 13, 14] and our ap-

proach is complementary to those techniques.

Within each phase, we measure the slowdown ratio,

i.e., the ratio of the progress rate of the median task to

the slowest task. The negative impact of stragglers in-

creases as the slowdown ratio increases. We measure the

slowdown ratio after applying the LATE and Mantri mit-

igations; a what-if simulation is used for the mitigation

strategy that the original trace did not originally deploy.

Figure 1a plots the slowdown ratio by binning jobs ac-

cording to their number of tasks, with LATE in effect.
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Figure 1: Slowdown ratio after applying LATE and Mantri.

Small jobs see a higher prevalence of stragglers.

pb Blacklisted Machines (%) Job Improvement (%)

5 min 1 hour 5 min 1 hour

0.3 4% 6% 7.1% 8.4%
0.5 1.6% 2.8% 4.4% 5.2%
0.7 0.8% 1.2% 2.3% 2.8%

Table 2: Blacklisting by predicting straggler probability.

We show the fraction of machines that got blacklisted and

the improvements in completion times by avoiding them.

Phases in jobs with fewer than ten tasks, have a median

value of this ratio between 6 and 8, i.e., the slowest task

is up to 8× slower than the median task in the job. Also,

small jobs are hit harder by stragglers.2 This is simi-

lar even if Mantri [4] was deployed. Figure 1b shows

that the slowest task is still 7× slower than the median

task, with Mantri. However, both LATE and Mantri ef-

fectively mitigate stragglers in large jobs.

Speculation techniques are not as effective in mitigat-

ing stragglers in small jobs as they are with large jobs

because they rely on comparing different tasks of a job to

identify stragglers. Comparisons are effective with more

samples of task performance. This makes them challeng-

ing to do with small jobs because not only do these jobs

have fewer tasks but also start all of them simultaneously.

Impact of Stragglers: We measure the potential in

speeding up jobs in the trace using the following crude

analysis: replace the progress rate of every task of a

phase that is slower than the median task with the me-

dian task’s rate. If this were to happen, the average com-

pletion time of jobs improves by 47% and 29% in the

Facebook and Bing traces, respectively; small jobs (those

with ≤ 10 tasks) improve by 49% and 38%.

2.1.2 Blacklisting is Insufficient

An intuitive solution for mitigating stragglers is to black-

list machines that are likely to cause them and avoid

2Implicit in our explanation is that small interactive jobs consist of

just a few tasks. While we considered alternate definitions based on

input size and durations, in both our traces, we see a high correlation

between jobs running for short durations and the number of tasks they

contain along with the size of their input.

scheduling tasks on them. For this analysis, we classify

a task as a straggler if its progress rate is less than half

of the median progress rate among tasks in its phase. In

our trace, stragglers are not restricted to a small set of

machines but are rather spread out uniformly through the

cluster. This is not surprising because both the clusters

already blacklist machines with faulty disks and other

hardware troubles using periodic diagnostics.

We enhance this blacklisting by monitoring machines

at finer time intervals and employing temporal prediction

techniques to warn about straggler occurrences. We use

an EWMA to predict stragglers—the probability of a ma-

chine causing a straggler in a time window is equally de-

pendent on its straggler probability in the previous win-

dow and its long-term average. Machines with a pre-

dicted straggler probability greater than a threshold (pb)
are blacklisted for that time window but considered again

for scheduling in the next time window.

We try time windows of 5 minutes and 1 hour. Table 2

lists the fraction of machines that get blacklisted and the

resulting improvement in job completion times by elim-

inating stragglers on them, in the Facebook trace. The

best case eliminates only 12% of the stragglers and im-

proves the average completion time by only 8.4% (in the

Bing trace, 11% of stragglers are eliminated leading to

an improvement of 6.2%). This is in harsh contrast with

potential improvements of 29% to 47% if all stragglers

were eliminated, as shown in §2.1.1.

The above results do not prove that effective blacklist-

ing is impossible, but shows that none of the blacklisting

techniques that we and, to our best knowledge, others [6]

have tried effectively prevent stragglers, suggesting that

such correlations either do not exist or are hard to find.

2.2 Heavy Tail in Job Sizes

We observed that smaller jobs are most affected by strag-

glers. These jobs were submitted by users for iterative

experimental purposes. For example, researchers tune

the parameters of new mining algorithms by evaluating

it on a small sample of the dataset. For this reason, these

jobs consist of just a few tasks. In fact, in both our traces,

we have noted a correlation between a job’s duration and

the number of tasks it has, i.e., jobs with shorter durations

tend to have fewer tasks. Short and predictable response

times for these jobs is of prime concern to datacenter op-

erators as they significantly impact productivity.

On the one hand, small interactive jobs absolutely

dominate the cluster and have stringent latency demands.

In the Facebook and Bing traces, jobs with ≤ 10 tasks ac-

count for 82% and 61% of all the jobs, respectively. On

the other hand, they are the most affected by stragglers.

Despite this, we can clone all the small jobs using few

extra resources. This is because job sizes have a heavy-

tail distribution. Just a few large jobs consume most of

3
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Figure 2: Heavy tail. Figure (a) shows the heavy tail in the

fraction of total resources used. Figure (b) shows that the

distribution of cluster resources consumed by jobs, in the

Facebook trace, follows a power law. Power-law exponents

are 1.9 and 1.8 when fitted with least squares regression in

the Facebook and Bing traces.

the resources in the cluster, while the cluster is domi-

nated by small interactive jobs. As Figure 2a shows, 90%
of the smallest jobs consume only 6% and 11% of the to-

tal cluster resources in the Facebook and Bing clusters,

respectively. Indeed, the distribution of resources con-

sumed by jobs follows a power law (see Figure 2b). In

fact, at any point in time, the small jobs do not use more

than 2% of the overall cluster resources.

The heavy-tail distribution offers potential to speed up

these jobs by using few extra resources. For instance,

cloning each of the smallest 90% of the jobs three times

increases overall utilization by merely 3%. This is well

within reach of today’s underutilized clusters which are

heavily over-provisioned to satisfy their peak demand of

over 99%, that leaves them idle at other times [15, 16].

Google recently released traces from their cluster job

scheduler that schedules a mixed workload of MapRe-

duce batch jobs, interactive queries and long-running ser-

vices [17]. Analysis of these traces again reveal a heavy-

tail distribution of job sizes, with 92% of the jobs ac-

counting for only 2% of the overall resources [18].

3 Cloning of Parallel Jobs

We start this section by describing the high-level idea

of cloning. After that (§3.1) we determine the granu-

larity of cloning, and settle for cloning at the granularity

of tasks, rather than entire jobs, as the former requires

fewer clones. Thereafter (§3.2), we investigate the num-

ber of clones needed if we desire the probability of a job

straggling to be at most ǫ, while staying within a cloning

budget. Finally (§3.3), as we are unlikely to have room

to clone every job in the cluster, we show a very simple

admission control mechanism that decides when to clone

jobs. An important challenge of cloning—handling data

contention between clones—is dealt with in §4.

In contrast to reactive speculation solutions [1, 4,

5], Dolly advocates a proactive approach—straightaway
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(b) Task-level Cloning

Figure 3: Probability of a job straggling for varying num-

ber of clones, and sample jobs of 10, 20 and 50 tasks. Task-

level cloning requires fewer clones than job-level cloning to

achieve the same probability of the job straggling.

launch multiple clones of a job and use the result of the

first clone that finishes. Cloning makes straggler miti-

gation agile as it does not have to wait and observe a

task before acting, and also removes the risk inherent in

speculation—speculating the wrong tasks or missing the

stragglers. Similar to speculation, we assume that pick-

ing the earliest clone does not bias the results, a property

that generally holds for data-intensive computations.

3.1 Granularity of Cloning

We start with a job consisting of a single phase. A crucial

decision affecting efficiency is the granularity of cloning.

A simple option is to clone at the granularity of jobs. For

every job submitted to the cluster, multiple clones of the

entire job are launched. Results are taken from the earli-

est job that finishes. Such job-level cloning is appealing

due to its simplicity and ease of implementation.

A fine-grained alternative is to clone at the granularity

of individual tasks. Thus, multiple clones of each task

are launched. We refer to the different clones of the same

task as a clone group. In every clone group, we then use

the result of the clone that finishes first. Therefore, un-

like job-level cloning, task-level cloning requires internal

changes to the execution engine of the framework.

As a result of the finer granularity, for the same num-

ber of clones, task-level cloning provides better proba-

bilistic guarantees for eliminating stragglers compared to

job-level cloning. Let p be the probability of a task strag-

gling. For a single-phased job with n parallel tasks and c
clones, the probability that it straggles is (1− (1− p)n)

c

with job-level cloning, and 1− (1− pc)
n

with task-level

cloning. Figure 3 compares these probabilities. Task-

level cloning gains more per clone and the probability of

the job straggling drops off faster.

Task-level cloning’s resource efficiency is desirable

because it reduces contention on the input data which is

read from file systems like HDFS [9]. If replication of in-

put data does not match the number of clones, the clones

contend for IO bandwidth in reading the data. Increas-

4
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ing replication, however, is difficult as clusters already

face a dearth of storage space [19, 20]. Hence, due to its

efficiency, we opt for task-level cloning in Dolly.

3.2 Budgeted Cloning Algorithm

Pseudocode 1 describes the cloning algorithm that is ex-

ecuted at the scheduler per job. The algorithm takes as

input the cluster-wide probability of a straggler (p) and

the acceptable risk of a job straggling (ǫ). We aim for an

ǫ of 5% in our experiments. The probability of a strag-

gler, p, is calculated every hour, where the straggler pro-

gresses at less than half the median task in the job. This

coarse approach suffices for our purpose.

Dolly operates within an allotted resource budget. This

budget is a configurable fraction (β) of the total capacity

of the cluster (C). At no point does Dolly use more than

this cloning budget. Setting a hard limit eases deploy-

ment concerns because operators are typically nervous

about increasing the average utilization by more than a

few percent. Utilization and capacity are measured in

number of slots (computation units allotted to tasks).

The pseudocode first calculates the desired number of

clones per task (step 2). For a job with n tasks, the num-

ber of clones desired by task-level cloning, c, can be de-

rived to be at least log
(

1− (1− ǫ)
(1/n)

)

/ log p. 3 The

number of clones that are eventually spawned is limited

by the resource budget (C · β) and a utilization threshold

(τ ), as in step 3. The job is cloned only if there is room

to clone all its tasks, a policy we explain shortly in §3.3.

Further, cloning is avoided if the cluster utilization after

spawning clones is expected to exceed a ceiling τ . This

ceiling avoids cloning during heavily-loaded periods.

Note that Pseudocode 1 spawns the same number of

clones to all the tasks of a job. Otherwise, tasks with

fewer clones are more likely to lag behind. Also, there

are no conflicts between jobs in updating the shared vari-

ables BU and U because the centralized scheduler han-

dles cloning decisions one job at a time.

Multi-phased Jobs: For multi-phased jobs, Dolly uses

Pseudocode 1 to decide the number of clones for tasks

of every phase. However, the number of clones for

tasks of a downstream phase (e.g., reduce) never exceeds

the number of clones launched its upstream phase (e.g.,

map). This avoids contention for intermediate data (we

revisit this in §4). In practice, this limit never applies be-

cause small jobs have equal number of tasks across their

phases. In both our traces, over 91% of the jobs with

≤ 10 tasks have equal number of tasks in their phases.

3.3 Admission Control

The limited cloning budget, β, should preferably be uti-

lized to clone the small interactive jobs. Dolly achieves

3The probability of a job straggling can be at most ǫ, i.e., 1 −

(1− p
c)n ≤ ǫ. The equation is derived by solving for c.

1: procedure CLONE(n tasks, p, ǫ)
C: Cluster Capacity, U : Cluster Utilization

β: Budget in fraction, BU : Utilized budget in #slots

2: c = ⌈log
(

1− (1− ǫ)(1/n)
)

/ log p⌉

3: if (BU + c · n) ≤ (C · β) and (U + c · n) ≤ τ then

⊲ Admission Control: Sufficient capacity to

create c clones for each task

4: for each task t do

Create c clones for t
BU ← BU + c · n

Pseudocode 1: Task-level cloning for a single-phased job

with n parallel tasks, on a cluster with probability of strag-

gler as p, and the acceptable risk of straggler as ǫ.

this using a simple policy of admission control.

Whenever the first task of a job is to be executed, the

admission control mechanism computes, as previously

explained, the number of clones c that would be required

to reach the target probability ǫ of that job straggling. If,

at that moment, there is room in the cloning budget for

creating c copies of all the tasks, it admits cloning the

job. If there is not enough budget for c clones of all the

tasks, the job is simply denied cloning and is executed

without Dolly’s straggler mitigation. The policy of ad-

mission control implicitly biases towards cloning small

jobs—the budget will typically be insufficient for cre-

ating the required number of clones for the larger jobs.

Step 3 in Pseudocode 1 implements this policy.

Many other competing policies are possible. For in-

stance, a job could be partially cloned if there is not

enough room for c clones. Furthermore, preemption

could be used to cancel the clones of an existing job to

make way for cloning another job. It turns out that these

competing policies buy little performance compared to

our simple policy. We compare these policies in §5.5.

4 Intermediate Data Access with Dolly

A fundamental challenge of cloning is the potential con-

tention it creates in reading data. Downstream tasks in

a job read intermediate data from upstream tasks accord-

ing to the communication pattern of that phase (all-to-all,

many-to-one, one-to-one). The clones in a downstream

clone group would ideally read their intermediate data

from the upstream clone that finishes first as this helps

them all start together.4 This, however, can create con-

tention at the upstream clone that finishes first. Dealing

with such contentions is the focus of this section.

We first (§4.1) explore two pure strategies at opposite

ends of the spectrum for dealing with intermediate data

contention. At one extreme, we completely avoid con-

4Intermediate data typically only exists on a single machine, as it is

not replicated to avoid time and resource overheads. Some systems do

replicate intermediate data [4, 21] for fault-tolerance but limit this to

replicating only a small fraction of the data.

5
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Figure 4: Intermediate data contention. The example job

contains two upstream tasks (U1 and U2) and two down-

stream tasks (D1 and D2), each cloned twice. The clone of

U1 is a straggler (marked with a dotted circle). CAC waits

for the straggling clone while CC picks the earliest clone.

tention by assigning each upstream clone, as it finishes,

to a new downstream task clone. This avoids contention

because it guarantees that every upstream task clone only

transfers data to a single clone per downstream clone

group. At another extreme, the system ignores the ex-

tra contention caused and assumes that the first finished

upstream clone in every clone group can sustain trans-

ferring its intermediate output to all downstream task

clones. As we show (§4.2), the latter better mitigates

stragglers compared to the former strategy. However,

we show (§4.3) that the latter may lead to congestion

whereas the former completely avoids it. Finally (§4.4),

we settle on a hybrid between the two (§4.4), delay as-

signment that far outperforms these two pure strategies.

4.1 Two Opposite Strategies

We illustrate two approaches at the opposite ends of the

spectrum through a simple example. Consider a job with

two phases (see Figure 4) and an all-to-all (e.g., shuffle)

communication pattern between them (§4.4 shows how

this can be generalized to other patterns). Each of the

phases consist of two tasks, and each task has two clones.

The first option (Figure 4a), which we call Contention-

Avoidance Cloning (CAC) eschews contention alto-

gether. As soon as an upstream task clone finishes, its

output is sent to exactly one downstream task clone per
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Figure 5: CAC vs. CC: Probability of a job straggling.

clone group. Thus, the other downstream task clones

have to wait for another upstream task clone to finish

before they can start their computation. We call this

Contention-Avoidance Cloning (CAC). Note that in CAC

an upstream clone will send its intermediate data to the

exact same number of other tasks as if no cloning was

done, avoiding contention due to cloning. The disadvan-

tage with CAC is that when some upstream clones strag-

gle, the corresponding downstream clones that read data

from them automatically lag behind.

The alternate option (Figure 4b), Contention Cloning

(CC), alleviates this problem by making all the tasks in a

downstream clone group read the output of the upstream

clone that finishes first. This ensures that no downstream

clone is disadvantaged, however, all of them may slow

down due to contention on disk or network bandwidth.

There are downsides to both CAC and CC. The next

two sub-sections quantify these downsides.

4.2 Probability of Job Straggling: CAC vs. CC

CAC increases the vulnerability of a job to stragglers by

negating the value of some of its clones. We first ana-

lytically derive the probability of a job straggling with

CAC and CC, and then compare them for some repre-

sentative job sizes. We use a job with n upstream and n
downstream tasks, with c clones of each task.

CAC: A job straggles with CAC when either the up-

stream clones straggle and consequently handicap the

downstream clones, or the downstream clones straggle

by themselves. We start with the upstream phase first

before moving to the downstream phase.

The probability that at least d upstream clones of every

clone group will succeed without straggling is given by

the function Ψ; p is the probability of a task straggling.

Ψ(n, c, d) = Probability[n upstream tasks of c clones with

≥ d non-stragglers per clone group]

Ψ(n, c, d) =

(

c−d
∑

i=0

(

c

i

)

pi(1− p)c−i

)n

(1)

6
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Therefore, the probability of exactly d upstream

clones not straggling is calculated as:

Ψ(n, c, d)−Ψ(n, c, d− 1)

Recall that there are n downstream tasks that are cloned

c times each. Therefore, the probability of the whole

job straggling is essentially the probability of a straggler

occurring in the downstream phase, conditional on the

number of upstream clones that are non-stragglers.

Probability[Job straggling with CAC] =

1−
c

∑

d=1

[Ψ(n, c, d)−Ψ(n, c, d− 1)]
(

1− pd
)n (2)

CC: CC assigns all downstream clones to the output of

the first upstream task that finishes in every clone group.

As all the downstream clones start at the same time, none

of them are handicapped. For a job to succeed with-

out straggling, it only requires that one of the upstream

clones in each clone group be a non-straggler. Therefore,

the probability of the job straggling is:

Probability[Job straggling with CC] =

1− Ψ(n, c, 1) (1− pc)
n (3)

CAC vs. CC: We now compare the probability of a job

straggling with CAC and CC for different job sizes. Fig-

ure 5 plots this for jobs with 10 and 20 upstream and

downstream tasks each. With three clones per task, the

probability of the job straggling increases by over 10%
and 30% with CAC compared to CC. Contrast this with

our algorithm in §3.2 which aims for an ǫ of 5%. The

gap between CAC and CC diminishes for higher num-

bers of clones but this is contradictory to our decision to

pick task-level cloning as we wanted to limit the num-

ber of clones. In summary, CAC significantly increases

susceptibility of jobs to stragglers compared to CC.

4.3 I/O Contention with CC

By assigning all tasks in a downstream clone group to

read the output of the earliest upstream clone, CC causes

contention for IO bandwidth. We quantify the impact due

to this contention using a micro-benchmark rather than

using mathematical analysis to model IO bandwidths,

which for contention is likely to be inaccurate.

With the goal of realistically measuring contention,

our micro-benchmark replicates the all-to-all data shuf-

fle portion of jobs in the Facebook trace. The experiment

is performed on the same 150 node cluster we use for

Dolly’s evaluation (§5). Every downstream task reads its

share of the output from each of the upstream tasks. All

the reads start at exactly the same relative time as in the

original trace and read the same amount of data from ev-

ery upstream task’s output. The reads of all the down-

stream tasks of a job together constitute a transfer [22].
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Figure 6: Slowdown (%) of transfer of intermediate data

between phases (all-to-all) due to contention by CC.

The number of clones per upstream and downstream

task is decided as in §3. In the absence of stragglers,

there would be as many copies of the upstream outputs

as there are downstream clones. However, a fraction of

the upstream clones will be stragglers. When upstream

clones straggle, we assume their copy of the intermedi-

ate data is not available for the transfer. Naturally, this

causes contention among the downstream clones.

Reading contended copies of intermediate data likely

results in a lower throughput than when there are exclu-

sive copies. Of interest to us is the slowdown in the trans-

fer of the downstream phase due to such contentions,

compared to the case where there are as many copies of

the intermediate data as there are downstream clones.

Figure 6 shows the slowdown of transfers in each bin

of jobs. Transfers of jobs in the first two bins slow

down by 32% and 39% at median, third quartile values

are 50%. Transfers of large jobs are less hurt because

tasks of large jobs are often not cloned because of lack

of cloning budget. Overall, we see that contentions cause

significant slowdown of transfers and are worth avoiding.

4.4 Delay Assignment

The analyses in §4.2 and §4.3 conclude that both CAC

and CC have downsides. Contentions with CC are not

small enough to be ignored. Following strict CAC is not

the solution either because it diminishes the benefits of

cloning. A deficiency with both CAC and CC is that they

do not distinguish stragglers from tasks that have normal

(but minor) variations in their progress. CC errs on the

side of assuming that all clones other than the earliest are

stragglers, while CAC assumes all variations are normal.

We develop a hybrid approach, delay assignment, that

first waits to assign the early upstream clones (like CAC),

and thereafter proceeds without waiting for any remain-

ing stragglers (like CC). Every downstream clone waits

for a small window of time (ω) to see if it can get an ex-

clusive copy of the intermediate data. The wait time of

ω allows for normal variations among upstream clones.

If the downstream clone does not get its exclusive copy

even after waiting for ω, it reads with contention from

one of the finished upstream clone’s outputs.

7
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Crucial to delay assignment’s performance is setting

the wait time of ω. We next proceed to discuss the anal-

ysis that picks a balanced value of ω.

Setting the delay (ω): The objective of the analysis is

to minimize the expected duration of a downstream task,

which is the minimum of the durations of its clones.

We reuse the scenario from Figure 4. After waiting

for ω, the downstream clone either gets its own exclusive

copy, or reads the available copy with contention with

the other clone. We denote the durations for reading the

data in these two cases as TE and TC , respectively. In

estimating read durations, we eschew detailed modeling

of systemic and network performance. Further, we make

the simplifying assumption that all downstream clones

can read the upstream output (of size r) with a bandwidth

of B when there is no contention, andαB in the presence

of contention (α ≤ 1).

Our analysis, then, performs the following three steps.

1. Calculate the clone’s expected duration for reading

each upstream output using TC and TE .

2. Use read durations of all clones of a task to estimate

the overall duration of the task.

3. Find the delay ω that minimizes the task’s duration.

Step (1): We first calculate TC , i.e., the case where the

clone waits for ω but does not get its exclusive copy,

and contends with the other clone. The downstream

clone that started reading first will complete its read in
(

ω +
(

r−Bw
αB

))

, i.e., it reads for ω by itself and contends

with the other clone for the remaining time. The other

clone takes
(

2ω +
(

r−Bw
αB

))

to read the data.

Alternately, if the clone gets its exclusive copy, then

the clone that began reading first reads without interrup-

tion and completes its read in
(

r
B

)

. The other clone,

since it gets its own copy too, takes
(

r
B +min( r

B , ω)
)

to read the data.5 Now that we have calculated TC and

TE , the expected duration of the task for reading this up-

stream output is simply pcTC +(1− pc)TE , where pc is

the probability of the task not getting an exclusive copy.

Note that, regardless of the number of clones, every clone

is assigned an input source latest at the end of ω. Unfin-

ished upstream clones at that point are killed.

Step (2): Every clone may have to read the outputs of

multiple upstream clones, depending on the intermedi-

ate data communication pattern. In all-to-all communi-

cation, a task reads data from each upstream task’s out-

put. In one-to-one or many-to-one communications, a

task reads data from just one or few tasks upstream of it.

Therefore, the total time Ti taken by clone i of a task is

obtained by considering its read durations from each of

5The wait time of ω is an upper limit. The downstream clone can

start as soon as the upstream output arrives.

the relevant upstream tasks, along with the expected time

for computation. The expected duration of the task is the

minimum of all its clones, mini (Ti).

Step (3): The final step is to find ω that minimizes this

expected task duration. We sample values of B and α,

pc and the computation times of tasks from samples of

completed jobs. The value of B depends on the number

of active flows traversing a machine, while the pc is in-

versely proportional to ω. Using these, we pick ω that

minimizes the duration of a task calculated in step (2).
The value of ω is calculated periodically and automati-

cally for different job bins (see §5.2). A subtle point with

our analysis is that it automatically considers the option

where clones read from the available upstream output,

one after the other, without contending.

A concern in the strategy of delaying a task is that it is

not work-conserving and also somewhat contradicts the

observation in §2 that waiting before deciding to specu-

late is harmful. Both concerns are ameliorated by the fact

that we eventually pick a wait duration that minimizes

the completion time. Therefore, our wait is not because

we lack data to make a decision but precisely because the

data dictates that we wait for the duration of ω.

5 Evaluation

We evaluate Dolly using a prototype built by modifying

the Hadoop framework [8]. We deploy our prototype on

a 150-node cluster and evaluate it using workloads de-

rived from the Facebook and Bing traces (§2), indicative

of Hadoop and Dryad clusters. In doing so, we preserve

the inter-arrival times of jobs, distribution of job sizes,

and the DAG of the jobs from the original trace. The

jobs in the Dryad cluster consist of multiple phases with

varied communication patterns between them.

5.1 Setup

Prototype Implementation: We modify the job sched-

uler of Hadoop 0.20.2 [8] to implement Dolly. The two

main modifications are launching clones for every task

and assigning map outputs to reduce clones such that

they read the intermediate data without contention.

When a job is submitted, its tasks are queued at the

scheduler. For every queued task, the scheduler spawns

many clones. Clones are indistinguishable and the sched-

uler treats every clone as if it were another task.

The all-to-all transfer of intermediate data is imple-

mented as follows in Hadoop. When map tasks finish,

they notify the scheduler about the details of their out-

puts. The scheduler, in turn, updates a synchronized list

of available map outputs. Reduce tasks start after a frac-

tion of the map tasks finish [23]. On startup, they poll

on the synchronized list of map outputs and fetch their

data as and when they become available. There are two

changes we make here. First, every reduce task differen-

8



USENIX Association  10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 193

Bin 1 2 3 4 5

Tasks 1–10 11–50 51–150 151–500 > 500

Table 3: Job bins, binned by their number of tasks.

tiates between map clones and avoids repetitive copying.

Second, tasks in a reduce clone group notify each other

when they start reading the output of a map clone. This

helps them wait to avoid contention.

Deployment: We deploy our prototype on a private clus-

ter with 150machines. Each machine has 24GB of mem-

ory, 12 cores, and 2TB of storage. The machines have

1Gbps network links connected in a topology with full

bisection bandwidth. Each experiment is repeated five

times and we present the median numbers.

Baseline: Our baselines for evaluating Dolly are the

state-of-the-art speculation algorithms—LATE [5] and

Mantri [4]. Additionally, with each of these specula-

tion strategies, we also include a blacklisting scheme that

avoids problematic machines (as described in §2.1.2).

In addition to overall improvement in average com-

pletion time of jobs, we bin jobs by their number of tasks

(see Table 3) and report the average improvement in each

bin. The following is a summary of our results.

• Average completion time of small jobs improves by

34% to 46% compared to LATE and Mantri, using

fewer than 5% extra resources (§5.2 and §5.4).

• Delay assignment outperforms CAC and CC by 2×.

Its benefit increases for jobs with higher number of

phases and all-to-all intermediate data flow (§5.3).

• Admission control of jobs is a good approximation

for preemption in favoring small jobs (§5.5).

5.2 Does Dolly mitigate stragglers?

We first present the improvement in completion time us-

ing Dolly. Unless specified otherwise, the cloning budget

β is 5% and utilization threshold τ is 80%.

Dolly improves the average completion time of jobs by

42% compared to LATE and 40% compared to Mantri,

in the Facebook workload. The corresponding improve-

ments are 27% and 23% in the Bing workload. Fig-

ure 7 plots the improvement in different job bins. Small

jobs (bin-1) benefit the most, improving by 46% and

37% compared to LATE and 44% and 34% compared

to Mantri, in the Facebook and Bing workloads. This

is because of the power-law in job sizes and the policy

of admission control. Figures 8a and 8b show the aver-

age duration of jobs in the smallest two bins with LATE

and Mantri, and its reduction due to Dolly’s cloning, for

the Facebook workload. Figure 8c shows the distribution

of gains for jobs in bin-1. We see that jobs improve by
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(a) Facebook workload.
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(b) Bing workload.

Figure 7: Dolly’s improvement for the Facebook and Bing

workloads, with LATE and Mantri as baselines.

nearly 50% and 60% at the 75th and 90th percentiles, re-

spectively. Note that even at the 10th percentile, there is

a non-zero improvement, demonstrating the seriousness

and prevalence of the problem of stragglers in small jobs.

Figure 9 presents supporting evidence for the improve-

ments. The ratio of medium to minimum progress rates

of tasks, which is over 5 with LATE and Mantri in our de-

ployment, drops to as low as 1.06 with Dolly. Even at the

95th percentile, this ratio is only 1.17, thereby indicating

that Dolly effectively mitigates nearly all stragglers.

The ratio not being exactly 1 shows that some strag-

glers still remain. One reason for this is that while

our policy of admission control is a good approximation

(§3.3), it does not explicitly prioritize small jobs. Hence

a few large jobs possibly deny the budget to some small

jobs. Analyzing the consumption of the cloning budget

shows that this is indeed the case. Jobs in bin-1 and bin-2
together consume 83% of the cloning budget. However,

even jobs in bin-5 get a small share (2%) of the budget.

5.3 Delay Assignment

Setting ω: Crucial to the above improvements is delay

assignment’s dynamic calculation of the wait duration of

ω. The value of ω, picked using the analysis in §4.4, is

updated every hour. It varied between 2.5s and 4.7s for

jobs in bin-1, and 3.1s and 5.2s for jobs in bin-2. The

value of ω varies based on job sizes because the number

of tasks in a job influences B, α and pc. Figure 10 plots

the variation with time. The sensitivity ofω to the period-

icity of updating its value is low—using values between

9



194 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

0

25

50

75

100

125

1-10 11-50

LATE Dolly

A
v
e

r
a

g
e

 
C

o
m

p
l
e

t
i
o

n
 

T
i
m

e
 
(
s
)

Bin (#Tasks)

46%
29%

(a) Job Durations.

0

25

50

75

100

125

1-10 11-50

Mantri Dolly

A
v
e

r
a

g
e

 
C

o
m

p
l
e

t
i
o

n
 

T
i
m

e
 
(
s
)

Bin (#Tasks)

44%
26%

(b) Job Durations.

0

20

40

60

80

100

10th perc. 25th perc. 50th perc. 75th perc. 90th perc.

Baseline: LATE

Baseline: Mantri

Percentile (%)

R
e

d
u

c
t
io

n
 
(
%

)
 
in

 

C
o

m
p

le
t
io

n
 
T

im
e

(c) Distribution of improvements (≤ 10 tasks).

Figure 8: Dissecting Dolly’s improvements for the Face-

book workload. Figures (a) and (b) show the duration of

the small jobs before and after Dolly. Figure (c) expands on

the distribution of the gains for jobs with ≤ 10 tasks.
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Figure 9: Ratio of median to minimum progress rates of

tasks within a phase. Bins are as per Table 3.

30 minutes to 3 hours causes little change in its value.

CC and CAC: We now compare delay assignment to the

two static assignment schemes, Contention Cloning (CC)

and Contention Avoidance Cloning (CAC) in Figure 11,

for the Bing workload. With LATE as the baseline, CAC

and CC improve the small jobs by 17% and 26%, in con-

trast to delay assignment’s 37% improvement (or up to

2.1× better). With Mantri as the baseline, delay assign-

ment is again up to 2.1× better. In the Facebook work-

load, delay assignment is at least 1.7× better.

The main reason behind delay assignment’s better per-

formance is its accurate estimation of the effect of con-

tention and the likelihood of stragglers. It uses sampling

from prior runs to estimate both. Bandwidth estimation

is 93% accurate without contention and 97% accurate

with contention. Also, the probability of an upstream
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Figure 10: Variation in ω when updated every hour.
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(b) Baseline: Mantri

Figure 11: Intermediate data contention. Delay Assign-

ment is 2.1× better than CAC and CC (Bing workload).

clone straggling is estimated to an accuracy of 95%.

Between the two, CC is a closer competitor to delay

assignment than CAC, for small jobs. This is because

they transfer only moderate amounts of data. However,

contentions hurt large jobs as they transfer sizable inter-

mediate data. As a result, CC’s gains drop below CAC.

Number of Phases: Dryad jobs may have multiple

phases (maximum of 6 in our Bing traces), and tasks of

different phases have the same number of clones. More

phases increases the chances of there being fewer exclu-

sive copies of task outputs, which in turn worsens the

effect of both waiting as well as contention. Figure 12

measures the consequent drop in performance. CAC’s

gains drop quickly while CC’s performance drops at a

moderate rate. Importantly, delay assignment’s perfor-

mance only has a gradual and relatively small drop. Even

when the job has six phases, improvement is at 31%, a

direct result of its deft cost-benefit analysis (§4.4).

Communication Pattern: Delay assignment is generic

to handle any communication pattern between phases.

Figure 13 differentiates the gains in completion times of

the phases based on their communication pattern. Re-

sults show that delay assignment is significantly more
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Figure 12: Dolly’s gains as the number of phases in jobs in

bin-1 varies in the Bing workload, with LATE as baseline.
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Figure 13: Performance of Dolly across phases with differ-

ent communication patterns in bin-1, in the Bing workload.
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Figure 14: Sensitivity to cloning budget (β). Small jobs see

a negligible drop in performance even with a 3% budget.

valuable for all-to-all communication patterns than the

many-to-one and one-to-one patterns. The higher the de-

pendency among communicating tasks, the greater the

value of delay assignment’s cost-benefit analysis.

Overall, we believe the above analysis shows the ap-

plicability and robust performance of Dolly’s mecha-

nisms to different frameworks with varied features.

5.4 Cloning Budget

The improvements in the previous sections are based on

a cloning budget β of 5%. In this section, we analyze

the sensitivity of Dolly’s performance to β. We aim to

understand whether the gains hold for lower budgets and

how much further gains are obtained at higher budgets.

In the Facebook workload, overall improvement re-

mains at 38% compared to LATE even with a cloning

budget of only 3% (Figure 14a). Small jobs, in fact, see

a negligible drop in gains. This is due to the policy of

admission control to favor small jobs. Large jobs take

a non-negligible performance hit though. In fact, in the

Bing workload, even the small jobs see a drop of 7%
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(b) Bing

Figure 15: Sweep of β to measure the overall average com-

pletion time of all jobs and specifically those within bin-1.
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(c) Facebook (β = 3%)
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(d) Bing (β = 3%)

Figure 16: Admission Control. The policy of admission

control well approximates the policy of preemption and out-

performs pure-FCFS in utilizing the cloning budget.

when the budget is reduced from 5% to 3%. This is be-

cause job sizes in Bing are less heavy-tailed. However,

the gains still stand at a significant 28% (Figure 14b).

Increasing the budget to 10% does not help much.

Most of the gains are obtained by eliminating stragglers

in the smaller jobs, which do not require a big budget.

In fact, sweeping the space of β (Figure 15) reveals

that Dolly requires a cloning budget of at least 2% and 3%
for the Facebook and Bing workloads, below which per-

formance drops drastically. Gains in the Facebook work-

load plateau beyond 5%. In the Bing workload, gains for

jobs in bin-1 plateau at 5% but the overall gains cease to

grow only at 12%. While this validates our setting of β
as 5%, clusters can set their budgets based on their uti-

lizations and the jobs they seek to improve with cloning.
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5.5 Admission Control

A competing policy to admission control (§3.3) is to pre-

empt clones of larger jobs for the small jobs. Preemption

is expected to outperform admission control as it explic-

itly prioritizes the small jobs; we aim to quantify the gap.

Figure 16 presents the results with LATE as the base-

line and cloning budgets of 5% and 3%. The gains with

preemption is 43% and 29% in the Facebook and Bing

workloads, compared to 42% and 27% with the policy

of admission control. This small difference is obtained

by preempting 8% and 9% of the tasks in the two work-

loads. Lowering the cloning budget to 3% further shrinks

this difference, even as more tasks are preempted. With

a cloning budget of 3%, the improvements are nearly

equal, even as 17% of the tasks are preempted, effec-

tively wasting cluster resources. Admission control well

approximates preemption due to the heavy tailed distri-

bution. Note the near-identical gains for small jobs.

Doing neither preemption or admission control in al-

locating the cloning budget (“pure-FCFS”) reduces the

gains by nearly 14%, implying this often results in larger

jobs denying the cloning budget to the smaller jobs.

6 Related Work

Replicating tasks in distributed systems have a long his-

tory [24, 25, 26], and have been studied extensively [27,

28, 29] in prior work. These studies conclude that model-

ing running tasks and using it for predicting and compar-

ing performance of other tasks is the hardest component,

errors in which often cause degradation in performance.

We concur with a similar observation in our traces.

The problem of stragglers was identified in the orig-

inal MapReduce paper [1]. Since then solutions have

been proposed to fix it using speculative executions [2,

4, 5]. Despite these techniques, stragglers remain a prob-

lem in small jobs. Dolly addresses their fundamental

limitation—wait to observe before acting—with a proac-

tive approach of cloning jobs. It does so using few extra

resources by relying on the power-law of job sizes.

Based on extensive research on detecting faults in ma-

chines (e.g., [30, 31, 32, 33, 34]), datacenters period-

ically check for faulty machines and avoid scheduling

jobs on them. However, stragglers continue to occur on

the non-blacklisted machines. Further improvements to

blacklisting requires a root cause analysis of stragglers

in small jobs. However, this is intrinsically hard due to

the complexity of the hardware and software modules, a

problem recently acknowledged in Google’s clusters [6].

In fact, Google’s clusters aim to make jobs “pre-

dictable out of unpredictable parts” [6]. They overcome

vagaries in performance by scheduling backup copies

for every job. Such backup requests are also used in

Amazon’s Dynamo [35]. This notion is similar to Dolly.

However, these systems aim to overcome variations in

scheduling delays on the machines, not runtime strag-

glers. Therefore, they cancel the backup copies once one

of the copies starts. In contrast, Dolly has to be resilient

to runtime variabilities which requires functioning within

utilization limits and efficiently handle intermediate data.

Finally, our delay assignment model is similar to the

idea of delay scheduling [36] that delays scheduling tasks

for locality. We borrow this idea in Dolly, but crucially,

pick the value of the delay based on a cost-benefit analy-

sis weighing contention versus waiting for slower tasks.

7 Conclusions and Future Work

Analysis of production traces from Facebook and Mi-

crosoft Bing show that straggler tasks continue to af-

fect small interactive jobs by 47% even after applying

state-of-the-art mitigation techniques [4, 5]. This is be-

cause these techniques wait before launching speculative

copies. Such waiting bounds their agility for small jobs

that run all their tasks at once.

In this paper we developed a system, Dolly, that

launches multiple clones of jobs, completely removing

waiting from straggler mitigation. Cloning of small jobs

can be achieved with few extra resources because of the

heavy-tail distribution of job sizes; the majority of the

jobs are small and can be cloned with little overhead. The

main challenge of cloning was making the intermediate

data transfer efficient, i.e., avoiding multiple tasks down-

stream in the job from contending for the same upstream

output. We developed delay assignment to efficiently

avoid such contention using a cost-benefit model. Evalu-

ation using production workloads showed that Dolly sped

up small jobs by 34% to 46% on average, after applying

LATE and Mantri, using only 5% extra resources.

Going forward, we plan to evaluate Dolly’s compat-

ibility with caching systems proposed for computation

frameworks. These systems rely on achieving memory

locality—scheduling a task on the machine that caches

its input—along with cache replacement schemes tar-

geted for parallel jobs [37]. Analyzing (and dealing with)

the impact of multiple clones for every task on both these

aspects is a topic for investigation.

We also plan to extent Dolly to deal with clusters that

deploy multiple computation frameworks. Trends indi-

cate a proliferation of frameworks, based on different

computational needs and programming paradigms (e.g.,

[3, 7]). Such specialized frameworks may, perhaps, lead

to homogeneity of job sizes within them. Challenges

in extending Dolly to such multi-framework clusters in-

cludes dealing with any weakening of the heavy-tail dis-

tribution, a crucial factor behind Dolly’s low overheads.
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