
USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 297

EyeQ: Practical Network Performance Isolation at the Edge

Vimalkumar Jeyakumar1, Mohammad Alizadeh1,2, David Mazières1, Balaji Prabhakar1,
Changhoon Kim3, and Albert Greenberg3

1Stanford University 2Insieme Networks 3Windows Azure

Abstract
The datacenter network is shared among untrusted ten-
ants in a public cloud, and hundreds of services in a
private cloud. Today we lack fine-grained control over
network bandwidth partitioning across tenants. In this
paper we present EyeQ, a simple and practical system
that provides tenants with bandwidth guarantees as if
their endpoints were connected to a dedicated switch.
To realize this goal, EyeQ leverages the high bisection
bandwidth in a datacenter fabric and enforces admission
control on traffic, regardless of the tenant transport pro-
tocol. We show that this pushes bandwidth contention
to the network’s edge, enabling EyeQ to support end-
to-end minimum bandwidth guarantees to tenant end-
points in a simple and scalable manner at the servers.
EyeQ requires no changes to applications and is deploy-
able with support from the network available today. We
evaluate EyeQ with an efficient software implementation
at 10Gb/s speeds using unmodified applications and ad-
versarial traffic patterns. Our evaluation demonstrates
EyeQ’s promise of predictable network performance iso-
lation. For instance, even with an adversarial tenant with
bursty UDP traffic, EyeQ is able to maintain the 99.9th
percentile latency for a collocated memcached applica-
tion close to that of a dedicated deployment.

1 Introduction
In the datacenter, we seek to virtualize the network for
its tenants, as has been done for compute and storage.
Ideally, a tenant running on shared physical infrastruc-
ture should see the same range of control- and data-path
capabilities on its virtual network, as it would see on a
dedicated physical network. This vision has been in full
swing for some years in the control plane [1, 2]. An
early innovator in the control plane was Amazon Web
Services, where a tenant can create a “Virtual Private

Cloud” [1] with their IP addresses without interfering
with other tenants. In the data plane, there has been little
comparable progress.

To make comparable progress, we posit that the
provider should present a simple performance abstrac-
tion of a dedicated switch connecting a tenant’s end-
points [3], independent of the underlying physical topol-
ogy. The endpoints may be anywhere in the datacenter,
but a tenant should be able to attain full line rate for any
traffic pattern between its endpoints, constrained only by
endpoint capacities. Bandwidth assurances to this tenant
should suffer no negative impact from the behavior and
churn of other tenants in the datacenter. This abstraction
has been a consistent ask of enterprise customers consid-
ering moving to the cloud, as the enterprise mission de-
mands a high degree of infrastructure predictability [4].

Is this abstraction realizable? EyeQ described in this
paper attempts to deliver this abstraction for every ten-
ant. This requires three key components of which EyeQ
provides the final missing piece.

First, with little to no knowledge of tenant com-
munication patterns, promising bandwidth guarantees
to endpoints requires smart endpoint placement in a
network with adequate capacity (for the worst case).
Hence, topologies with bottlenecks between server–
server (“east–west”) traffic are undesirable. Fortu-
nately, recent proposals [5, 6, 7] have demonstrated cost-
effective means of building “high bisection bandwidth”
network topologies. These topologies are realizable in
practice (§2.3), and substantially lower the complexity
of endpoint placement (§3.5) as server–server capac-
ity is more uniform. Second, utilizing this high bisec-
tional bandwidth requires effective traffic load balanc-
ing schemes to mitigate network hotspots. While today’s
routing protocols (e.g. Equal-Cost Multi-Path [8]) do a
reasonable job of utilizing available capacity, there has

298 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

Server j'Server i'

Server j
Server i

VM A1

VM B1

A2
B2

B3

SEM REM

REMSEM

Feedback signalsTraffic

F1

F2

F3

Datacenter
Network

Receive
flow rates
over time

Figure 1: EyeQ’s sender module (SEM) and receiver module
(REM) work in a distributed fashion by exchanging feedback
messages, to iteratively converge to bandwidth guarantees.

been continuous improvements on this front [9, 10, 11].
The third (and missing) piece, is a bandwidth arbi-

tration mechanism that schedules tenant flows in accor-
dance with the bandwidth guarantees, even with misbe-
having or malicious tenants. Today, TCP’s congestion
control shares bandwidth equally across flows and is ag-
nostic to tenant requirements, and thus falls short of pre-
dictably sharing bandwidth across tenants.

EyeQ, the main contribution of this paper, is a pro-
grammable bandwidth arbitration mechanism for the
datacenter network. Our design is based on the key in-
sight that by relieving the network’s core of persistent
congestion, we can partition bandwidth in a simple and
distributed manner, completely at the edge. EyeQ uses
server-to-server congestion control mechanisms to parti-
tion bandwidth locally at senders and receivers. The de-
sign is highly scalable and responsive and ensures band-
width guarantees are met even in the presence of highly
volatile traffic patterns. The congestion control mecha-
nism pushes overloads back to the sources, while drain-
ing traffic at maximal rates. This ensures that network
bandwidth is not wasted.
The EyeQ model. EyeQ allows administrators to con-
figure a minimum and a maximum bandwidth to a
VM’s Virtual Network Interface Card (vNIC). The lower
bound on bandwidth permits a work-conserving alloca-
tion among vNICs collocated on a physical machine.
The EyeQ arbitration mechanism. We explain the dis-
tributed mechanism using the example shown in Fig-
ure 1. VMs of tenants A and B are given a minimum
bandwidth guarantee of 2Gb/s and 8Gb/s respectively.
The first network flow F1 starts at VM A1 destined for
A2. In the absence of contention, it is allocated the full
line rate of 10Gb/s. While F1 is in progress, a second
flow F2 starts at B1 destined for B2, creating congestion
at server j. The Receiver EyeQ Module (REM) at j de-
tects this contention for bandwidth, and uses end-to-end

feedback to rate limit F1 to 2Gb/s, and F2 to 8Gb/s. Now,
suppose flow F3 starts at VM B1 destined for B3. The
Sender EyeQ Module (SEM) at server i′ partitions its link
bandwidth between F2 and F3 equally. Since this lowers
the rate of F2 at server j to 5Gb/s, the REM at j will allo-
cate the spare 3Gb/s bandwidth to F1 through subsequent
feedback. In this way EyeQ recursively and distributedly
schedules bandwidth across a network, to simultaneously
maximize utilization, and meet bandwidth guarantees.

EyeQ is practical; the SEM and REM shim layers
enforce traffic admission control without awareness of
application traffic demands, traffic patterns, or transport
protocol behavior (TCP/UDP) and without requiring any
more support from network switches than what is already
available today. We demonstrate this through extensive
evaluations on real applications.

In summary, our main contributions are:

• The design of EyeQ that simultaneously achieves
predictable and work-conserving bandwidth arbitra-
tion in a scalable fashion, completely from the net-
work edge (host network stack, hypervisor, or NIC).

• An open implementation of EyeQ in software that
scales to high line rates.

• An evaluation of EyeQ’s feasibility at 10Gb/s on
real applications.

The rest of the paper is organized as follows. We de-
scribe the nature of EyeQ’s guarantees and discuss in-
sights about network contention from a production clus-
ter (§2) that motivate our design. We then delve into
the design (§3), our software implementation (§4), and
evaluation (§5) using micro- and macro-benchmarks. We
summarize related work (§6) and conclude (§7).

We are committed to making our work easily avail-
able for reproducibility. Our implementation and evalua-
tion scripts are online at http://jvimal.github.
com/eyeq.

2 Predictable Bandwidth Partitioning
The goal of EyeQ is to schedule network traffic across
a datacenter network such that it meets tenant endpoint
bandwidth guarantees over short intervals of time (e.g.,
a few milliseconds). In this section, we define this no-
tion of bandwidth guarantees more precisely and explain
why bandwidth guarantees need to be met over short
timescales. Then, we describe the key insight that makes
EyeQ’s simple design possible: The fact that the net-
work’s core in today’s high bisection bandwidth data-
center networks can be kept free of persistent congestion.
We show measurements from a Windows Azure produc-
tion storage cluster that validate this claim.

2

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 299

Shared 10Gb/s

TCP VM
6Gb/s

UDP VM
3Gb/s

TCP VM UDP VM

(a) Topology setup. (b) UDP burstiness at small timescales. (c) Latency of TCP request response with and
without EyeQ.

Figure 2: The UDP tenant bursts for 5ms and sleeps for 15ms, which even at 100ms timescales seems benign (2.5Gb/s or 25%
utilization). These finer timescale interactions put a stringent performance requirement on the reaction times of any isolation
mechanism, and mechanisms that react at large timescales may not see the big picture. EyeQ rate limits UDP over short timescales
and improves the TCP tenant’s median latency by over 10x. (There were no TCP timeouts in this experiment.)

2.1 EyeQ’s bandwidth guarantees
EyeQ provides bandwidth guarantees for every endpoint
(e.g., VM NIC) in order to mimic the performance of a
dedicated switch for each tenant. The bandwidth guar-
antee for each endpoint is configured at provision time.
The endpoints should be able to attain their guaranteed
bandwidth as long as their traffic does not oversubscribe
any endpoint’s capacity.1 For instance, if N VMs, each
with 1Gb/s capacity, attempt to send traffic at full rate to
a single 1Gb/s receiver, EyeQ only guarantees that the re-
ceiver (in aggregate) receives 1Gb/s of traffic. The excess
traffic is dropped at the senders. Hence, EyeQ enforces
traffic admissibility and only promises bandwidth guar-
antees for the bottleneck port (the receiver) and allocates
bandwidth across senders in a max-min fashion.

There are different notions for bandwidth guarantees,
ranging from exact rate and delay guarantees at the
level of individual packets [13], to approximate “average
rate” [14] guarantees over an acceptable interval of time.
As observed in prior work [14], exact rate guarantees re-
quire per-endpoint queues and precise packet scheduling
mechanisms [15, 16, 17] at every switch in the network.
Such mechanisms are expensive to implement and are
not available in switches today at a scale to isolate thou-
sands of tenants and millions of VMs [18]. Hence, with
EyeQ, we strive to attain average rate guarantees over an
interval of time that is as short as possible.

2.2 Rate guarantees at short timescales
Datacenter traffic has been found to be highly volatile
and bursty [5, 19, 20], leading to interactions at short

1This constraint is identical to what would occur with a dedicated
switch, and is sometimes referred to as a hose constraint [12].

timescales of a few milliseconds that adversely impact
flow throughput and tail latency [21, 22, 23]. This is ex-
acerbated by high network speeds and the use of shallow
buffered commodity switches in datacenters. Today, a
single large TCP flow is capable of causing congestion
on its path in a matter of milliseconds, exhausting switch
buffers [21, 24]. We refer the reader to [25] and our prior
work [26] that demonstrate how bursty packet losses can
adversely affect TCP’s throughput.

The prior demonstrations highlight an artifact of
TCP’s behavior, but such interactions can also affect end-
to-end latency, regardless of the transport protocol. To
see this, consider a multi-tenant setting with a TCP and
UDP tenant shown in Figure 2(a). Two VMs (one of each
tenant) collocated on a physical machine receive traffic
from their tenant VMs on other machines. Assume an
administrator divides 9Gb/s of the access link bandwidth
(at the receiver) between TCP and UDP tenants in the ra-
tio 2:1 (the spare 1Gb/s or 10% bandwidth headroom is
reserved to ensure good latency [22]). The UDP tenant
transmits at an average rate of 2.5Gb/s by bursting in an
ON-OFF fashion (ON at 10Gb/s for 5ms, OFF for 15ms).
The TCP client issues back-to-back 1-byte requests over
one connection and receives 1-byte responses from the
server collocated with the UDP tenant.

Figure 2(c) shows the latency distribution of the TCP
tenant with and without EyeQ. Though the average
throughput of the UDP tenant (2.5Gb/s) is less than its
allocated 3Gb/s, the TCP tenant’s median and 99th per-
centile latency increases by over 10x. This is because of
the congestion caused by the UDP tenant during the 5ms
bursts at line rate, as shown in Figure 2(b). When EyeQ
is enabled, it cuts off UDP’s bursts at short timescales.
We see that the latency with EyeQ is about 55µs, which

3

300 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

Spine 1

ToR 1

Server 1
...

Server N

ToR 2

Rack
2

· · · Spine S

ToR T

Rack
T

· · ·

Figure 3: Emerging datacenter network architectures are over-
subscribed only at the Top-of-Rack switches, which are con-
nected to a spine layer that offers uniform bandwidth between
racks. The over-subscription ratio is typically less than 3.

is close to bare-metal performance that we saw when run-
ning the TCP tenant without the UDP tenant.

Thus, any mechanism that only looks at average uti-
lization over large timescales (e.g., over 100 millisec-
onds) fails to see the contention happening at finer
timescales, which can substantially degrade both band-
width and latency for contending applications. To ad-
dress this challenge, EyeQ operates in the dataplane in
a distributed fashion, and uses a responsive rate-based
congestion control mechanism based on the Rate Con-
trol Protocol [27]. This enables EyeQ to quickly re-
act to congestion in 100s of microseconds. We believe
this timescale is short enough to at least protect tenants
from persistent packet drops caused by other tenants as
most datacenter switches have a few milliseconds worth
of buffering.

2.3 The Fat and Flat Datacenter Network
In this section, we show how the high bisection band-
width network architecture of a datacenter can simplify
the task of bandwidth arbitration, which essentially boils
down to managing network congestion wherever it oc-
curs. In a flat datacenter network with little to no flow ag-
gregation, congestion can occur everywhere, and there-
fore, switches need to be aware of thousands of tenants.
Configuring every switch as tenants and their VMs come
and go is unrealistic. We investigate where congestion
actually occurs in a datacenter.

An emerging trend in datacenter network architecture
is that the over-subscription ratio, typically less than 3:1,
exists only at the Top-of-Rack (ToR) switches (Figure 3).
Beyond the ToR switches, the network design eliminates
any structural bottleneck, and offers uniform high capac-
ity between racks in a cluster. To study where conges-
tion occurs in such a topology, we collected link utiliza-
tion statistics from Windows Azure’s production storage

Figure 4: Utilization trends observed in a cluster running a
multi-tenant storage service. The edge links exhibit higher peak
and variance in link utilization compared to core links.

cluster, whose network has a small oversubscription (less
than 3:1). Figure 4 plots the top 10 percentiles of link uti-
lization (averaged over 5 minute intervals) on edge and
core links using data collected from 20 racks over the
course of one week. The plot reveals two trends. First,
we observe that edge links have higher peak link utiliza-
tion. This suggests that persistent congestion manifests
itself more often, and earlier, on server ports than the
network core. Second, the variation of link utilization on
core links is smaller. This suggests that the network core
is evenly utilized and is free of persistent hot-spots.

The reason we observe this behavior is two fold. First,
we observed that TCP is the dominant protocol in our
datacenters [19, 21]. The nature of TCP’s congestion
control ensures that traffic is admissible, i.e., sources do
not send more traffic (in aggregate) to a sink than the bot-
tleneck capacity along the paths. In a high capacity fab-
ric, the only bottlenecks are at over-subscription points—
the server access links and the links between the ToRs
and Spines—provided packets are optimally routed at
other places. Second, datacenters today use Equal-Cost
Multi-Path (ECMP) to randomize routing at the level of
flows. In practice, ECMP is “good enough” to miti-
gate contention within the fabric, particularly when most
flows are short-lived. While the above link utilizations
reflect persistent congestion over 5 minute intervals, we
conducted a detailed packet-level simulation study, and
found that randomized per-packet routing can push even
millisecond timescale congestion to the edge (§5.3).

Thus, if (a) the network has high bisection bandwidth,
(b) the network employs randomized traffic routing, and
(c) traffic is admissible, persistent congestion only occurs
at the access links and not in the core. This observation
guides our design in that it is sufficient if per-tenant state
is pushed to the edge, where it is already available.

3 EyeQ Design
We now describe EyeQ’s design in light of the observa-
tions in the §2. For ease of exposition, we first abstract
the datacenter network as a single switch and describe

4

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 301

how EyeQ ensures rate guarantees to each endpoint con-
nected to this switch. Then in §3.5, we explain how this
design fits in a network of switches. Finally, we describe
how endpoints that do not need guarantees can coexist.

If a single switch connects all servers, bandwidth con-
tention happens only at the first-hop link connecting the
sender to the switch, and the last-hop link connecting the
switch to the receiver. Therefore, any contention is local
to the servers, where the number of competing entities is
small (typically 8–32 services/VMs per server). To re-
solve local contention between endpoints, two features
are indispensable: (a) a mechanism that detects and ac-
counts for contention, and (b) a mechanism that enforces
rate limits on flows that violate their share. We now de-
scribe mechanisms to detect and resolve contention at
senders and receivers.

3.1 Detecting and Resolving Contention
Senders. Contention between transmitters at the sender
is straightforward to detect and resolve as the first point
of contention is the server NIC. To resolve this and
achive rate guarantees at the sender, EyeQ uses weighted
fair queueing, where weights are set proportional to the
endpoint’s minimum bandwidth guarantees.
Receivers. However, contention at the receiver first hap-
pens inside the switch, and not at the receiving server.
To see this, consider the example shown in Figure 2
where UDP generates highly bursty traffic that leads to
25% average utilization of the receiver link. When TCP
begins to transmit packets, the link utilization soon ap-
proaches 100%, and packets are queued up in the lim-
ited buffer space inside the switch. If the switch does
not differentially treat TCP and UDP packets, TCP’s re-
quest/response experiences high latency.

Unfortunately, neither the sender nor receiver server
has accurate, if any, visibility into this switch-internal
contention, especially at timescales it takes to fill the
switch packet buffers. These timescales can be very
small as datacenter switches have limited packet buffers.
Consider a scenario where two switch ports send data to
a common port that has 1MB buffer. If each port starts
sending at line rate, it takes just 800µs (at 10Gb/s) to fill
the shared buffer inside the switch.

Fortunately, the scenario in Figure 2 offers an in-
sight into the problem: contention happens when the
link utilization, at short timescales, approaches its capac-
ity. EyeQ therefore measures rate every 200µs and uses
this information to rate limit flows before they cause fur-
ther congestion. EyeQ stands to benefit if the network
can further assist in quickly detecting any congestion, ei-
ther using Explicit Congestion Notification (ECN) marks

VM1 VM2

3 4

WFQ
Sched

SEM

3Gb/s 7Gb/s

VM3 VM4

REM

WFQ
Sched

3Gb/s 6Gb/s

Network
Fabric

Rate
Feedback

End-to-End
Flow Control

Packets are
sent to tenant
without any
queueing

Rate
Limiters

Rate Meters

Figure 5: The design consists of a Sender EyeQ Module
(SEM) and Receiver EyeQ Module (REM) at every end-host.
The SEM consists of hierarchical rate limiters to enforce ad-
mission control, and a WRR scheduler to enforce minimum
bandwidth guarantees. The REM consists of rate meters that
detect and signal congestion. In tandem, the SEM and REM
achieve end-to-end flow control.

from a shared queue when buffers exceed a configured
queue occupancy, or using per-tenant dedicated queues
only on the access link. But EyeQ does not need per-
tenant network queues to function.
Resolving receiver contention. Unlike sender viola-
tion, performing both detection and rate limiting at the
receiver is not effective, as rate limiting at the receiver
can only control well-behaved TCP-like flows (by hav-
ing them back off via drops). Unfortunately, VMs may
use transport protocols such as UDP, which do not react
to any downstream drops. EyeQ implements receiver-
side detection, sender-side reaction. Specifically EyeQ
detects bandwidth violation at the receiver using per-
endpoint rate meters, and enforces rate limits at the
senders using per-destination rate limiters. These per-
destination rate limiters are programmed by congestion
feedback generated by the receiver (§3.4).

In summary, EyeQ’s design has two main components:
(a) a rate meter at receivers that sends feedback to (b) rate
limiters at senders. A combination of the above is needed
to address both contention at the receiver indicated using
feedback, as well as local contention at the sender. The
rate limiters work in a distributed fashion using a control
algorithm to iteratively converge to the ‘right’ rates.

3.2 Receiver EyeQ Module
The Receiver EyeQ Module (REM) consists of an RX
scheduler and rate meters for every endpoint. The rate

5

302 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

meter is just as a byte counter that periodically (200µs)
tracks the endpoint’s receive rate, and invokes the RX
scheduler which computes a capacity for each endpoint
as Ci = Bi ×C/(∑ j∈A B j). Here, A is the set of active
VMs that are receiving traffic at non-zero rate, and Bi is
the minimum bandwidth guarantee to VM i. Rate me-
ters can be hierarchical; for example, a tenant can create
rate meters to further split its capacity Ci across tenants
communicating with it.

REM is clocked by incoming packets and measures
each tenant’s aggregate utilization every 200µs. A
packet arrival triggers a feedback to source of the current
packet. The feedback is a 16-bit value R computed by the
rate meter using a control algorithm. To avoid generating
excessive feedback, we send feedback only to the source
address of packet sampled every 10kB of received data.
This tends to choose senders that are communicating at
high rates over a period of time.

This sampling also restricts the maximum bandwidth
consumed by feedback. Since feedback packets are min-
imum sized packets (64 bytes), feedback traffic will not
consume more than 64Mb/s (on a 10Gb/s link). This
does not depend on the number of rate meters or senders
transmitting to a single machine. We call this feedback
packet a host-ACK, or HACK. The HACK is a special
IP packet that is never communicated to the tenant; we
picked the first unused IP protocol number (143) as a
‘HACK.’ The HACK encodes a 16-bit rate in its IPID
field. However, this feedback can also be piggybacked
on traffic to the source.

3.3 Sender EyeQ Module
To enforce traffic admission control, SEM uses multiple
rate limiters organized in a hierarchical fashion. To see
this hierarchy, consider the scenario in Figure 5. The
root WRR scheduler schedules packet transmissions so
that VM1 and VM2 get (say) equal share of the transmit
bandwidth. To further ensure that traffic does not con-
gest a destination, there are a set of rate limiters at the
leaf level, one per congested destination. Per-destination
rate limiters ensure that traffic to uncongested destina-
tions are not head-of-line blocked by traffic to congested
destinations. These per-destination rate limiters set their
rate dictated by HACKs from receivers (§3.4). EyeQ as-
sociates traffic to a rate limiter only when the destination
signals congestion through rate feedback. If a feedback
is not received within 100 milliseconds, the rate limiter
halves its rate until it hits 1Mb/s, to avoid congesting the
network if the receiver is unresponsive (e.g. due to fail-
ures or network partitions).

3.4 Rate Control Loop
The heart of EyeQ’s architecture is a rate control algo-
rithm that computes the rates at which senders should
converge to, to avoid overwhelming the receiver’s capac-
ity limits. The goal of this algorithm is to compute one
rate Ri to which all flows of a tenant destined to end-
point i should be rate limited. If N senders all send long-
lived flows, then Ri is simply Ci/N. In practice, N is
hard to estimate as senders are in a constant state of flux,
and not all of them may want to send traffic at rate Ri.
Hence, we need a mechanism that can compute Ri with-
out estimating the number of senders, or their demands.
This makes the implementation practical, and more im-
portantly, makes it possible to offload this functionality
in hardware such as programmable NICs [28].

The control algorithm (operating at each endpoint)
uses the measured receive rate yi and the endpoint’s al-
lowed receive capacity Ci (determined by the RX sched-
uler) to compute a rate Ri that is advertised to senders
communicating only with this endpoint. The basic idea
is that the algorithm starts with an initial rate estimate Ri,
and periodically corrects it based on observed yi; if the
incoming rate yi is too small, it increases Ri, and if yi is
larger than Ci, it decreases Ri. This iterative procedure to
compute Ri can be written as follows, taking care to keep
Ri positive:

Ri ← Ri

(

1−α · yi −Ci

Ci

)

The algorithm is a variant of the Rate Control Proto-
col (RCP) proposed in [27, 29], but there is an important
difference. RCP’s control algorithm operates on links in
the network to split the link capacity among every flow
in a max-min fashion. This achieves per-flow max-min
fairness, and therefore, RCP suffers from the same prob-
lems as TCP. Instead, we operate the control algorithm in
a hierarchical fashion. At the top level, the physical link
capacity is divided by the RX scheduler into multiple vir-
tual link capacities (Ci), one per VM, which isolates VMs
from one another. Next, we operate the above algorithm
independently on each virtual link.

The sensitivity of the algorithm is controlled by pa-
rameter α; higher values make the algorithm more ag-
gressive in adjusting Ri. The above equation can be an-
alyzed as follows. In the case where N flows traverse
a single congested link of unit capacity, the rate evo-
lution of R can be described in the standard form: 2

z[n+1] = bz[n](1− z[n]), where z[n] =
(b−1

b

) R[n]
R∗ , R∗ =

1
N , and b = 1+α . It can be shown that R∗ is the only sta-
ble fixed point of the above recurrence if 1 < b < 3, i.e.

2This is a standard non-linear one-dimensional dynamical system
called the Logistic Map.

6

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 303

0 < α < 2. By linearizing the recurrence about its fixed
point, we can show that R[n]≈ R∗+(R[0]−R∗)(1−α)n.
Therefore the system converges linearly. In practice, we
found that high values of α lead to oscillations around
R∗ and therefore we recommend setting α conservatively
to 0.5, for which R[n] converges within 0.01% of R∗ in
about 30 iterations, irrespective of R[0].

Though EyeQ makes an assumption about conges-
tion free network core, ECN marks from network enable
EyeQ to gracefully degrade in the presence of in-network
congestion that can arise, for example, when links fail.
In the rare event of persistent in-network congestion, we
estimate the fraction of marked incoming packets as β
and reduce Ri proportionally: Ri ← Ri(1− β/2). This
term β aids in reducing the rate of transmitting endpoints
only in such transient cases. Though minimum band-
width guarantees cannot be met in this case, it prevents
starvation where one endpoint is completely dominated
by another. In this case, bottleneck bandwidth is shared
equally among all receiving endpoints.

We experimented with other control algorithms based
on Data Center TCP (DCTCP) [21] and Quantized Con-
gestion Notification (QCN) [30], and found that they
have different convergence and stability properties. For
example, DCTCP’s convergence was on the order of
100–150ms, whereas QCN converged within 20–30ms.
It is important that the control loop be fast and stable, to
react to bursts without over-reaching, and RCP converges
within a few milliseconds to the right rate. Since EyeQ
computes rates every 200µs, the worst case convergence
time (30 iterations) is 6ms. In practice, it is much faster.

3.5 EyeQ on a network
So far, we described EyeQ with the assumption that all
end-hosts are connected to a single switch. A few steps
must be taken to ensure EyeQ’s design is directly ap-
plicable to networks that have a little over-subscription
at the ToR switches (Figure 3). Clearly, if the policy is
to guarantee minimum bandwidth to each VM, the clus-
ter manager must ensure that capacity is not overbooked.
This becomes simpler in such networks, where the core
of the network is guaranteed to be congestion free, and
hence admission control must only ensure that:

• The access links at end-hosts are not over-subscribed:
i.e., the sum of bandwidth guarantees of VMs on a
server is less than 10Gb/s.

• The ToR’s uplink capacity is not over-subscribed: i.e.,
the sum of bandwidth guarantees of VMs under a ToR
switch is less than the switch’s total capacity to the
Spine layer.

The above conditions ensure that VMs are guaranteed
their bandwidth in the worst case when every VM needs
it. The remaining capacity can be used for VMs that
have no bandwidth requirements. Traffic from VMs that
do not need bandwidth guarantees are mapped to a low
priority, “best-effort” network class. This requires (i) a
one-time network configuration of a low priority queue,
which is easily possible in today’s commodity switches,
and (ii) end-hosts to mark packets so they can be classi-
fied to low priority network queues. This partitions the
available bisection bandwidth across a class of VMs that
need performance guarantees, and those that do not. As
we saw in §3.4, EyeQ gracefully degrades in the pres-
ence of network congestion that can happen due to over-
subscription, by sharing bandwidth equally among all re-
ceiving endpoints.

4 Implementation
EyeQ needs two components: rate limiters and rate me-
tering. These components can be implemented in soft-
ware, or hardware or a combination of two for optimum
performance. In this paper, we present a full-software
implementation of EyeQ’s mechanisms, addressing the
following challenges: (a) maintaining line rate perfor-
mance at 10Gb/s while reacting quickly to deal with con-
tentions at fine timescales, (b) co-existing with today’s
network stacks that use various offload techniques to
speed up packet processing. EyeQ uses a combination of
simple and well known techniques to reduce CPU over-
head. We avoid writing to data structures shared across
multiple CPUs to minimize cache misses. If sharing is
inevitable, we minimize updates of shared data as much
as possible through batching.

In untrusted environments, EyeQ is implemented in
the trusted codebase at the (hypervisor or Dom0) virtual
switch. In a non-virtualized, trusted environment, EyeQ
resides in the network stack as a shim layer above the
device driver. As a prototype, we implemented RX and
TX processing for a VMSwitch filter driver for Windows
Server 2008, and a kernel module for Linux which we
use for all our experiments in this paper. The kernel mod-
ule implements a queueing discipline (qdisc) in about
1900 lines of C code and about 700 lines of header files.
We implemented a simple hash table based IP based clas-
sifier to identify endpoints. EyeQ hooks into the RX dat-
apath using netdev rx handler register.

4.1 Receiver EyeQ Module
The REM consists of rate meters, a scheduler and a
HACK generator. A rate meter is created for each VM,
and tracks the VM’s receive rate in an integer. Clocked

7

304 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

by incoming packets, the scheduler determines each end-
point’s allowed rate. The scheduler distributes the re-
ceive capacity among active endpoints, in accordance
with their minimum bandwidth requirements.

At 10Gb/s, today’s NICs use techniques such as Re-
ceive Side Scaling [31] to scale software packet process-
ing by load balancing interrupts across CPU cores. A sin-
gle, atomically updated byte counter in the critical path
is a bottleneck and limits parallelism. To avoid such inef-
ficiencies, we exploit the fact that today’s NICs use inter-
rupt coalescing to deliver multiple packets in a single in-
terrupt, and therefore batch counter updates over 200µs
time intervals. A smaller interval results in inaccurate
rate measurement due to tiny bursts, and a larger interval
decreases the rate meter’s ability to detect short bursts
that can cause interference. In a typical shallow buffered
ToR switch that has a 1MB shared buffer, it takes 800µs
to fill 1MB if two ports are sending at line rate to a com-
mon receiver. Thus, the choice of 200µs interval is to
balance the ability to detect short bursts, and measure
rate reasonably accurately.

4.2 Sender EyeQ Module
SEM consists of multiple TX-contexts, one per endpoint,
that are isolated from one another. The SEM classifies
packets to their corresponding TX-context. Each context
has one root rate limiter, and a hash table of rate limiters
keyed by IP destination d. The hash table stores the rate
control state (R(i)

d). Recall that rate enforcement is done
hierarchically; leaf rate limiters enforce per-destination
rates determined by end-to-end feedback loop, and the
root rate limiter enforces a per-endpoint aggregate rate
determined by the TX scheduler.

Rate limiters to IP destinations are created only on a
need-to-rate limit basis. At start, packets to a destination
are rate limited only at the root level. A per-destination
rate limiter to a destination d is created, and added to the
hierarchy, only on receiving a congestion feedback from
the receiver d. Inactive rate limiters are garbage collected
every few seconds. The TX WRR scheduler executes ev-
ery 200µs and reassigns the total TX capacity to active
endpoints, i.e., those that have a backlog of packets wait-
ing to be transmitted in rate limiters.

Multi-queue rate limiter. The rate limiter is imple-
mented as a token bucket, which has an associated
linked-list (tail-drop) FIFO queue, a timer, a rate R and
some tokens. This simple design can be inefficient, as
a single queue rate limiter increases lock contention,
which degrades performance significantly, as the queue
is touched for every packet. Hence, we split the ideal
rate limiter’s FIFO queue into a per-CPU queue, and the

total tokens into a local token count (tc) on each CPU c.
The value tc is the number of bytes that Qc can transmit
without violating the global rate limit. Only if Qc runs
out of tokens to transmit the head of the queue, it grabs
the rate limiter’s lock to borrow all total tokens.

If the borrow fails due to lack of total tokens, the per-
CPU queue is throttled and appended to a per-CPU list
of backlogged queues. We found that having a timer for
every rate limiter was very expensive. Therefore, a sin-
gle per-CPU timer fires every 50µs and clocks only the
backlogged rate limiters on that CPU. Decreasing the fir-
ing interval increases the precision of the rate limiter, but
increases CPU overhead as it doubles the number of in-
terrupts per second. In practice, we found that 50µs is
sufficient. At 10Gb/s, at most 64kB can be transmitted
every 50µs without violating rate constraints.

The rate limiter’s per-CPU FIFO maximum queue size
is restricted to 128kB, beyond which it back-pressures
the network stack by refusing to accept more packets.
While a TCP flow responds to this immediate feedback
by stopping transmission, UDP applications may con-
tinue to send packets that will be dropped. Stopped TCP
flows will be resumed by incoming ACKs.

Rate limiter accuracy. Techniques such as large seg-
mentation offload (LSO) make it challenging to enforce
rates precisely. With default configuration, the TCP stack
can transmit data in 64kB chunks, which takes 51.2µs to
transmit at 10Gb/s. If a flow is rate limited to 1Gb/s,
the rate limiter would transmit one 64kB chunk every
512µs. This burstiness affects the accuracy with which
the rate meter measures rates. To limit burstiness, we
restrict the maximum LSO packet size to 32kB, which
enables reasonably accurate rate metering at 256µs in-
tervals. For rates less than 1Gb/s, the rate limiter se-
lectively disables segmentation offload by splitting large
packets into smaller chunks of at most the MTU (1500
bytes). This improves rate precision without incurring
much CPU overhead. Limiting the size of an LSO packet
also improves latency for short flows by reducing head of
line blocking at the NIC.

5 Evaluation
We evaluate EyeQ to understand the following aspects:

• Responsiveness: We stress EyeQ’s convergence times
against a large burst of UDP streams and find that
EyeQ converges within 5ms to protect a collocated
TCP tenant.

• CPU overhead: At 10Gb/s, we evaluate the main
overhead of EyeQ due to its rate limiters. We find it
outperforms the software rate limiters in Linux.

8

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 305

306 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

Recall that EyeQ requires a number of rate limiters
that varies depending on the number of flows. In prac-
tice, the number of active flows (flows that have out-
standing data) is typically less than a few 100 on a ma-
chine [5]. Nevertheless, we evaluated EyeQ’s rate lim-
iters by creating 20000 long lived flows that are assigned
to a number of rate limiters in a round robin fashion.
As we increased the number of rate limiters connected
to the root (which is limited to 5Gb/s) from 1 to 1000
to 10000, we found that the CPU usage stays the same.
This is because the net work output (packets per second)
is the same in all cases, except for the (small) overhead
involved in book keeping rate limiters.

5.2 Macro Benchmarks
The micro-benchmarks show that EyeQ is efficient, and
responsive in mitigating congestion. In this section, we
explore the benefits of EyeQ on traffic characteristics
of two real world applications: a long data shuffle (e.g.
Hadoop) and memcached.

5.2.1 All-to-all data shuffle
To mimic a Hadoop job’s network traffic component, we
generate an all to all traffic pattern of a sort job using a
traffic generator.3 Hadoop’s reduce phase is bandwidth
intensive and job completion times depend on the avail-
ability of bandwidth [32]. In the sort workload of S TB
of data, using a cluster of N nodes involves roughly an
equal amount of data shuffle between all pairs; in ef-
fect, S

N(N−1) TB of data is shuffled between every pair of
nodes. We use a TCP traffic generator to create long lived
flows according to the above traffic pattern, and record
the flow completion times of all the N(N −1) flows. We
then plot the CDF of flow completion times for every job
to visualize its progress over time; the job is complete
when the last flow completes. We make no optimizations
to mitigate stragglers.

Multiple all-to-all shuffles. In this test, we run three
collocated all-to-all shuffle jobs. Each job has 16 work-
ers, one on each server in the cluster; and each server
has three workers, one of each job. Each job has a
varying degree of aggressiveness when consuming net-
work bandwidth; job Pi (i = 1,2,4) creates i parallel TCP
connections between each pair of its nodes, and each
TCP connection an transfers equal amount of data. The
jobs are all temporally and spatially collocated with each
other and run a common 1 TB sort workload.

Figure 8(a) shows that jobs that open more TCP con-

3We used a traffic generator as our disks could not sustain enough
write throughput to saturate a 10Gb/s network.

(a) Without EyeQ, job P4 creates 4 parallel TCP con-
nections between its workers and completes faster.

(b) With different minimum bandwidth guarantees,
EyeQ can directly affect the job completion times.

Figure 8: EyeQ’s ability to differentially allocate bandwidth
to all-to-all shuffle jobs can affect their completion times, and
can be done at runtime, without reconfiguring jobs.

nections complete faster. However, EyeQ provides flex-
ibility to explicitly configure job priorities, irrespective
of the traffic, or protocol behavior. Figure 8(b) shows
the job completion times if the lesser aggressive jobs are
given higher priority; the priority can be inverted, and the
job completion times reflect the change of priorities. The
job priority is inverted by assigning minimum bandwidth
guarantees Bi to jobs Pi that is inversely proportional to
their aggressiveness; i.e., B1 : B2 : B4 = 4 : 2 : 1. The final
completion time in EyeQ increases from 180s to 210s,
due to two reasons. First, EyeQ’s congestion detectors
maintain a 10% bandwidth headroom inorder to work at
the end hosts without network ECN support. Second, the
REM (§3.2) does not share bandwidth in a fine-grained,
per-packet fashion, but over a 200µs time window. This
leads to a small loss of utilization, when (say) P1 is allo-
cated some bandwidth but does not use it.

5.2.2 Memcached
Our final macro-evaluation is a scenario where a mem-
cached tenant is collocated alongside an adversarial UDP
tenant. The memcached tenant is a cluster consists of 16
processes: 4 memcached instances and 12 clients. Each
process is located on a different host. At the start of the
experiment, each cache instance allocates 8GB of mem-
ory, each client starts one thread per cache instance, and
each thread opens 10 permanent TCP connections to its
designated cache instance.
Throughput test. We generate an external load of
about 288k requests/sec load balanced equally across all
clients; at each client, the mean load is 6000 requests/sec
to each cache instance. The clients generate SET re-

10

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 307

Latency percentiles (µs)
Scenario 50th 99th 99.9th
Bare 98 370 666
Bare+EyeQ 100 333 630
Bare+UDP 4127 0.89×106 1.1×106

Bare+UDP+EyeQ 102 437 750

Table 1: Latency of memcached SET requests at low load
(144k req/s). In all cases, the cluster throughput was the same,
but EyeQ protects memcached from bursty traffic, bringing the
99.9th percentile latency closer to bare-metal performance.

quests of 6kB values and 32B keys and record the latency
of each operation. We contrast the performance under
four cases. First, we dedicate the cluster to the mem-
cached tenant and establish baseline performance. The
cluster was able to sustain the external load of 288k re-
quests/sec. Second, we enable EyeQ on the same setup
and found that EyeQ does not affect total throughput.

Third, we collocate memcached with a UDP tenant,
by instantiating a UDP node on every end host. Each
UDP node sends half-a-second burst of data to one other
node (chosen in a round robin fashion), sleeping for half-
a-second between bursts. Thus, the average utilization
of UDP tenant is 5Gb/s. We chose this pattern as some
cloud providers today allow a VM to burst at high rates
for a few seconds before it is throttled. In this case,
we find that the cluster was able to keep up only with
269k requests/sec which caused many responses timed
out even though UDP tenant is consuming only 5Gb/s.
Finally, we set equal bandwidth guarantees (5Gb/s) to
both UDP and memcached tenant. We find that the clus-
ter is can sustain the demand of 288k requests/sec. This
shows that EyeQ is able to protect memcached tenant
from the bursty UDP traffic.

Latency test. We over-provisioned the cluster by halv-
ing the external load (144k requests/sec). When mem-
cached is collocated with UDP without EyeQ’s protec-
tion, we observed that the cluster was able to meet its
demand, but UDP was still able to affect the latency of
memcached requests, increasing the 99th percentile la-
tency by over three orders of magnitude. When enabled,
EyeQ was able to protect the memcached tenant from
fine-grained traffic bursts, and bring the 99.9th percentile
latency to 750µs. The latency is still more than bare
metal as the total load on the network is higher.

Takeaways. This experiment highlights a subtle point.
Though we pay a 10% bandwidth price for low latency,
EyeQ improves the net cluster utilization and tail latency
performance. In a real setup, an unsuspecting client
would pay money to spin up additional memcached in-
stances to cope with the additional load. While this

(a) Per-flow ECMP. (b) Per-packet ECMP.

Figure 9: Queue occupancy distribution at the edge and core
links, for two different routing algorithms. The maximum
queue size is 225kB (150 packets). Large queue sizes indi-
cate more congestion. In all cases, the network edge is more
congested even at small timescales (1ms).

does increase revenue for providers, we believe they can
earn more by using fewer resources to achieve the same
level of performance. In datacenters, servers account
for over 60% of the cost, but network accounts for only
10–15% [33]. With EyeQ, cloud operators can hope to
achieve better CPU packing without worrying about net-
work interference.

5.3 Congestion in the Fabric
In §2.3 we used link utilization from a production cluster
as evidence that network congestion happens more often
at the edge than the network core. These coarse-grained
average link utilizations over five minute intervals show
macroscopic trends, but it does not capture congestion
at packet timescales. Using packet-level simulations in
ns2 [34], we study the extent to which transient con-
gestion can be mitigated at the network core using two
routing algorithms: (a) per-flow ECMP and (b) a per-
packet variant of ECMP. In the per-packet variant, each
packet’s route is chosen uniformly at random among all
next hops [35]. To cope with packet reordering, we in-
crease TCP’s duplicate ACK threshold.

We created a full bisection bandwidth topology of
144x10GbE hosts, 9 ToRs and 16 Spines as in our dat-
acenters (Figure 3). Servers open TCP connections to
every other server and generate traffic at an average rate
of 10Gb/s×λ , where λ is the offered load. Each server
picks a random TCP connection to transmit data. Flow
sizes are drawn from a distribution observed in a large
datacenter [21]; the median, mean and 90th percentile
flow sizes are 19kB, 2.4MB, 133kB respectively. We set
queue sizes of all network queues to 150 packets and col-
lect queue samples every 1ms. Figure 9 shows queue oc-
cupancy percentiles at the edge and core when λ = 0.9.

Even at high load, we observe that the core links are
far less congested than the edge links. With per-packet
ECMP, the maximum queue occupancy is less than 50kB

11

308 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

in the core links. All packet are dropped at the server
access links. In all cases, we observed that per-packet
ECMP practically eliminates in-network congestion ir-
respective of traffic pattern.

6 Related work
EyeQ’s goals fall under the umbrella of Network Qual-
ity of Service (QoS), which has a rich history. Early
QoS models [13, 36] and their implementations [15, 16,
36] focus on link-level and network-wide rate and de-
lay guarantees for flows between a source and destina-
tion. Protocols such as Resource Reservation Protocol
(RSVP) [37] reserve/relinquish resources across multi-
ple links using such QoS primitives. Managing network
state for every flow becomes untenable when there are
a lot of flows. This led to approaches that relax strict
guarantees for “average bandwidth,” [14, 38, 39] while
incurring lower state management overhead. A notable
candidate is Core-Stateless Fair Queueing (CSFQ) that
distributes state between the network core and the net-
work edge, relying on flow aggregation at edge routers.
In a flat datacenter network, tenant VMs are distributed
across racks for availability, and hence there is little to no
flow aggregation. OverQoS [40] provided an abstraction
of a controlled loss virtual link with statistical bandwidth
guarantees, between two nodes on an overlay network;
this “pipe” model requires customers to specify band-
width requirements between all communicating pairs, in
contrast to a hose model [12].

Among recent approaches, Seawall [18] shares bottle-
neck capacity across competing source VMs (relative to
their weights). This notion of sharing lacks predictabil-
ity, as a tenant can grab more bandwidth by launching
more source VMs. Oktopus [3] argues for predictabil-
ity by enforcing a static hose model using rate lim-
iters. It computes rates using a pseudo-centralized mech-
anism, where VMs communicate their pairwise band-
width consumption to a tenant-specific centralized coor-
dinator. This control plane overhead limits reaction times
to about 2 seconds. However, as we have seen (§2.2), any
isolation mechanism has to react quickly to be effective.
SecondNet [41] is limited to providing static bandwidth
reservations between pairs of VMs. In contrast to Okto-
pus and SecondNet, EyeQ supports both static and work
conserving bandwidth allocations.

The closest related work to EyeQ is Gatekeeper [42],
which also argues for predictable bandwidth allocation,
and uses congestion control to provide rate guarantees to
VMs. While the high level architecture is similar, Gate-
keeper lacks details on the system design, especially the
rate control mechanism, which is critical to providing

bandwidth guarantees at short timescales. Gatekeeper’s
evaluation is limited to static scenarios with long lived
flows. Moreover, Gatekeeper uses Linux’s hierarchical
token bucket, which incurs high overhead at 10Gb/s.

FairCloud [43] explored fundamental trade-offs be-
tween network utilization, min-guarantees and payment
proportionality, for a number of sharing policies. Fair-
Cloud demonstrated the effect of such policies with per-
flow queues in switches and CSFQ, which have limited
or no support in today’s commodity switches. However,
the minimum-bandwidth guarantee that EyeQ supports
conforms to FairCloud’s ‘Proportional-sharing on proxi-
mate links (PS-P)’ sharing policy, which, as the authors
demonstrate, outperform many other sharing policies.
NetShare [44] used in-network weighted fair queueing
to enforce bandwidth sharing among VMs. This ap-
proach, unfortunately, does not scale well due to the lim-
ited queues (8–64) per port.

The literature on congestion control mechanisms is
vast; however, the fundamental unit of allocation is still
per-flow, and therefore, the mechanisms are not ade-
quate for network performance isolation. We refer the
interested reader to [45] for a more comprehensive sur-
vey about recent efforts to address performance unpre-
dictability in datacenter networks.

7 Concluding Remarks
In this paper, we presented EyeQ, a platform to enforce
predictable network bandwidth sharing within the data-
center, using minimum bandwidth guarantees to end-
points. Our design and evaluation shows that a synthesis
of well known techniques can lead to a simple and scal-
able design for network performance isolation. EyeQ is
practical, and is deployable on today’s, and next genera-
tion high speed datacenter networks with no changes to
network hardware or applications. With EyeQ, providers
can flexibly and efficiently apportion network bandwidth
across tenants by giving each tenant endpoint a pre-
dictable minimum bandwidth guarantee, eliminating the
problem of accidental, or malicious traffic interference.

Acknowledgments
We would like to thank the anonymous reviewers, Ali
Ghodsi and our shepherd Lakshminarayanan Subrama-
nian for their feedback and suggestions. The work at
Stanford was funded by NSF FIA award CNS–1040190,
by a gift from Google, and by DARPA CRASH award
#N66001-10-2-4088. Opinions, findings, and conclu-
sions do not necessarily reflect the views of the NSF or
other sponsors.

12

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 309

References
[1] Amazon Virtual Private Cloud. http://aws.

amazon.com/vpc/.

[2] Jayaram Mudigonda, Praveen Yalagandula, Jeff
Mogul, Bryan Stiekes, and Yanick Pouffary. Net-
lord: a scalable multi-tenant network architec-
ture for virtualized datacenters. In ACM SIG-
COMM Computer Communication Review, vol-
ume 41, pages 62–73. ACM, 2011.

[3] Hitesh Ballani, Paolo Costa, Thomas Karagiannis,
and Ant Rowstron. Towards predictable datacenter
networks. In ACM SIGCOMM Computer Commu-
nication Review, volume 41, pages 242–253. ACM,
2011.

[4] Michael Armbrust, Armando Fox, Rean Griffith,
Anthony D Joseph, Randy Katz, Andy Konwinski,
Gunho Lee, David Patterson, Ariel Rabkin, Ion Sto-
ica, et al. A view of cloud computing. Communi-
cations of the ACM, 53(4):50–58, 2010.

[5] Albert Greenberg, James R Hamilton, Navendu
Jain, Srikanth Kandula, Changhoon Kim, Parantap
Lahiri, David A Maltz, Parveen Patel, and Sudipta
Sengupta. Vl2: a scalable and flexible data center
network. In ACM SIGCOMM Computer Commu-
nication Review, volume 39, pages 51–62. ACM,
2009.

[6] Radhika Niranjan Mysore, Andreas Pamboris,
Nathan Farrington, Nelson Huang, Pardis Miri,
Sivasankar Radhakrishnan, Vikram Subramanya,
and Amin Vahdat. Portland: a scalable fault-
tolerant layer 2 data center network fabric. In
ACM SIGCOMM Computer Communication Re-
view, volume 39, pages 39–50. ACM, 2009.

[7] Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi,
Yongguang Zhang, and Songwu Lu. Dcell: a scal-
able and fault-tolerant network structure for data
centers. In ACM SIGCOMM Computer Commu-
nication Review, volume 38, pages 75–86. ACM,
2008.

[8] C.E. Hopps. Analysis of an equal-cost multi-path
algorithm. 2000.

[9] Mohammad Al-Fares, Sivasankar Radhakrishnan,
Barath Raghavan, Nelson Huang, and Amin Vah-
dat. Hedera: Dynamic flow scheduling for data
center networks. In Proceedings of the 7th USENIX
conference on Networked systems design and im-
plementation, pages 19–19, 2010.

[10] Theophilus Benson, Aditya Akella, Anees Shaikh,
and Sambit Sahu. Cloudnaas: a cloud networking
platform for enterprise applications. In Proceedings
of the 2nd ACM Symposium on Cloud Computing,
page 8. ACM, 2011.

[11] Costin Raiciu, Sebastien Barre, Christopher Plun-
tke, Adam Greenhalgh, Damon Wischik, and Mark
Handley. Improving datacenter performance and
robustness with multipath tcp. In ACM SIG-
COMM Computer Communication Review, vol-
ume 41, pages 266–277. ACM, 2011.

[12] Nicholas G Duffield, Pawan Goyal, Albert Green-
berg, Partho Mishra, Kadangode K Ramakrishnan,
Jacobus E Van der Merwe, et al. A flexible model
for resource management in virtual private net-
works. ACM SIGCOMM Computer Communica-
tion Review, 29(4):95–108, 1999.

[13] A.K. Parekh and R.G. Gallager. A generalized
processor sharing approach to flow control in in-
tegrated services networks: the single-node case.
IEEE/ACM Transactions on Networking (TON),
1(3):344–357, 1993.

[14] Rong Pan, Lee Breslau, Balaji Prabhakar, and Scott
Shenker. Approximate fairness through differential
dropping. In ACM SIGCOMM Computer Commu-
nication Review, volume 33, pages 23–39. ACM,
2003.

[15] Alan Demers, Srinivasan Keshav, and Scott
Shenker. Analysis and simulation of a fair queue-
ing algorithm. In ACM SIGCOMM Computer Com-
munication Review, volume 19, pages 1–12. ACM,
1989.

[16] Madhavapeddi Shreedhar and George Varghese.
Efficient fair queueing using deficit round robin.
In ACM SIGCOMM Computer Communication Re-
view, volume 25, pages 231–242. ACM, 1995.

[17] Jon CR Bennett and Hui Zhang. Wf2q: worst-
case fair weighted fair queueing. In INFOCOM’96.
Fifteenth Annual Joint Conference of the IEEE
Computer Societies. Networking the Next Genera-
tion. Proceedings IEEE, volume 1, pages 120–128.
IEEE, 1996.

[18] Alan Shieh, Srikanth Kandula, Albert Greenberg,
Changhoon Kim, and Bikas Saha. Sharing the
data center network. In USENIX NSDI, volume 11,
2011.

13

310 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

[19] Srikanth Kandula, Sudipta Sengupta, Albert Green-
berg, Parveen Patel, and Ronnie Chaiken. The na-
ture of data center traffic: measurements & analy-
sis. In Proceedings of the 9th ACM SIGCOMM con-
ference on Internet measurement conference, pages
202–208. ACM, 2009.

[20] Theophilus Benson, Ashok Anand, Aditya Akella,
and Ming Zhang. Understanding data center traffic
characteristics. ACM SIGCOMM Computer Com-
munication Review, 40(1):92–99, 2010.

[21] Mohammad Alizadeh, Albert Greenberg, David A
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prab-
hakar, Sudipta Sengupta, and Murari Sridharan.
Data center tcp (dctcp). ACM SIGCOMM Com-
puter Communication Review, 40(4):63–74, 2010.

[22] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall,
Balaji Prabhakar, Amin Vahdat, and Masato Ya-
suda. Less is more: Trading a little bandwidth for
ultra-low latency in the data center. In Proceedings
of USENIX NSDI conference, 2012.

[23] David Zats, Tathagata Das, Prashanth Mohan,
Dhruba Borthakur, and Randy Katz. Detail: Re-
ducing the flow completion time tail in datacenter
networks. ACM SIGCOMM Computer Communi-
cation Review, 42(4):139–150, 2012.

[24] Mohammad Alizadeh, Berk Atikoglu, Abdul Kab-
bani, Ashvin Lakshmikantha, Rong Pan, Balaji
Prabhakar, and Mick Seaman. Data center trans-
port mechanisms: Congestion control theory and
ieee standardization. In Communication, Control,
and Computing, 2008 46th Annual Allerton Con-
ference on, pages 1270–1277. IEEE, 2008.

[25] Aleksandar Kuzmanovic and Edward W Knightly.
Low-rate tcp-targeted denial of service attacks: the
shrew vs. the mice and elephants. In Proceedings of
the 2003 conference on Applications, technologies,
architectures, and protocols for computer commu-
nications, pages 75–86. ACM, 2003.

[26] Vimalkumar Jeyakumar, Mohammad Alizadeh,
David Mazieres, Balaji Prabhakar, Changhoon
Kim, and Windows Azure. Eyeq: practical network
performance isolation for the multi-tenant cloud. In
Proceedings of the 4th USENIX conference on Hot
Topics in Cloud Ccomputing, pages 8–8. USENIX
Association, 2012.

[27] Nandita Dukkipati and Nick McKeown. Why flow-
completion time is the right metric for congestion

control. ACM SIGCOMM Computer Communica-
tion Review, 36(1):59–62, 2006.

[28] Guohan Lu, Chuanxiong Guo, Yulong Li, Zhiqiang
Zhou, Tong Yuan, Haitao Wu, Yongqiang Xiong,
Rui Gao, and Yongguang Zhang. Serverswitch: A
programmable and high performance platform for
data center networks. In Proc. NSDI, 2011.

[29] Frank Kelly, Gaurav Raina, and Thomas Voice. Sta-
bility and fairness of explicit congestion control
with small buffers. ACM SIGCOMM Computer
Communication Review, 38(3):51–62, 2008.

[30] Mohammad Alizadeh, Abdul Kabbani, Berk
Atikoglu, and Balaji Prabhakar. Stability analysis
of qcn: the averaging principle. ACM SIGMET-
RICS Performance Evaluation Review, 39(1):49–
60, 2011.

[31] Guide to linux kernel network scaling.
http://code.google.com/p/kernel/
wiki/NetScalingGuide.

[32] Ganesh Ananthanarayanan, Srikanth Kandula, Al-
bert Greenberg, Ion Stoica, Yi Lu, Bikas Saha, and
Edward Harris. Reining in the outliers in map-
reduce clusters using mantri. In Proceedings of
the 9th USENIX conference on Operating systems
design and implementation, pages 1–16. USENIX
Association, 2010.

[33] Internet-scale datacenter economics: Costs and
opportunities. http://mvdirona.com/
jrh/TalksAndPapers/JamesHamilton_
HPTS2011.pdf.

[34] Steven McCanne, Sally Floyd, Kevin Fall, Kannan
Varadhan, et al. Network simulator ns-2, 1997.

[35] Advait Dixit, Pawan Prakash, and Ramana Rao
Kompella. On the efficacy of fine-grained traf-
fic splitting protocols in data center networks. In
ACM SIGCOMM Computer Communication Re-
view, volume 41, pages 430–431. ACM, 2011.

[36] Ion Stoica, Hui Zhang, and TS Ng. A hierarchical
fair service curve algorithm for link-sharing, real-
time and priority services, volume 27. ACM, 1997.

[37] Lixia Zhang, Steve Deering, Deborah Estrin, Scott
Shenker, and Daniel Zappala. Rsvp: A new
resource reservation protocol. Network, IEEE,
7(5):8–18, 1993.

14

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 311

[38] Ion Stoica, Scott Shenker, and Hui Zhang. Core-
stateless fair queueing: Achieving approximately
fair bandwidth allocations in high speed networks.
In ACM SIGCOMM Computer Communication Re-
view, volume 28, pages 118–130. ACM, 1998.

[39] Abdul Kabbani, Mohammad Alizadeh, Masato Ya-
suda, Rong Pan, and Balaji Prabhakar. Af-qcn: Ap-
proximate fairness with quantized congestion noti-
fication for multi-tenanted data centers. In High
Performance Interconnects (HOTI), 2010 IEEE
18th Annual Symposium on, pages 58–65. IEEE,
2010.

[40] Lakshminarayanan Subramanian, Ion Stoica, Hari
Balakrishnan, and Randy Katz. Overqos: An over-
lay based architecture for enhancing internet qos.
In Proceedings of the 1st conference on Symposium
on Networked Systems Design and Implementation,
volume 1, pages 6–21, 2004.

[41] Chuanxiong Guo, Guohan Lu, Helen J Wang,
Shuang Yang, Chao Kong, Peng Sun, Wenfei Wu,
and Yongguang Zhang. Secondnet: a data center
network virtualization architecture with bandwidth
guarantees. In Proceedings of the 6th International
COnference, page 15. ACM, 2010.

[42] Henrique Rodrigues, Jose Renato Santos, Yoshio
Turner, Paolo Soares, and Dorgival Guedes. Gate-
keeper: Supporting bandwidth guarantees for
multi-tenant datacenter networks. USENIX WIOV,
2011.

[43] Lucian Popa, Gautam Kumar, Mosharaf Chowd-
hury, Arvind Krishnamurthy, Sylvia Ratnasamy,
and Ion Stoica. Faircloud: Sharing the network
in cloud computing. In Proceedings of the ACM
SIGCOMM 2012 conference on Applications, tech-
nologies, architectures, and protocols for computer
communication, pages 187–198. ACM, 2012.

[44] Sivasankar Radhakrishnan, Rong Pan, Amin Vah-
dat, George Varghese, et al. Netshare and stochastic
netshare: predictable bandwidth allocation for data
centers. ACM SIGCOMM Computer Communica-
tion Review, 42(3):5–11, 2012.

[45] Jeffrey C Mogul and Lucian Popa. What we talk
about when we talk about cloud network perfor-
mance. ACM SIGCOMM Computer Communica-
tion Review, 42(5):44–48, 2012.

15

