Split/Merge: System Support for Elastic Execution in Virtual Middleboxes

Shriram Rajagopalan’, Dan Williams', Hani Jamjoom', and Andrew Warfield*

TIBM T. J. Watson Research Center, Yorktown Heights, NY
iUniversity of British Columbia, Vancouver, Canada

Abstract

Developing elastic applications should be easy. This pa-
per takes a step toward the goal of generalizing elasticity
by observing that a broadly deployed class of software—
the network middlebox—is particularly well suited to
dynamic scale. Middleboxes tend to achieve a clean sep-
aration between a small amount of per-flow network state
and a large amount of complex application logic. We
present a state-centric, systems-level abstraction for elas-
tic middleboxes called Split/Merge. A virtual middle-
box that has appropriately classified its state (e.g., per-
flow state) can be dynamically scaled out (or in) by a
Split/Merge system, but remains ignorant of the number
of replicas in the system. Per-flow state may be transpar-
ently split between many replicas or merged back into
one, while the network ensures flows are routed to the
correct replica. As a result, Split/Merge enables load-
balanced elasticity. We have implemented a Split/Merge
system, called FreeFlow, and ported Bro, an open-source
intrusion detection system, to run on it. In controlled ex-
periments, FreeFlow enables a 25% reduction in maxi-
mum latency while eliminating hotspots during scale-out
and a 50% quicker scale-in than standard approaches.

1 Introduction

The prevalence of Infrastructure as a Service (IaaS)
clouds has given rise to a new breed of applications
that better support elasticity: the ability to scale in or
out to handle variations in workloads [17]. Fundamen-
tal to achieving elasticity is the ability to create or de-
stroy virtual machine (VM) instances, or replicas, and
partitioning work between them [14, 34]. For exam-
ple, a 3-tier Web application may scale out the middle
tier and balance requests between them. Consequently,
the—virtual—middleboxes that these applications rely
on (such as firewalls, intrusion detection systems, and
protocol accelerators) must scale in a similar fashion.

A recent survey of 57 enterprise networks of various
sizes found that scalability was indeed critical for mid-
dleboxes [24].

Due to the diversity of cloud applications, supporting
elasticity has been mostly the burden of the application or
application-level framework [7]. For example, it is their
responsibility to manage replicas and ensure that each
replica will be assigned the same amount of work [1]. In
the worst case, imbalances between replicas can result
in inefficiencies, hotspots (e.g., overloaded replicas with
degraded performance) or underutilized resources [33].

Unlike generic cloud applications, middleboxes share a
unique property that can be exploited to achieve efficient,
balanced elasticity. Despite the complex logic involved
in routing or detecting intrusions, middleboxes are often
implemented around the idea that each individual flow
is an isolated context of execution [22,26,31]. Middle-
boxes typically classify packets to a specific flow, and
then interact with data specific to that flow [9,30]. By
replicating a middlebox and adjusting the flows that each
replica receives from the network—and the associated
state held by each replica—any middlebox can maintain
balanced load between replicas as the middlebox scales
in or out.

To this end, we present a new hypervisor-level ab-
straction for virtual middleboxes called Split/Merge.
A Split/Merge-aware middlebox may be replicated at
will, yet remains oblivious to the existence of replicas.
Split/Merge divides a middlebox application’s state into
two broad classes: internal and external. Internal state
is treated similarly to application logic: it is required for
a given replica to run, but is of no consequence outside
that replica’s execution. External state describes the ap-
plication state that is actually scaled, and can be thought
of as a large distributed data structure that is managed
across all replicas. It can be further subdivided into to
classes: partitioned and coherent state. Partitioned state
is exclusively accessed, flow-specific data, and is the fun-

USENIX Association

10th USENIX Symposium on Networked Systems Design and Implementation (NSDI "13) 227

damental unit of reconfiguration in a Split/Merge system.
Coherent state describes additional, often “global” state
such as counters, that must remain consistent—either
strongly or eventually—among all replicas.

We have designed and implemented FreeFlow, a system
that implements Split/Merge to provide efficient, bal-
anced elasticity for virtual middleboxes. FreeFlow splits
flow-specific state among replicas and dynamically re-
balances both existing and new flows across them. To
enable middlebox applications to identify external state,
associate it with network flows, and manage the migra-
tion of partitioned state between replicas, we have im-
plemented an application-level FreeFlow library. In ad-
dition, we have implemented a Split/Merge-aware soft-
ware defined network (SDN) that enables FreeFlow to
partition the network such that each replica receives the
appropriate network traffic even as partitioned state mi-
grates between replicas.

FreeFlow enables elasticity by creating and destroy-
ing VM replicas, while balancing load between them.
We have ported Bro [19], a real-world intrusion de-
tection system, and built two synthetic middleboxes
on FreeFlow. Using these middleboxes, we show that
FreeFlow eliminates hotspots created during scale-out
and inefficiencies during scale-in. In particular, it re-
duces the maximum latency by 25% after rebalancing
flows during scale-out and achieves 50% quicker scale-in
than standard approaches.

To summarize, the contributions of this paper are:

e anew hypervisor-level state abstraction that enables
flow-related middlebox state to be identified, split,
and merged between replica instances,

e a network abstraction that ensures that network in-
put related to a particular flow-related piece of mid-
dlebox state arrives at the appropriate replica, and

e a system, FreeFlow, that implements Split/Merge
alongside VM scale-in and scale-out to enable bal-
anced elasticity for middleboxes.

The rest of this paper is organized as follows. Section 2
describes middleboxes and the Split/Merge abstraction.
Section 3 describes the design and implementation of
FreeFlow. Section 4 describes our experience in port-
ing and building middleboxes for FreeFlow. Section 5
evaluates FreeFlow, Section 6 surveys related work, and
Section 7 concludes.

2 Split/Merge

In this section, we describe the common structure in
which middlebox state is organized. Motivated by this
common structure, we define the three types of states

Middlebox
= Use 5-tuple t
g g — Receive | | |<sxe>k[1u¢|§w° | Modify, drop, e
5L — Packet staF:e forward packet _—
z 3 S
Input State Output

Internal State

Background
processes

Cache

Coherent

|

Configuration/ o
Policy Data Statistics
Partitioned I
VLA Key Value

e——3| 5-tuple | [Flow State |

— External State

Figure 1: Typical structure of a middlebox

exposed by the Split/Merge abstraction. We then de-
scribe how robust elasticity is achieved by tagging state
and transparently partitioning network input across vir-
tual middlebox replicas. We conclude the section with
design challenges.

2.1 Anatomy of a Virtual Middlebox

A middlebox is defined as “any intermediary device per-
forming functions other than the normal, standard func-
tions of an IP router on the datagram path between a
source host and destination host” [4]. Middleboxes can
vary drastically in their function, performing such di-
verse tasks as network address translation, intrusion de-
tection, packet filtering, protocol acceleration, and acting
as a network proxy. However, middleboxes typically pro-
cess packets and share the same basic structure [9,12,30].

Figure 1 shows the basic structure of a middlebox. State
held by a middlebox can be characterized as policy and
configuration data or as run-time responses to network
flows [9,26,30,31]. The former is provisioned, and can
include, for example, firewall rules or intrusion detection
rules. The latter, called flow state is created on-the-fly
when packets of a new flow are received for the first time
or through an explicit request. Flow state can vary in
size. For example, on seeing a packet from a new flow, a
middlebox may generate some small state like a firewall
pinhole or a NAT translation entry, or it may begin to
maintain a buffer to reconstruct a TCP stream.

Flow state is stored in a flow table data structure and ac-
cessed using flow identifiers (packet headers) as keys.
(Figure 1) Models of middleboxes have been developed
that represent state as a key-value database indexed by

228 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI 13)

USENIX Association

addresses (e.g., a standard IP 5-tuple) [12]. A middlebox
may have multiple flow tables (e.g., per network inter-
face). It may also contain timers that refer to flow state,
for example, to clean up stale flows.

We have performed a detailed analysis of the source code
or specifications of several middleboxes to confirm that
they fit into this model. We discuss three of them below:

Bro. Bro [19] is a highly stateful intrusion detection
system. It maintains a flow table in the form of a dic-
tionary of Connection objects, indexed by the stan-
dard IP 5-tuple without the protocol field. Inside the
Connection objects, flow-related state varies depend-
ing on the protocol analyzers that are being used. Ana-
lyzer objects contain state machine data for a given pro-
tocol (e.g., HTTP) and reassembly buffers to reconstruct
a request/response payload, leading to tens of kilobytes
per flow in the common case. A dictionary of timers is
maintained for each Connection object. Bro also con-
tains statistics and configuration settings.

Application Delivery Controller (ADC). ADC [35,
38, 40] is a packet-modifying load balancer that en-
sures the addresses of servers behind it are not visible
to clients. It contains a flow table that is indexed by the
source IP address and port. Flow-specific data includes
the internal address of the target server and a timestamp,
resulting in only tens of bytes per flow. ADC also main-
tains timers for each flow, which it uses to clean up flow
entries.

Stateful NAT64. Stateful NAT64 [15] translates IPv6
packets to IPv4 and vice-versa. NAT64 maintains three
flow tables, which it calls session tables: for UDP, TCP,
and ICMP Query sessions, respectively. Session tables
are indexed using a 5-tuple. Flow state, called session
table entries (STEs), consists of a source and destination
IPv6 address and a source and destination IPv4 address,
so is therefore tens of bytes in size. Timers, called STE
lifetimes, are also maintained.

2.2 The Split/Merge Abstraction

The Split/Merge abstraction enables transparent and bal-
anced elasticity for virtual middlebox applications. Us-
ing Split/Merge, middlebox applications can continue to
be written and configured oblivious to the number of
replicas that may be instantiated. Each replica perceives
an identical VM abstraction, down to the details of the
MAC address on the virtual network interface card.

As depicted Figure 2, using Split/Merge, the output of a
middlebox application remains consistent, regardless of
the number of replicas that have been instantiated or de-
stroyed throughout its operation. Slightly more formally:

Single VM

Output

RSN

JOUL -

Replica 1
VM

CO o2

Split/Merge-aware VM

Output

;!

Replica 2

OOD

3 : l
Output

D D

100t/
NG

ﬂ

Aggregated output from all replicas is

identical to the output of the Single VM D D D D
version, modulo reordering

Figure 2: Split/Merge retains output consistency irre-
spective of the number of replicas.

Definition. Let a VM be represented by a state machine
that accepts input from the network, reads or writes some
internal state, and produces output back to the network.
A Split/Merge-aware VM is abstractly defined as a set of
identical state machine replicas; the aggregate output of
which—modulo some reordering—is identical to that of
a single machine, despite the partitioning of the input be-
tween the replicas. Consistency is achieved by ensuring
that each replicated state machine can access the state
required to produce the appropriate output in response
to its share of the input.

There are two types of state in a Split/Merge-aware VM
(Figure 1): internal and external state. Internal state is
relevant only to a single replica. It can also be thought
of as “ephemeral” [5]; its contents can deviate between
replicas of the state machine without affecting the con-
sistency of the output. Examples of internal state include
background operating system processes, cache contents,
and temporary side effects. External state, on the other
hand, transcends a single replica. If accessed by any
replica, external state cannot deviate from what it would
have been in a single, non-replicated state machine with-
out affecting output consistency. For example, a NAT
may look up the port translation for a particular flow.
Any deviation in the value of this state would cause the
middlebox to malfunction, violating consistency.

USENIX Association

10th USENIX Symposium on Networked Systems Design and Implementation (NSDI "13) 229

VM System
Virtual Network S}tla te
Interface /
Split v l N
Replica 1 Replica 2 Replica 3
M VM vy | Internal
[[
— e Partitioned
Unchanged
Merge pY « Interfaces
Replica 1 Replica 2+3
L N
 — =
. []

Figure 3: A Split/Merge-aware VM uses the different
types of state to achieve transparent elasticity.

As depicted in Figure 1, external state can take two
forms: partitioned or coherent. Partitioned state is made
up of a collection of sub-states, each of which are intrin-
sically tied to a subset of the input and therefore only
need to be accessed by the state machine replica that is
handling that input. The NAT port translation state is
an example of partitioned state, because only the replica
handling the network flow in question must access the
state. Coherent state, on the other hand, is accessed by
multiple state machine replicas, regardless of how the in-
put is partitioned. In Figure 1, the flow table and timers
reside in partitioned state, while configuration informa-
tion and statistics reside in coherent state.

2.3 Using Split/Merge for Elasticity

Figure 3 depicts how the state of a middlebox VM is
split and merged when elastically scaling out and in. On
scale-out, internal state is replicated with the VM, but be-
gins to diverge as each replica runs independently. Co-
herent state is also replicated with the VM, but remains
consistent (or eventually consistent) because access to
coherent state from each replica is transparently coordi-
nated and controlled. Partitioned state is split among the
VM replicas, allowing each replica to work in parallel
with its own sub-state. At the same time, the input to the
VM is partitioned, such that each replica receives only
the input pertinent to its partitioned sub-state.

On scale-in, one of the replicas is selected to be de-
stroyed. Internal state residing at the replica can be
safely discarded, since it is not needed for consistent out-
put. Coherent state may be discarded when any outstand-

ing updates are pushed to other replicas. The sub-states
of the partitioned state residing at the dying replica are
merged into a surviving replica. At the same time, the
input that was destined for the dying replica is also redi-
rected to the surviving replica now containing the parti-
tioned sub-state.

2.4 Challenges

To implement a system that supports Split/Merge for vir-
tual middleboxes, several challenges need to be met.

Cl. VM state must be classified. For virtual middle-
box applications to take advantage of Split/Merge,
each application must identify which parts of its
VM state are internal vs. external. Fortunately,
the structure of middleboxes (Figure 1) is naturally
well-suited to this task. The flow table of mid-
dleboxes already associates partitioned state with a
subset of the input, namely network flows.

C2. Transactional boundaries must be respected. In
some cases, a middlebox application may need to
convey that it finished processing relevant input be-
fore partitioned state can be moved from one VM
to another. For example, an IDS may continuously
record information about a connection’s state; such
write operations must complete before the state can
be moved. Other cases, such as a NAT looking up a
port translation, do not have such transactional con-
straints.

C3. Partitioned state must be able to move between
replicas. Merging partitioned state from multiple
replicas requires at the most primitive level the abil-
ity to move the responsibility for a flow from one
replica to another. In addition to moving the flow
state, the replica receiving the flow must update its
flow table data structures and timer structures so
that it can readily access the state.

C4. Traffic must be routed to the correct replica. As
partitioned state—associated with network flows—
is split between VM replicas, the network must en-
sure that the appropriate flows arrive at the replica
holding the state associated with those flows. Rout-
ing is complicated by the fact that partitioned state
may move between replicas and each replica shares
the same IP and MAC address.

The Split/Merge abstraction can be thought of in two
parts: splitting and merging VM state between replicas
(Figure 3), and splitting and merging network input be-
tween replicas (Figure 2). As such, the challenges can
also be classified into those that deal with state manage-
ment (C1, C2, C3) and those that deal with network man-
agement (C4).

230 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI "13)

USENIX Association

Replica 1 Replica 2

VNIC with a
unique
address

Elasticity
f Policy

‘ Orchestrator ‘
[

a1 el vy’

vNIC with
non-unique
addresses .

across
replicas

VMM [N VMM

Control
Network

[]
OpenFlow Controller

Software Defined Network

~

Traffic to Middiebox

’m%w 1 F/owzj‘

Figure 4: FreeFlow Architecture

3 FreeFlow

FreeFlow implements the Split/Merge abstraction to en-
able virtual middleboxes to achieve transparent, balanced
elasticity. The design of FreeFlow is shown in Fig-
ure 4. It consists of four components. First, the state as-
pects of the Split/Merge abstraction are implemented via
the application-level FreeFlow library, which addresses
the state-related challenges (C1, C2,C3). In particular,
through the interface to the library, a middlebox appli-
cation classifies its state as internal or external and com-
municates its transactional requirements. Additionally,
the library manages all aspects of external state, includ-
ing the migration of partitioned sub-states. Second, the
network aspects of the Split/Merge abstraction are im-
plemented in FreeFlow’s Split/Merge-aware software de-
fined network (SDN). The SDN addresses the final chal-
lenge (C4) and ensures that the correct network flows are
routed to the replica maintaining the corresponding par-
titioned sub-state. Third, the orchestrator implements an
elasticity policy: it decides when to create or destroy VM
replicas and when to migrate flows between them. Fi-
nally, VMM agents perform the actual creation and de-
struction of replicas. The four components communicate
with each other over a control network, distinct from the
Split/Merge-aware SDN.

We have implemented a prototype of FreeFlow, in-
cluding all of its components shown in Figure 4.
Each physical machine runs Xen [2] as a VMM and
Open vSwitch [20] as an OpenFlow-compatible software
switch. In all components, flows are identified using the
IP 5-tuple.

// MIDDLEBOX —SPECIFIC PARTITIONED STATE HANDLING

// alloc flow state
// free flow state

create_flow(flow_key, size);
delete_flow(flow key);

flow_state get_flow(flow key); //increment refcnt
put_flow(flow_key); // decrement refent

flow_timer(flow key, timeout, callback);

// COHERENT STATE HANDLING

create_shared(key, size, cb); //ifcbisnull, then use
delete_shared(key); // strong consistency

state get_shared(key, flags); //synch |pull |local
put_shared(key, flags); // synch | push | local

Figure 5: Interface to the FreeFlow library

3.1 Guest Library: State Management

Middlebox applications interact with the FreeFlow li-
brary in order to classify state as external and identify
transaction boundaries on such state. The interface to
the library is shown in Figure 5. Behind the scenes, the
library interfaces with the rest of the FreeFlow system
to split and merge partitioned state between replicas and
control access to coherent state.

To fulfill the task of identifying external state, the library
acts a memory allocator, and is therefore the only mech-
anism the middlebox application can use to obtain parti-
tioned or coherent sub-state. Partitioned state in middle-
box applications generally consists of a flow table and
a list of timers related to flow state; therefore, the li-
brary manages both. The library provides an interface,
create_flow to allocate a new entry in the flow table
against a flow key, which is usually an IP 5-tuple. A new
timer (and its callback) can be allocated against a flow
key using flow_timer. Coherent sub-state is allocated
against a key by invoking create_shared, but the key
is not necessarily associated with a network flow.

Transaction boundaries are inferred by maintaining refer-
ence counts for external sub-states. Using get_flow or
get_shared, the middlebox application accesses ex-
ternal sub-state from the library, at which point a ref-
erence counter (refent) is incremented. When the ap-
plication finishes with a transaction on the sub-state, it
informs the library with put_flow or put_shared,
which decrements the reference counter. The application
must avoid dangling references to partitioned state. If it
fails to inform the library that a transaction is complete,
the state will be pinned to the current replica.

The library may copy partitioned sub-state across the

USENIX Association

10th USENIX Symposium on Networked Systems Design and Implementation (NSDI "13) 231

control network to another replica in response to a noti-
fication from the orchestrator (§ 3.3). When instructed
to migrate a flow—identified with a flow key and a
unique network address for a target replica on the control
network—the library waits for the reference counter on
the state to become zero, then copies the flow table entry
and any timers across the control network. The flow table
at the source is updated to record the fact that the partic-
ular flow state has migrated. Upon future get_flow
calls, the library returns an error code indicating that
the flow has migrated and the packet should be dropped.
Similarly, when the target library receives flow data—
and the flow key for it to be associated with—during a
flow migration, the flow table and timer list are updated
and the orchestrator is notified. At any one time, only
one library instance maintains an active copy of the flow
data for a particular flow.

The library also manages the consistency of coherent
state across replicas. In most cases, strong consistency is
not required. For example, the application can read and
write counters or statistics locally most of the time (using
the LOCAL flag on get_shared). Periodically, the ap-
plication may require a consistent view of a counter. For
example, an IDS may need to check an attack threshold
value has not been exceeded. For periodic merging of
coherent state between replicas, FreeFlow supports com-
biners [7,16]. On create_shared, an application can
specify a callback (cb) function, which takes a list of co-
herent state elements as an argument and combines them
in an application specific way. In most cases, this func-
tion simply adds the values of the counters in the coher-
ent state. The combiner will be invoked automatically
by the library when a replica is about to be destroyed. It
can also be invoked explicitly by the application either
before a reference to the coherent state is obtained (us-
ing the PULL flag on get_shared) or after a transac-
tion is complete (using the PUSH flag on put_shared).
The combiner never runs in the middle of a transaction;
get_shared using PULL may block until other repli-
cas finish their transaction and the state can be safely
read. In the rare case that strong consistency is required,
the application does not specify a combiner, and library
instead interacts with a distributed locking service [3,11].
On get_shared (with the SYNCH flag), the library ob-
tains the lock associated with the specified key and en-
sures that it has the most recent copy of the coherent
data. The library releases the lock on put_shared and
the system registers the local copy of the coherent data
as the most recent version.

We have implemented the FreeFlow library as a C library.
In doing so, we addressed the implementation challenge
of allowing flow state to include self-referential pointers
to other parts of the flow state. To support unmodified

Middiebox Middlebox
Replica 1 Replica 2
VM 1 VM 2 VM 3 VM 4
1.1.1.1 1.1.1.2 1.1.1.3 1.1.1.3
port 1/ port 2/ port 6/ port 7/
OpenFlow Table ggﬁ?rill‘:: OpenFlow Table
*to 1.1.1.1 port 8
*to 1.1.1.1 | port 1 PINEN FreeFlow 13 *to 1.1.1.2 port 8
*to 1.1.1.2 | port 2 Module 1.1.1.1t0 1.1.1.3 | port 6
“to 1.1.1.3 | port 3 ~ 1.1.1.2101.1.1.3 | port 7
Virtual Switch i Virtual Switch
VMM port 3 VMM port 8
port 4 ! port 5
N2
OpenFlow Table

*to 1.1.1.1 | port 4
*to 1.1.1.2 | port 4
*to 1.1.1.3 | port 5

Physical
Switch

Figure 6: The SDN splits network input to replica VMs
based on flow rules. The SDN ensures that traffic from
VM 1 arrives at VM 3 and traffic from VM 2 arrives at
VM 4. For clarity, we have omitted the flow rules for
routing middlebox output.

pointers, the library must ensure that the flow state re-
sides at same virtual address range regardless of which
replica it is in. To accomplish this, the library allocates
a large virtual address space before notifying the VMM
agent to compute the initial snapshot. Within the vir-
tual address range, the orchestrator provides each replica
with a non-overlapping region to service new flow re-
lated memory allocations obtained with create_flow.

3.2 Split/Merge-Aware SDN: Network Management

The Split/Merge-aware SDN implements the networking
part of the Split/Merge abstraction. Each replica VM
contains an identical virtual network interface. In par-
ticular, every replica has the same MAC and IP address.
Maintaining consistent addresses in the replicas avoids
breaking OS or application level address dependencies
in the internal state within a VM.

As depicted in Figure 6, FreeFlow leverages OpenFlow-
enabled [41] network elements (e.g., switches [20],
routers) to enforce routing to various replicas. As pack-
ets flow through the OpenFlow network, each network
element searches a local forwarding table for rules that
match the headers of the packet, indicating they belong
to a particular flow. If an entry is found, the network el-
ement forwards the packets along the appropriate inter-
face on the fast path. If no entry exists, the packet (or just
its header) is forwarded to an OpenFlow controller. The
OpenFlow controller has a global view of the network
and can make a routing decision for the new flow. The
controller then pushes a new rule to one or more network

232 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI "13)

USENIX Association

elements so that future packets belonging to the flow can
be forwarded without consulting the controller.

The Split/Merge-aware SDN must ensure that packets ar-
rive at the appropriate replica even as partitioned flow
state migrates between replicas. To do this, FreeFlow
contains a customized OpenFlow controller that commu-
nicates with the orchestrator (§ 3.3). When a flow is mi-
grated between replicas, the orchestrator interfaces with
the OpenFlow controller to communicate the new for-
warding rules for the flow. Packets belonging to new
flows are forwarded to the OpenFlow controller by de-
fault. The OpenFlow controller picks a replica toward
which the new flow should be routed and notifies the or-
chestrator.

When a flow migration notification is received from the
orchestrator, rules to route the flow are deleted from all
network elements in the current path traversed by the
flow. The flow is then considered suspended. Packets
arriving from the switches are temporarily buffered at
the OpenFlow controller until the flow is resumed by the
controller, at the new replica. The flow is not resumed
until partitioned sub-state has arrived at its new destina-
tion. The controller resumes a flow by calculating a new
path for the flow that traverses the new replica, installing
forwarding rules in the switches on the path, and inject-
ing any buffered packets directly into the virtual switch
connected to the new replica.!

We implemented the SDN in a module on top of
POX [42], a python version of the popular NOX [10]
OpenFlow controller. The controller provides a simple
web API that allows it to receive notifications from the
orchestrator about events like middlebox creation and
deletion, or instructions to migrate one or more flows
from one replica to another. We addressed three imple-
mentation challenges. First, the controller cannot use
MAC learning techniques for middleboxes because ev-
ery replica shares a MAC address. Instead, when repli-
cas are created, the VMM agent registers a replica in-
terface on a virtual switch port with the controller. Sec-
ond, ARP broadcast requests may cause multiple repli-
cas to respond or unexpected behavior, since they share a
MAC address. To avoid this, the controller intercepts and
replies to ARP requests that refer to the middlebox IP.
Finally, the controller decides which replica a new flow
is routed to, so must ensure that bi-directional flows are
assigned to the same replica. This is achieved by main-
taining a table that maps each flow to its replica that is
checked before assigning new flows to replicas.

! Alternately, buffering could occur at the destination hypervisor and
the controller could update the path immediately upon suspend, thereby
reducing its load.

BEFORE FLOW MIGRATION

Flow Table
OpenFlow Table oaaeaind
<a> | port 1 port 1
OpenFlow Table
Middlebox Replica 1
<a> | port 1 port 1| OpenFlow Switch cdiebox Hepl
 | port2
<c> | port2
OpenFlow Table
Flow Table
OpenFlow Switch |port 2 | port 1
<c> | port 1 <> °‘%|:|
<c> e
OpenFlow Switch |port 1

Middlebox Replica 2

AFTER FLOW MIGRATION

Flow Table
OpenFlow Table e
 €=
<a> | port 1 port 1 _>I:|
 | port 1
OpenFlow Table
Middlebox Replica 1
<a> | port 1 port 1| OpenFlow Switch P
 | port 1
<c> |port2
OpenFlow Table
Flow Table
OpenFlow Switch |port2 <c> | port 1
<c> e
OpenFlow Switch | port 1

Middlebox Replica 2

Figure 7: Migrating flow (b) from Replica 2 to Replica 1

3.3 Orchestrator: Splitting and Merging

The orchestrator implements the most fundamental prim-
itive for enabling the splitting and merging of partitioned
state between replicas: flow migration. Figure 7 shows
the migration of a flow (b) between two replicas. The
orchestrator interacts with other parts of the system as
follows. It:

e instructs the SDN to suspend the flow (b) such that
no traffic of the flow will reach either replica.

e instructs the guest library in Replica 2 to transfer the
partitioned state associated with (b) to Replica 1.

e instructs the SDN to resume the flow by modifying
the routing of flow (b) such that any new traffic be-
longing to the flow will arrive at Replica 1.

It is possible, although rare in practice, that some pack-
ets will arrive at Replica 2 after the flow state has
been migrated to Replica 1. For example, packets may
be buffered in the networking stack in the kernel of
Replica 2 and not yet have reached the application. In
case the application receives a packet after the flow state

USENIX Association

10th USENIX Symposium on Networked Systems Design and Implementation (NSDI "13) 233

is migrated, it should drop the packet.”

The orchestrator triggers the creation or destruction of
replicas by the VMM Agent (§3.4) in order to scale in or
out as part of an elasticity policy. It can trigger these op-
erations automatically based on utilization (resembling
the Autoscale functionality in Amazon EC2 [34]) or ex-
plicitly in response to user input.

3.4 VMM Agent: Scaling In and Out

The VMM agent creates or destroys replica VMs in re-
sponse to instructions from the orchestrator. Replica
VMs are instantiated from a point-in-time snapshot of
the first instantiation of the middlebox VM, before it be-
gan processing packets. During library initialization, af-
ter variables in the internal state are initialized but before
the VM has allocated any external state, the FreeFlow li-
brary instructs the VMM agent to compute the snapshot.
By definition, the internal state in the replica VM can
diverge from the snapshot.

We have implemented the VMM agent in Xen’s con-
trol domain (Domain 0). Communication with the li-
brary is implemented using Xenstore, a standard, non-
network based virtual communication channel used be-
tween guest VMs and Domain 0 in Xen. Checkpoints
are computed with the xm save command, and repli-
cas are instantiated with the xm restore command.?
The time to create a new fully operational replica is on
the order of a few seconds; it may be possible to reduce
this delay with rapid VM cloning techniques [14].

3.5 Limitations

Virtual middleboxes cannot use FreeFlow (or the
Split/Merge paradigm in general) unless their structure
roughly matches that described in Figure 1. While most
middleboxes we have examined do fit this architecture,
it should be noted that some middleboxes are more diffi-
cult to adapt to FreeFlow than others. The main cause of
difficulty is how the middleboxes deal with partitioning
granularity and coherent state.

Middleboxes can be composed of numerous layers and
modules, each of which may refer to flows using a dif-
ferent granularity. For example, in an IDS, like Bro, one
module may store coarse-grained state (e.g., concerning
all traffic in an IP subnet), while another may store fine-
grained state (e.g., individual connection state). There
are two approaches to adapting such a middlebox to
FreeFlow. First, the notion of a flow could be expanded
to the largest granularity of all modules. In the preceding

’In this case, the library returns an error code when flow-specific
state is accessed (§ 3.1).

3In our prototype, the distribution of VM disk images to physical
hosts is performed manually.

example, this would mean using the same flow key for
all data related to all flows in an IP subnet, fundamen-
tally limiting FreeFlow’s ability to balance load. Second,
a fine-grained flow key could be used to identify parti-
tioned state, causing the coarse-grained state to be clas-
sified as coherent. If strong consistency is required for
the coarse-grained state or a combiner cannot be speci-
fied, this approach may cause high overhead due to state
synchronization.

4 Experience Building Split/Merge Capa-
ble Middleboxes

To validate that the Split/Merge abstraction is well suited
to virtual middleboxes, we have ported Bro, an open-
source intrusion detection system, to run on FreeFlow.
To evaluate a wider range of middleboxes, we have also
implemented two synthetic FreeFlow middleboxes.

4.1 Bro

Bro is composed of two key components: an Event En-
gine and a Policy Script Interpreter. Packets captured
from the network are processed by the Event Engine.
The Event Engine runs a protocol analysis, then gener-
ates one or more predefined events (e.g., connection es-
tablishment, HTTP request) as input to the Policy Script
Interpreter. The Policy Script Interpreter executes code
written in the Bro scripting language to handle events.
As explained in Section 2.1, the Event Engine maintains
a flow table with each table entry corresponding to an
individual connection. Each event handler executed by
the Policy Script Interpreter also maintains state that is
related to one or more flows.

Our porting effort focused on Bro’s Event Engine and
one event handler.* The event handler scans for potential
SQL injection strings in HTTP requests to a webserver.
The handler tracks—on a per-flow basis—the number
of HTTP requests (num_sqgli) that contain a SQL in-
jection exploit. When num_sqli exceeds a predefined
threshold (sgli thresh), Bro issues an alert.

Porting Bro to FreeFlow. Porting Bro to FreeFlow
involved the straightforward classification of external
state and interfacing with the FreeFlow library to man-
age it. First, we identified all points of memory allo-
cation in the code. If the memory allocation was for
flow-specific data, we modified the allocation to use
FreeFlow-provided memory instead of the heap. In cer-
tain cases, we had to provide custom implementations
of standard C++ constructs like std: :List, to avoid
leaking references to FreeFlow-managed memory.

“For ease of implementation, we ported the event handler to C++
instead of using the Bro scripting language.

234 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI "13)

USENIX Association

After ensuring partitioned state was allocated in
FreeFlow-managed memory, we checked for external
references to it. The only two references were from
the global dictionary of Connection objects and the
global dictionary of timers. Since FreeFlow manages ac-
cess to flow-related objects and timers, we could replace
these two global collections. We found that Bro always
accesses flow-related state in the context of processing
a single packet, and therefore has well-defined transac-
tional boundaries. References from FreeFlow-managed
classes to external memory occur only to read static con-
figuration data (internal state).

As expected, there was very little data that we classi-
fied as coherent state. We used FreeFlow’s support for
combiners for non-critical global statistics counters. The
combiners were configured to only be invoked by the sys-
tem (i.e., on replica VM destruction). We did not find
any variables that required strong consistency or real-
time synchronization across replicas.

Verification. To validate the correctness of the modified
system, we used a setup consisting of a client and a web-
server, separated by two middlebox replicas running the
modified version of Bro. At a high level, we used the
client to issue a single flow of HTTP requests containing
SQL injection exploits while FreeFlow migrated the flow
between the two replicas multiple times. We check for
the integrity of state and execution by ensuring (a) Bro
generates an alert, (b) the number of exploits detected
exactly matches those sent by the client (c) both replicas
remain operational after each flow migration. Assuming
Bro sees all packets on the flow, the first two conditions
cannot be satisfied if the state becomes corrupted during
migration. Additionally, the system would crash on flow
migration when objects inside FreeFlow memory refer to
external memory that does not exist on the local replica.

4.2 Synthetic Middlebox Applications

We built two synthetic FreeFlow based middlebox appli-
cations that capture the essence of commonly used real
world middlebox applications. The first application is
compute-bound. It performs a set of computations on
each packet of a flow, resembling the compute intensive
behavior of middlebox applications like an Intrusion Pre-
vention System (IPS) or WAN optimizer. The second
application modifies packets in a flow in both directions,
using a particular application-level (layer 7) protocol, re-
sembling a NAT or Application Layer Gateway. Both
middleboxes were built in userspace using the Linux net-
filter [39] framework to interpose on packets arriving at
the VM. The userspace applications inspect and/or mod-
ify packets before forwarding them to the target.

5100 =V T

5 80

2

8 60 [Single Replica |

a a0 L7 Two Replicas Load Burst
¢ i

5 Scaling with

8 20 FreeFlow

<

0 L L L L 1 1 1 1 1 L
0O 10 20 30 40 50 60 70 80 90 100 110
Time (s)

Figure 8: Splitting/Merging Bro for Stateful Elasticity

5 Evaluation

FreeFlow enables balanced elasticity by leveraging the
Split/Merge abstraction to distribute—and migrate—
flows between replicas. In this section, we evaluate
FreeFlow with the following goals:

e demonstrate FreeFlow’s ability to provide dynamic
and stateful elasticity to complex real world middle-
boxes (§ 5.1),

e demonstrate FreeFlow’s ability to alleviate hotspots
created by a highly skewed load distribution across
replicas (§ 5.2),

e measure the gain in resource utilization when scal-
ing in a deployment using FreeFlow (§ 5.3), and

e quantify the performance overhead of migrating a
single flow under different application loads (§ 5.4).

In our experimental setup, a set of client and server VMs
are placed on different subnets. Traffic—TCP or UDP—
is routed between the VMs via a middlebox. We evaluate
FreeFlow using Bro or one of the synthetic middleboxes
described in Section 4.2.

5.1 Stateful Elasticity with Split/Merge

Figure 8 shows FreeFlow’s ability to dynamically scale
Bro out and in during a load burst, splitting and merging
partitioned state. In this experiment, the generated load
contains SQL injection exploits; we measure the percent-
age of attacks detected by Bro to determine Bro’s ability
to scale to handle the load burst.

Load is generated by a configurable number of cURL-
based [36] HTTP clients in the form of a continuous
sequence of POST requests to a webserver. The re-
quests contain SQL injection exploits; an attack com-
prises 31 consecutive requests. Each client is configured
to generate 50 requests/second. Throughout the experi-
ment (for 120 seconds), 30 clients generate a base load.
We inject a load burst 45 seconds into the experiment by
introducing an additional 30 clients and 10 UDP flows

USENIX Association

10th USENIX Symposium on Networked Systems Design and Implementation (NSDI "13) 235

-
o
o

w/ FreeFlow ——

A O @
o O O
T T T T

Max Latency (ms)
n
o

o

-
o
o

wlo FreeFlow ———

A O @©
o O ©
T T T

n
o o
==T

Max Latency (ms)

0 20 40 60 80 100
Time (s)

Figure 9: Eliminating hotspots with FreeFlow

(1 Mbps each) that do not contain attacks. The load burst
lasts 45 seconds, after which the additional client and
UDP traffic ceases.

We compare three scenarios: a single Bro instance that
handles the entire load burst, a pair of Bro replicas that
share load (flows are assigned to replicas in a round-robin
fashion), and Bro running with FreeFlow. The FreeFlow
scenario begins with a single replica and FreeFlow is
configured to create a new replica and split flows and
state between them when the number of flows handled
by the replica exceeds 60. Similarly, it is configured
to merge flows and state and destroy a replica when the
number of flows handled by a replica drops below 40.

As shown in Figure 8, until the load burst at ¢ = 45s, all
three configurations have a 100% detection rate. Dur-
ing the load burst, the performance of the single replica
reduces drastically because packets are dropped and at-
tacks are missed. The two replica cluster does not expe-
rience any degradation as it has enough capacity and the
load is well balanced between the two replicas.

The FreeFlow version of Bro behaves in the same man-
ner as a single replica, until the load burst is detected
around ¢ = 45s. While partitioned state is being split to a
new replica, packets are dropped and attacks are missed.
However, the detection rate quickly rises because the two
replicas have enough capacity for the load burst. After
the load burst (+ = 85s), FreeFlow detects a drop in load,
so merges partitioned state and destroys one of the repli-
cas. The FreeFlow version of Bro continues to detect
attacks at the base load with a single replica. FreeFlow
therefore enables Bro to handle the load burst without
wasting resources by running two replicas throughout the
entire experiment.

—~ 1321 w/FreeFlow ——

12.8 1

1241
121

11.6

Avg Latency (ms

132[w/io FreeFlow ——— |
12.8]
12.4]

120

Lk

Avg Latency (ms)

11.6

50 55 60 65 70 75 8 8 9
Time (s)

Figure 10: Performance impact of FreeFlow’s load re-

balancing on hotspots

5.2 Hotspot Elimination

In this experiment, we demonstrate FreeFlow’s ability to
eliminate hotspots that arise when the load distribution
across middleboxes becomes skewed. For the purpose of
this discussion, we define a hotspot as the degradation in
network performance due to high CPU or network band-
width utilization at the middlebox.

We use the compute-bound middlebox application de-
scribed in Section 4.2 under load from 1 Mbps UDP
flows. We define our scale-out policy to create a new
replica once the number of flows in a replica reaches
100 (totaling 100 Mbps per replica). Flows are gradu-
ally added to the system every 500 ms up to a total of
101 flows. After scaling out, the system has two repli-
cas: one with 100 flows and another with just one flow.

As expected, the replica handling 100 flows experiences
much higher load than the other replica. The result-
ing hotspot is reflected by highly erratic packet laten-
cies experienced by the clients, shown in Figure 9 and
Figure 10. Figure 9 shows the maximum latency, while
Figure 10 shows the fluctuations in the average latency
during the last 40s of the experiment. FreeFlow splits
the flows evenly among the two replicas thereby re-
distributing the load and alleviating the hotspot. Ulti-
mately, FreeFlow achieves a 26% reduction in the av-
erage maximum latency during the hotspot, with a 73%
lower standard deviation.

Irrespective of flow duration and traffic patterns, without
FreeFlow’s ability to balance flows, an over-conservative
scale-out policy may be used to ensure hotspots do not
occur, leading to low utilization and wasted resources.
By balancing flows, FreeFlow enables less conservative
scale-out policies leading to higher overall utilization.

236 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI "13)

USENIX Association

100

Best Case
Worst Case (No FreeFlow) ------

80 | Worst Case w/ FreeFlow - |

60

40

20

Avg System Utilization (%)

0 1 1 1 1 1 1 1 >
20 40 60 80 100 120 140 160 180 200

Time (s)

Figure 11: Scaling in with FreeFlow

5.3 Efficient Consolidation

In this experiment, we show how FreeFlow’s ability to
statefully merge flows between two or more replicas can
be used to consolidate resources during low load and
improve overall system utilization. We measure how
quickly FreeFlow can scale in compared to a standard
kill-based technique, in which a replica is killed only
when all its flows have expired. We also measure the
average system utilization per live replica during scale
in, shown in Figure 11.

We start with 4 replicas running the compute-bound mid-
dlebox application (§4.2), handling 50 UDP flows of
1 Mbps each. One flow expires every 500 ms according
to a best case or worst case scenario.

In the best case scenario, the first 50 flows expire from
the first replica in the first 25 seconds, enabling the
kill-based technique to destroy the replica. The sec-
ond 50 flows expire from the second replica in the next
25 seconds, enabling the second replica to be destroyed,
and so on. In this case, the average system utilization re-
mains high throughout the scale-in process, with a saw-
tooth pattern as shown in Figure 11.

In the worst case scenario, flows expire from replicas in
a round-robin fashion. In a kill-based system, each of the
4 replicas contains one or more flows until the very end
of the experiment, preventing the system from destroy-
ing replicas. This results in steadily degrading average
system utilization over the duration of the experiment.

On the other hand, even in the worst case, FreeFlow can
destroy a replica every 25 seconds. To accomplish this,
FreeFlow is configured with a scale-in policy that trig-
gers once the average number of flows per replica falls
below 50. When scaling in, FreeFlow Kkills a replica af-
ter merging its state and flows with the remaining repli-

400
@
)
a 300
2
5 200 | |
Ky
g 100 |
g Baseline
= 0 w ‘ ‘ FreeFlow -
0 10 20 30 40 50 50

Time (s)

Figure 12: Impact of flow migration on TCP throughput
(migration at 20s & 40s)

3 T T T
2 150Mbps
£ 257 : 200Mbps - 1
§ 2+ 250Mbps e |
% 15 | |
E L . O,
S 05 |
& 0 L L L L L L L L L

o 1 2 3 4 5 6 7 8 9 10
Time (s)

Figure 13: Latency overhead of flow migration

cas. Subsequently, in the worst case, FreeFlow maintains
average system utilization close to that of the kill-based
strategy in the best case scenario and improves the av-
erage system utilization by up to 43% in the worst case
scenario. Based on the the time at which the first replica
was killed in the worst case scenario, FreeFlow can scale
in 50% faster than the standard kill-based system.

FreeFlow does impact the performance of flows during
the experiment; in particular, packet drops are caused by
flow migrations that happen when a replica is merged.
However, performance impact is low: the average packet
drop rate per-flow was 0.9%.

5.4 Migrating Application Flow State

Flow state migration is a fundamental unit of operation
in FreeFlow, when splitting or merging partitioned state
between replicas. Figure 12 shows the impact on TCP
throughput during flow migration compared to a baseline
where no migration is performed. We use the Iperf [37]
benchmark to drive traffic on a single TCP stream be-
tween the client and the server, through the compute-
bound middlebox. We perform two flow migrations: one
at 20th and another at 40th second, respectively. When
sampled at 1 second intervals, we observe a 14 — 31%
drop in throughput during the migration period, lasting
for a maximum of 1 second.’

We further study the overhead of flow migration on a

5Due to Iperf’s limitation on the minimum reporting interval, (1 sec-
ond), we are unable to calculate the exact duration of the performance
impact.

USENIX Association

10th USENIX Symposium on Networked Systems Design and Implementation (NSDI "13) 237

g 0.8
Q
S 06
a
@ 04
S
s 0.2
o
0 i ‘ ‘ ‘
0 50 100 150 200 250 300

Load (Mbps)

Figure 14: Packet drop rate during flow migration

single UDP flow using the packet modifier middlebox
application (§4.2). For these experiments, the flows are
10 seconds in duration and the migration is initiated af-
ter three seconds from the start of the flow. The impact
of a single flow migration on end-to-end latency for dif-
ferent flow rates is shown in Figure 13. We observe a
maximum of 1 ms increase in latency during flow migra-
tion. The latency fluctuations last for a very short period
of time (500 ms). Figure 14 shows the overall packet
drop rate for the entire duration of the flow. The overall
packet drop rate is less than 1% including any disrup-
tion caused by the migration. Figure 15 shows the im-
pact on throughput as observed by the client, when the
flow migration occurs. The plotted throughput is based
on a 50 ms moving window. As the load on the network
increases, there is an increase in throughput loss due to
flow migration. However, the drop in throughput occurs
only for a brief period of time and quickly ramps up to
pre-migration levels.

6 Related Work

Split/Merge relies on the ability to identify per-flow state
in middleboxes. The behavior and structure of middle-
boxes has been characterized through the use of mod-
els [12]. In other work, state in middleboxes has been
identified as global, flow-specific, or ephemeral (per-
packet) [30]. On a single machine granularity, MLP [31],
HILTI [26], and multi-threaded Snort [21,22] all exploit
the fact that flow-related processing rarely needs access
to data for other flows or synchronization with them.
CoMb [23] exploits middlebox structure to consolidate
heterogeneous middlebox applications onto commodity
hardware, but does not address the issue of scaling, par-
allelism, or elasticity.

Clustering techniques have traditionally been used to
scale-out middleboxes. The NIDS Cluster [28] is a clus-
tered version of Bro [19] that is capable of performing
coordinated analysis of traffic, at large scale. By expos-
ing policy layer state and events as serializable state [27],
individual nodes are able to obtain a global view of the
system state. The NIDS Cluster cannot scale dynami-

14

gg 12 preememene -
=8 10
=c 8 L |
=}
22 6}]
S5 4} 150Mbps i
gs | 200Mbps - |
F 0, , 250Mbps ----

0 1 2 3 4 5 6 7 8 9 10

Time (s)

Figure 15: Throughput overhead of flow migration
(50 ms window)

cally and statefully, as it lacks the ability to migrate lower
layer (event engine) flow state and their associated net-
work flows across replicas.

FreeFlow leverages OpenFlow in its Split/Merge-aware
SDN. Load balancing has been implemented in an SDN
using OpenFlow with FlowScale [25], and wildcard rules
can accomplish load balancing in the network while re-
ducing load on the controller [32]. The Flowstream ar-
chitecture [8] includes modules—for example, VMs—
that handle flows and can be migrated, relying on Open-
Flow to redirect network traffic appropriately. However,
Flowstream does not characterize external state within an
application. Olteanu and Raiciu [18] similarly attempt to
migrate per-flow state between VM replicas without ap-
plication modifications.

There are many ways in which different types of appli-
cations are dynamically scaled in the cloud [29]. Knauth
and Fetzer [13] describe scaling up general applica-
tions using live VM migration [6] and oversubscription.
Amazon’s Autoscaling [34] automatically creates or de-
stroys VMs when user-defined thresholds are exceeded.
SnowFlock [14] provides sub-second scale-out using a
VM fork abstraction. These approaches do not enable
balancing of existing load between instances, potentially
resulting in load imbalance [33].

7 Conclusion

We have described a new abstraction, Split/Merge,
and a system, FreeFlow, that enables transparent, bal-
anced elasticity for stateful virtual middleboxes. Using
FreeFlow, middleboxes identify partitioned state, which
can be split among replicas or merged together into a sin-
gle replica. At the same time, FreeFlow partitions the
network to ensure packets are routed to the appropriate
replica. As networks become increasingly virtualized,
FreeFlow addresses a need for elasticity in middleboxes,
without introducing the configuration complexity of run-
ning a cluster of independent middleboxes. Further, as
virtual servers become increasingly mobile, utilizing live
VM migration across or even between data centers, the

238 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI "13)

USENIX Association

ability to migrate flows—or split and merge them be-
tween replicas—will become even more important.

8

Acknowledgments

We would like to thank our shepherd, Mike Freedman,
and the anonymous referees for their helpful comments.

References

(1]

(2]

[3]

(4]

(5]

(6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

ANANTHANARAYANAN, G., KANDULA, S., GREENBERG, A.,
STOICA, 1., LU, Y., SAHA, B., AND HARRIS, E. Reining in
the Outliers in Map-Reduce Clusters using Mantri. In Proc. of
USENIX Symposium on Operating Systems Design & Implemen-
tation (OSDI) (2010).

BARHAM, P., DRAGoOvIC, B., FRASER, K., HAND, S.,
HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND
WARFIELD, A. Xen and the Art of Virtualization. In Proc.
of ACM Symposium on Operating Systems Principles (SOSP)
(2003).

BURROWS, M. The Chubby Lock Service for Loosely-Coupled
Distributed Systems. In Proc. of USENIX Symposium on Operat-
ing Systems Design & Implementation (OSDI) (2006).

CARPENTER, B., AND BRIM, S. Middleboxes: Taxonomy
and Issues. RFC 3234, https://tools.ietf.org/rfc/
rfc3234.txt, 2002.

CHANDRA, R., ZELDOVICH, N., SAPUNTZAKIS, C., AND
LAM, M. S. The Collective: A Cache-Based System Manage-
ment Architecture. In Proc. of USENIX Symposium on Networked
Systems Design & Implementation (NSDI) (2005).

CLARK, C., FRASER, K., HAND, S., HANSEN, J. G., JUL, E.,
LIMPACH, C., PRATT, I., AND WARFIELD, A. Live Migration of
Virtual Machines. In Proc. of USENIX Symposium on Networked
Systems Design & Implementation (NSDI) (2005).

DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified Data
Processing on Large Clusters. Communications of ACM 51, 1
(2008).

GREENHALGH, A., HuICI, F., HOERDT, M., PAPADIMITRIOU,
P., HANDLEY, M., AND MATHY, L. Flow Processing and the
Rise of Commodity Network Hardware. ACM SIGCOMM Com-
puter Communications Review 39, 2.

GU, Y., SHORE, M., AND SIVAKUMAR, S. A Framework
and Problem Statement for Flow-associated Middlebox State Mi-
gration. http://tools.ietf.org/html/draft-gu-
statemigration-framework-02, 2012.

GUDE, N., KOPONEN, T., PETTIT, J., PFAFF, B., CASADO,
M., MCKEOWN, N., AND SHENKER, S. NOX: Towards an Op-
erating System for Networks. ACM SIGCOMM Computer Com-
munications Review 38, 3.

HUNT, P., KONAR, M., JUNQUEIRA, F. P., AND REED, B.
ZooKeeper: Wait-free Coordination for Internet-scale Systems.
In Proc. of USENIX Annual Technical Conference (ATC) (2010).

JOSEPH, D. A., AND STOICA, I. Modeling Middleboxes. IEEE
Network 22, 5 (2008).

KNAUTH, T., AND FETZER, C. Scaling non-elastic Applications
Using Virtual Machines. In IEEE International Conference on
Cloud Computing (2011).

LAGAR-CAVILLA, H. A., WHITNEY, J. A., SCANNELL, A. M.,
PATCHIN, P., RUMBLE, S. M., DE LARA, E., BRUDNO, M.,
AND SATYANARAYANAN, M. SnowFlock: Rapid Virtual Ma-
chine Cloning for Cloud Computing. In Proc. of ACM European
Conference on Computer Systems (EuroSys) (2009).

[15]

[16]

[17]

[18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

[30]

(31]

M. BAGNULO, P. MATTHEWS, 1. V. B. Stateful NAT64: Net-
work Address and Protocol Translation from IPv6 Clients to IPv4
Servers. http://tools.ietf.org/id/draft-ietf-
behave-v6vd-xlate-stateful-12.txt, 2010.

MALEWICZ, G., AUSTERN, M. H., BIK, A. J., DEHNERT,
J. C., HORN, I., LEISER, N., AND CZAJKOWSKI, G. Pregel:
A System for Large-Scale Graph Processing. In Proc. of ACM
SIGMOD (2010).

MELL, P., AND GRANCE, T. The NIST Definition of Cloud
Computing. In National Institute of Standards and Technology
Special Publication 800-145 (2011).

OLTEANU, V. A., AND RAICIU, C. Efficiently Migrating State-
ful Middleboxes. In ACM SIGCOMM - Demo (2012).

PAXSON, V. Bro: A System for Detecting Network Intruders in
Real-Time. Computer Networks 31,23-24 (1999).

PFAFFE, B., PETTIT, J., KOPONEN, T., AMIDON, K., CASADO,
M., AND SHENKER, S. Extending Networking into the Virtu-
alization Layer. In Proc. of ACM Workshop on Hot Topics in
Networks (2009).

ROESCH, M. Snort - Lightweight Intrusion Detection for Net-
works. In Proc. of USENIX Conference on System Administration
(1999).

SCHUFF, D. L., CHOE, Y. R., AND PAI, V. S. Conservative
vs. optimistic parallelization of stateful network intrusion detec-
tion. In Proc. of ACM Symposium on Principles and Practice of
Parallel Programming (2007).

SEKAR, V., EGI, N., RATNASAMY, S., REITER, M. K., AND
SHI, G. Design and Implementation of a Consolidated Middle-
box Architecture. In Proc. of USENIX Symposium on Networked
Systems Design & Implementation (NSDI) (2012).

SHERRY, J., AND RATNASAMY, S. A Survey of Enterprise Mid-
dlebox Deployments. Tech. Rep. UCB/EECS-2012-24, EECS
Department, University of California, Berkeley, 2012.

SMALL, C. FlowScale. GENI Engineering Conference (Poster),
http://groups.geni.net/geni/attachment/
wiki/OFIU-GECl2-status/FlowScale poster.
pdf, 2012.

SOMMER, R., CARLI, L. D., KOTHARI, N., VALLENTIN, M.,
AND PAXSON, V. HILTI: An Abstract Execution Environment
for Concurrent, Stateful Network Traffic Analysis. Tech. Rep.
TR-12-003, ICSI, 2012.

SOMMER, R., AND PAXSON, V. Exploiting Independent State
For Network Intrusion Detection. In Proc. of Computer Security
Applications Conference (2005).

VALLENTIN, M., SOMMER, R., LEE, J., LERES, C., PAXSON,
V., AND TIERNEY, B. The NIDS Cluster: Scalable, Stateful Net-
work Intrusion Detection on Commodity Hardware. In Proc. of
International Conference on Recent Advances in Intrusion Detec-
tion (2007).

VAQUERO, L. M., RODERO-MERINO, L., AND BUYYA, R. Dy-
namically Scaling Applications in the Cloud. ACM SIGCOMM
Computer Communications Review 41, 1.

VERDU, J., NEMIROVSKY, M., GARCIA, J., AND VALERO, M.
Workload Characterization of Stateful Networking Applications.
In Proc. of International Symposium on High-Performance Com-
puting (2008).

VERDU, J., NEMIROVSKY, M., AND VALERO, M. MultiLayer
Processing - An Execution Model for Parallel Stateful Packet Pro-
cessing. In Proc. of ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (2008).

USENIX Association

10th USENIX Symposium on Networked Systems Design and Implementation (NSDI "13)

239

[32]

(33]

[34]

(35]

[36]

WANG, R., BUTNARIU, D., AND REXFORD, J. OpenFlow-
based Server Load Balancing Gone Wild. In Proc. of USENIX
Conference on Hot Topics in Management of Internet, Cloud, and
Enterprise Networks and Services (2011).

WELSH, M., AND CULLER, D. Adaptive Overload Control for
Busy Internet Servers. In Proc. of USENIX Symposium on Inter-
net Technologies and Systems (2003).

Amazon EC2: Auto Scaling. http://aws.amazon.com/
autoscaling/.

BIG-IP Local Traffic Manager (LTM). http://www.£f5.
com/products/big-ip/big-ip-local-traffic-
manager/.

libcurl - The Multiprotocol File Transfer Library. http://
www . tcpdump.org/.

[37]

[38]

[39]

[40]

[41]

[42]

Iperf: TCP and UDP Bandwidth Performance Measurement Tool.
http://iperf.sourceforge.net/.

Linux Virtual Server.
linuxvirtualserver.org/.

Netfilter Packet

http://www.

Filtering Framework. http://www.

netfilter.orgq.

Citrix NetScaler ADC. http://www.citrix.com/
netscaler.

The OpenFlow Switch Specification. http://www.

openflow.org.

POX OpenFlow Controller.
pox/about-pox/.

http://www.noxrepo.org/

240 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI "13)

USENIX Association

