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Abstract
As manufacturers continue to improve the energy effi-

ciency of battery-powered wireless devices, WiFi has be-

come one of—if not the—most significant power draws.

Hence, modern devices fastidiously manage their radios,

shifting into low-power listening or sleep states when-

ever possible. The fundamental limitation with this ap-

proach, however, is that the radio is incapable of trans-

mitting or receiving unless it is fully powered. Unfor-

tunately, applications found on today’s wireless devices

often require frequent access to the channel.

We observe, however, that many of these same ap-

plications have relatively low bandwidth requirements.

Leveraging the inherent sparsity in Direct Sequence

Spread Spectrum (DSSS) modulation, we propose a

transceiver design based on compressive sensing that al-

lows WiFi devices to operate their radios at lower clock

rates when receiving and transmitting at low bit rates,

thus consuming less power. We have implemented our

802.11b-based design in a software radio platform, and

show that it seamlessly interacts with existing WiFi de-

ployments. Our prototype remains fully functional when

the clock rate is reduced by a factor of five, potentially

reducing power consumption by over 30%.

1 Introduction

Smartphones and other battery-powered wireless devices

are becoming increasingly popular platforms for all man-

ner of network applications. As a result, the energy usage

of the radios on these devices is a source of consider-

able concern. Unsurprisingly, a large number of tech-

niques have been proposed to help manage the power

consumption of both cellular and WiFi devices. Focus-

ing particularly on the WiFi domain, the basic approach

has been to implement extremely low-power listening or

sleep modes, and transition the devices into operational

mode as little as possible [12, 18, 27]. The fundamental

limitation with such approaches, however, is that the ra-

dio is incapable of transmitting or receiving unless it is

fully powered. Unfortunately, recent studies have shown

that a wide variety of popular applications make frequent

and persistent use of the network [21], frustrating at-

tempts to keep the WiFi chipset in a power-efficient state.

Transitioning in and out of sleep mode adds significant

overhead, both in terms of time and energy. In particular,

in addition to the costs associated with powering up the

transceiver, once awake the WiFi chipset still needs to

participate in the CSMA channel access scheme which

frequently results in the device spending significant time

in idle listening mode waiting for its turn to access the

channel [18, 39]. Moreover, once a device is done trans-

mitting or receiving, it will remain in a tail state for some

period of time in anticipation of subsequent transmis-

sions [18, 21]. To amortize these costs, the 802.11 PSM

specification has nodes wake up at the granularity of the

100-ms AP beacon interval when they do not have pack-

ets to transmit. (Indeed, the popular Nexus One wakes

up only every 300 ms [18].) Hence, while useful for bulk

data transfers [12] or situations where traffic pattens can

be predicted precisely [24], PSM-style power saving ap-

proaches are often ineffective for applications that need

to send or receive data frequently [39].

In this paper, we consider an alternative to the tra-

ditional on/off model. Instead, we explore a technique

that reduces the power consumption of the WiFi chipset

across all of its operating modes: i.e., not just sleep

and listen, but send and receive as well. Our approach

leverages the excess channel capacity provided by many

WiFi networks when compared to the bandwidth de-

mands of most smartphone applications. Traditionally,

when faced with low-demand clients, system designers

have used excess channel capacity to improve reception

rates by introducing redundant coding and/or reducing

transmission power. For example, 802.11n specifies a

wide variety of link rates, ranging from 1 to 150 Mbps

and beyond. The lower link rates use more robust encod-

ing and signaling schemes that can be decoded at lower

signal-to-noise ratios (SNRs). These schemes translate

into longer range or the ability to decrease transmission

power which, along with the potential for power savings

at the sender, can increase spatial reuse. We observe that

one can instead turn excess channel capacity into an op-

portunity to save power at the receiver.

Our power savings comes from operating the WiFi

chipset at a lower clock rate. Zhang and Shin demon-

strated a wireless receiver that can be downclocked

yet still detect packets [39]. We show how to allow

transceivers to remain downclocked during reception and

transmission as well. We propose a receiver design based

on recent advances in compressive sensing [33] that takes
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advantage of the inherent sparsity of the Direct Sequence

Spread Spectrum (DSSS) modulation used by 802.11b.

With our design, clients with low demand can operate

their radios at a reduced clock rate while continuing to

communicate with commercial WiFi devices.

We have implemented a prototype of our 802.11b-

based design, called SloMo, in the Sora software ra-

dio platform. We show that SloMo seamlessly com-

municates with multiple vendors’ commercial chipsets

using standard 802.11b frames. Our measurements of

frame reception rates demonstrate that SloMo remains

fully functional even when the clock rate is reduced by

more than a factor five. Our trace-based simulations

across a range of popular smartphone applications show

that SloMo reduces WiFi power consumption by up to

30–34% on the iPhone 4S and Nexus S, respectively.

Moreover, SloMo outperforms two other proposed ap-

proaches, U-APSD and E-MiLi, in almost all cases.

2 Related work

There has been a great deal of work on improving the

energy efficiency of WiFi devices. These efforts can be

broadly classified into three categories: 1) improvements

to 802.11 PSM, 2) systems that duty cycle the WiFi de-

vice, and 3) attempts to decease transmit power.

Efficient power save modes. Most approaches rely

on placing the device in a low-power sleep mode when-

ever possible. The two basic alternatives are to coor-

dinate these periods of sleep between the access point

and the device, either through periodic polling (as with

the 802.11 PSM standard) or deliberate scheduling [27].

Others have proposed dynamically adjusting sleep pe-

riods based upon a client’s traffic pattern [2, 16]. Re-

searchers have previously noted the disparity between

modern 802.11 link speeds and the traffic demands

of many clients. µPM suggests powering down low-

demand WiFi clients between individual frame transmis-

sions [17], relying upon 802.11 devices retransmitting

unacknowledged frames to limit losses. Catnap [12] ex-

tends this approach by estimating bottleneck throughput

and scheduling client wake-ups based upon the predicted

availability of data from the wide-area network.

One challenge with these approaches is that, when

awake, a WiFi device must participate in the channel

contention process. Studies have shown that this pro-

cess can consume considerable amounts of energy, espe-

cially in dense deployments where nodes are in range of

multiple APs. SleepWell coordinates sleep cycles among

neighboring APs to decrease contention during wake-

ups, thereby increasing client power efficiency [18].

Finally, even otherwise-effective power saving mech-

anisms implemented by the WiFi chipset can be overrid-

den by applications in many popular frameworks [4, 5]:

some apps prevent the WiFi device from entering PSM

mode, forcing the WiFi card to stay awake in an effort to

improve performance [9, 35]. Because SloMo decreases

power consumption across all WiFi states, it can still re-

duce energy consumption in these cases.

Device duty cycling. Others take a more drastic ap-

proach: rather than entering low-power sleep modes,

they identify times when it is possible to simply turn a

WiFi device off entirely. One early system, SPAN [7],

turns off entire nodes in multi-hop ad hoc wireless net-

works if the connectivity of the network can be preserved

without them. In more general environments, systems

have been designed to keep WiFi powered down by de-

fault, and use an out-of-band signal to asynchronously

alert the device of pending data [1, 31]. Since smart-

phones may frequently be outside the coverage area of

a WiFi AP, the only reason to keep the WiFi transceiver

powered is to determine when coverage returns. Many

systems have attempted to reclaim this energy by instead

duty cycling WiFi radios based upon predictions of WiFi

availability. These predictions are variously based upon

the detection of nearby Bluetooth devices [3] or cell tow-

ers [26], or historical device movement patterns [20].

Limited transmit power. Finally, a direct approach

to decreasing WiFi power draw while transmitting is to

reduce radiated energy. WiFi transceivers can leverage

transmit power control to emit signals using sub-mW en-

ergy when the SNR is high. Unfortunately, despite the

obvious attractiveness of such an approach, studies have

repeatedly shown that adjusting transmit power has little

impact on the total power draw of commercial 802.11 de-

vices due to the limited power consumption of the power

amplifier relative to the rest of the electronics [15, 22].

Downclocking. We take a radically different ap-

proach by enabling the radio to communicate while in a

low-power state. Our efforts are inspired by previous ob-

servations that radios can conserve power by operating

at lower clock rates. Researchers have argued that de-

vices could dynamically adjust their sampling rate based

upon the frequencies contained within the observed sig-

nal [11], but their approach is not directly applicable to

the encoding schemes employed by WiFi. In the context

of WiFi, recent proposals argue that next-generation sys-

tems should support multiple channel widths and adapt

their instantaneous channel width based on the offered

load [6] (although stations operating in different band-

widths cannot decode each other’s transmission and the

17-ms switching overhead makes co-existence challeng-

ing), and develop mechanisms to detect packet arrivals

in a downclocked state [39]. Downclocking a receiver

through dynamic frequency scaling has been applied in

the wireline context in the past [29], but we are not aware

of any similar schemes in the wireless domain.
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Figure 1: A simplified WiFi card architecture.

3 Motivation

As wireless link speeds continue to increase, mobile de-

vices are increasingly likely to want to use only a small

fraction of the channel capacity. With WiFi, however,

use of the network is an all-or-nothing affair in terms of

power: if a transceiver is not fully powered, no data can

be sent or received.

3.1 The potential of downclocking

The power consumption of a CMOS computing device

is proportional to its clock rate [25]. Not surprisingly,

dynamic frequency scaling (DFS) has long been used

as a technique to save power in a variety of computing

domains [36]. Fundamentally, the same rules apply to

wireless transceivers: downclocking the radio hardware

can result in significant power savings. The challenge

in downclocking radio equipment, however, is that the

Nyquist theorem dictates that to successfully receive a

signal, the receiver must sample the channel at twice the

bandwidth of the signal [30]. In practice, today’s WiFi

devices are designed in such a way that the frequency of

the entire radio pipeline is gated by the sampling rate.

Figure 1 shows a typical WiFi transceiver architecture.

The analog baseband signal is first processed by a base-

band filter to confine the signal to the desired band. It

is then sampled by an analog-to-digital converter (ADC)

and data samples are passed to the baseband proces-

sor, which decodes the signal and uploads the recovered

frame to the host. The entire radio card is driven by

a common crystal oscillator, which feeds the frequency

synthesizer and the phase locked loop (PLL). The fre-

quency synthesizer generates the center frequency for

RF operation while the PLL serves as the clock source

for the ADC and baseband processor. For a 22-MHz

802.11b channel, the radio runs at 44 MHz (or faster).

As a result, the channel sampling rate directly de-

termines the permissible clocking rate—and power

consumption—of the WiFi card. Previous studies have

shown that the power consumption of popular WiFi

chipsets (e.g., from Atheros and Netgear) does indeed

vary with frequency [6, 39], although the precise rela-

tionship depends on what the device is doing (sending

frames, receiving frames, or idling) and differs across

chipsets. As an example, Table 1 shows the reported en-

ergy consumption of a popular WiFi chipset while oper-

ating at various clock rates [39].

Not surprisingly, the power savings are sub-linear

(40% savings while receiving packets at a 25% clock

Clock rate 25% 50% Full rate

Idle 640 mW 780 mW 1200 mW

Rx 980 mW 1440 mW 1600 mW

Tx 1210 mW 1460 mW 1710 mW

Table 1: Power draw of the Atheros 5414 WiFi chipset in the

LinkSys WPC55AG NIC at various clock rates [39].

rate), but they are still substantial. However, current de-

vices were not designed to be downclocked. Hence, it is

unlikely they are optimized to be power-efficient at fre-

quencies other than their target operating point.

3.2 Downclocked transmission

It is not obvious that downclocking a radio would be ben-

eficial while transmitting data: the lower the data rate,

the longer the transmission takes. Hence, in theory one

should transmit as fast as possible and place the radio

back into low-power mode as soon as transmission is

complete. Alternatively, one could realize similar sav-

ings by transmitting at a low data rate and scaling back

the transmission power. These approaches, however, pre-

sume that the frequency and/or power of the transceiver

can be adjusted efficiently.

Moreover, even if the device only receives data, the

802.11 specification requires that it transmit an ACK

frame to confirm receipt of the data frame—and the

ACK frame must be sent within a strict, 20-µs inter-

frame time (SIFS). As with reception, Nyquist requires

that the transceiver operate at twice the signal bandwidth

to transmit the standard Barker sequence. While some

chipsets, such as the MAXIM 2831, are able to switch

back to full clock rate in time to transmit an ACK frame,

others take substantially longer (e.g., an Atheros 5414

takes roughly 125 µs to switch clock rates [39]). In such

cases, to realize the benefits of downclocked reception,

the transceiver needs to transmit at a slower clock rate an

ACK frame that a standard-compliant WiFi transmitter

will accept. (The Rx power draws in Table 1 assume the

device remains downclocked for ACK transmissions.)

The potential benefits of downclocked transmission go

even further when considering the energy spent on clear

channel assessment (CCA) when a node attempts to gain

access to the channel. Previous studies have shown that

CCA is the dominant power drain when there is a high

contention level in the network [18, 39]. Most commer-

cial WiFi chipsets implement the carrier sensing com-

ponent of CCA, i.e., determining whether the channel is

free, using energy detection, which can be conducted at

virtually any clock rate. Moreover, modern WiFi cards

seem to be more power proportional when in this so-

called idle listening state. As shown in Table 1, the mea-

sured Atheros chipset consumes 47% less power in idle

listening mode when downclocked by a factor of 4.
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However, once the channel is detected to be idle, a

WiFi station needs to attempt to transmit a frame within

very short order (as little as 50 µs depending on its cur-

rent back-off interval). Given the switching times of

commodity chipsets, these timing requirements suggest

that WiFi devices are likely to need to perform carrier

sensing and frame transmission at the same clock rate.

In other words, in order to perform CCA while down-

clocked, the WiFi device must be prepared to transmit

while downclocked as well.

3.3 Network impacts

Clearly, downclocked nodes have the potential to realize

significant power savings. An obvious concern, however,

is that the lower bitrate transmissions require more air-

time, thereby decreasing overall network performance,

or, worse, increasing the energy consumption of other

nodes in the WiFi network and negating the gains real-

ized by the downclocked node. While certainly possi-

ble in theory—or even in practice for highly congested

networks [34]—its likelihood depends both on the back-

ground usage level in the network and the communica-

tion patterns of the downclocked node.

For example, for VoIP applications the typical packet

size is roughly 40 bytes, implying that a VoIP node’s

air time usage is dominated by inter-frame spacing and

channel contention resolution rather than data transmis-

sion or reception [34]. Hence, a VoIP flow’s impact on

network throughput is likely to be negligible regardless

of the bitrate (clock rate) the node chooses to employ. In

other scenarios, however, where the downclocked node is

transmitting or receiving large packets, or the network is

already reaching maximum capacity, the impact may be

noticeable. We observe that both the station and the AP

could detect and address such situations. In particular, an

AP can monitor the current traffic load on the network,

number of PSM clients, and any other pertinent informa-

tion. For severely congested networks, the downclocked

operation may not be allowed. In practice, for most of

the popular smartphone apps we have studied, the im-

pact on free channel airtime is limited (≤ 16%, see Sec-

tion 6.3). Moreover, many networks are lightly loaded.

For example, a study of our department’s wireless net-

work found that 60% of all frames are transmitted with-

out contention—i.e., the initial back-off counters expire

without needing to wait for other channel activity [8].

4 Downclocked 802.11b

In this section we describe the design of SloMo, our

prototype downclocked radio for 802.11b. SloMo can

fully interoperate with standard-compliant WiFi devices

(i.e., 802.11a/b/g/n/ac) at both 1 and 2-Mbps DSSS rates,

with no modifications to the access point. While these

data rates are admittedly modest, we show later that

they suffice for many popular applications. Further, the

802.11b rates remain widely supported in both deployed

WiFi networks and the upcoming 802.11ac chipsets (e.g.,

Broadcom 4335) and routers (e.g., Cisco EA6500). In-

deed, due to its robust communication range and low

cost, 802.11b is the only supported WiFi mode in some

special-purpose devices [13, 14, 37].

4.1 Reception

Our receiver design is based upon an observation that

the process of direct-sequence spread spectrum (DSSS)

modulation, as employed by the 802.11b standard, bares

a great similarity to a recently proposed compressive

sensing (CS) decoding scheme. DSSS and complemen-

tary code keying (CCK) are the two modulation tech-

niques specified in the IEEE 802.11b standard. When

the data rate is 1 or 2 Mbps, only DSSS modulation is

employed. The difference between the 1 and 2-Mbps

encodings lies in whether the quadrature component of

the carrier frequency is used: they employ binary phase

shift keying (BPSK) and quadrature phase shift keying

(QPSK), respectively. To ease our explanation, we will

focus our discussion on the 1-Mbps BPSK scenario; the

methods can be similarly applied to 2-Mbps QPSK en-

coding as we demonstrate.

In their recent breakthrough, Tropp et al. observe that

it is possible to employ compressive sensing to decode

digital signals while sampling at rates far below the

Nyquist rate, provided the signal is sparse in the fre-

quency domain [33]. Their approach mixes the sparse

signal they wish to decode with a high-rate chip sequence

to spread its signal band. They show that in many cases

the information contained in a sub-band of the resulting

spread signal turns out to be sufficient for recovering the

original signal.

DSSS modulation is analogous to the first stage of this

process: the baseband signal is also spread over a wide

range of bandwidth. Though the spreading in 802.11b

is designed to increase the signal to noise ratio (SNR)

at the receiver, it also provides the opportunity to apply

compressive sensing by only looking at part of the band

when SNR is not an issue.

4.1.1 DSSS modulation

The transmission chain of a standard 802.11b imple-

mentation can be summarized as four steps: scrambling,

modulation, spreading and pulse shaping. The data is

initially “scrambled” by XORing it with a fixed pseudo-

random sequence—to avoid long runs of ones or zeros—

before being modulated (using BPSK in the 1 Mbps

case). The modulated baseband signal is then “spread”

by replacing each bit with an 11-chip Barker sequence to

expand the signal. The spreading process serves several
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Figure 2: Original and modified baseband Rx processing chain. Compared to the original Rx chain, the modified chain adds an

additional integrate-and-dump component and replaces the De-spreading part with the CS decoder.

purposes. First, it enlarges the spectrum of the original

baseband signal by 11× to make it more robust to chan-

nel noise. Secondly, due to the unique properties of a

Barker sequence, it enables the receiver to more easily

synchronize with the transmitted signal. In particular, a

Barker sequence has low auto-correlation except when

precisely aligned with itself, so receivers can easily de-

termine when they have correctly synchronized with the

incoming chip sequence.
Mathematically, one can consider the DSSS spreading

process as computing an 11-chip signal, C, for each bit,
C = M · bi, where bi is a 2 × 1 sparse vector (b1 =
[0 1]T corresponds to a 1 and b0 = [1 0]T for a 0), and
the Barker sequence M is given by

M =

[

+1− 1 + 1 + 1− 1 + 1 + 1 + 1− 1− 1− 1

−1 + 1− 1− 1 + 1− 1− 1− 1 + 1 + 1 + 1

]T

Note that the two rows of M are simply inverses of each

other; hence, both Barker sequences have identical auto-

correlation magnitudes—they just result in either posi-

tive or negative correlation.

Subsequently, the pulse shaping stage ensures that the

resulting signal spectrum shape conforms to the IEEE

802.11b specification. In particular, the shaped signal

has a bandwidth of 22 MHz; therefore, a minimum sam-

pling rate of 44 MHz is required to meet the Nyquist

sampling criteria at the receiver side.

Conversely, Figure 2 presents a high-level description

of an 802.11b receiver baseband processing chain. A

matched filter recovers the chip values. In particular, the

matched filter correlates the incoming chip samples with

the Barker sequence to locate where the bit boundary is,

i.e., the first chip in the bit. Once the signal is synchro-

nized, it is sampled every chip time. Therefore, over the

course of a single bit duration, 11 sample values will be

collected corresponding to the 11-chip Barker sequence.

This chip sequence is “de-spread” by once again corre-

lating it with the Barker sequence to determine whether

a 1 or 0 was encoded, resulting in (hopefully) the orig-

inal 1-Mbps bit stream which is then de-scrambled by

XORing with the same scrambler sequence.

4.1.2 Compressive sensing

We implement compressive sensing using an integrate-

and-dump sampler as suggested by Tropp et al. [33].

We extend the match filter by introducing an integrate-

and-dump stage, which accumulates the output from the

matched filter for multiple chip durations, allowing for

a lower sampling rate than the standard 11 MHz. The

radio can then be downclocked appropriately to achieve

a desired compression ratio: sampling is performed on

the accumulated output (as opposed to each chip) and

the discrete samples—which contain multiple chips—are

fed to the rest of the receiver chain.

We can formalize the DSSS sampling process de-

scribed in the previous subsection as extracting a sample

Y from the received signal, C̃ (which is the transmitted

DSSS signal C encoded as described above but distorted

by the channel), with the diagonal sampling matrix H:

Y = HC̃. (1)

In a standard receiver operating at full clock rate, H is an

11×11 identity matrix which simply samples each chip

exactly once. Y is then correlated with the Barker se-

quence M to determine the transmitted bit.

With an integrate-and-dumper sampler, the measure-

ments can be viewed as a linear combination of the orig-

inal chip values. For example, suppose only 3 measure-

ments are desired (i.e., a downclocking ratio of 3/11).

The measurements can be viewed as substituting a com-

pressive measurement matrix into Equation 1:

Ĥ =





1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 1 1 1





Here, our sampling matrix has only three rows because

we intend to sample each bit’s Barker sequence only

three times. Because 11 cannot be evenly divided by 3,

the integrate-and-dump sampler needs to accommodate

varied accumulation length. (We relax this assumption

in a later subsection.) In this particular example, to re-

duce the clock rate by 11/3=3.67×, we choose to take

two samples of 4 chips and one of 3. Once the compres-

sive samples are obtained, the baseband logic can be re-

engineered to work with the compressed measurements.

For example, Davenport et al. show the following deci-

sion rule1 can be used [10]:

di = (Y −HMbi)
T(HH

T)−1(Y −HMbi).

1The middle term (pre-whitened matrix) of Davenport’s decision

rule is actually (HMM
T
H

T) because they assume the basis matrix

M is applied during decoding after the signal has been received. In our

DSSS modulation scheme, the matrix is applied during transmission,

so we can drop it from our rule.

5
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If d0 < d1, the bit is decoded as 0, and 1 otherwise.

Our proposed receiver baseband processing chain is also

presented in Figure 2. Since only a single bit is decoded

at a time, the decision rule can be simplified as

di = Y
T(HH

T)−1(HMbi). (2)

4.2 Transmission

Recall from the previous section that one of the key roles

of the Barker sequence is to allow the receiver’s matched

filter to identify the beginning of the bit sequence. In

particular, given 802.11b’s 11-bit Barker sequence, a bit

boundary is within the next 10 samples of any chip.

Hence, the matched filter simply correlates the chip sam-

ples at each of these 11 positions. Because of the auto-

correlation properties of the Barker sequence, the start

of the bit sequence is clearly indicated by a correlation

peak. In theory, the Barker code’s correlation maximum

is 11× larger than the second maximum. However, when

a signal is transmitted over the air, it may get distorted

and noise is added. Hence, real receivers never use a

peak criteria as high as 11; on the contrary, commer-

cial WiFi cards use much lower thresholds as our exper-

iments reveal.2

Based on this observation regarding the decoding

threshold, we design “Barker-like” sequences whose

auto-correlation properties are not as strong as regu-

lar Barker sequences, but are still likely to satisfy the

matched filter’s threshold to allow the receiver to prop-

erly identify the bit boundary. Similarly, our sequences

have the property that, when correlated with a properly

aligned 802.11b Barker sequence, they can be success-

fully decoded. (Recall that de-spreading is only per-

formed on properly aligned chip sequences.) Again, they

do not have perfect correlation with the true Barker se-

quence, but sufficiently high enough to either exceed the

threshold for 1s, or low enough to pass for 0s.

The key feature of our Barker-like sequences is that

they are shorter than the original Barker sequence, yet

transmitted over the same time interval. As a result,

each chip in our Barker-like sequence lasts longer than

a standard Barker chip. The exact number of chips in

the sequence—and, thus, the chip duration—can be cho-

sen to match an intended downclock rate. We omit the

detailed mathematical steps involved to search for these

sequences. At a high level, we use correlation peak-to-

average ratio as a close approximation to decide how

good the code sequence is. Figure 3 shows some ex-

amples of the Barker-like sequences we obtain, and how

they compare to the original 11-chip Barker sequence.

To operate at a particular downclocked rate of m/11,

we select a Barker-like sequence of length m to use for

2For example, Sora [32] decides the maximum value is a peak if the

maximum value is at least twice the second maximum.
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Figure 3: Spreading sequences of various lengths, including the

802.11-standard 11-chip Barker sequence and the Barker-like

sequence used by SloMo when downclocked accordingly.

spreading. Because the radio is downclocked, each chip

will last (11/m)× as long as a standard chip3, and the

signal will be more narrow than usual.

4.3 Practical design considerations

In the previous description of our compressive sensing

based receiver, we assume 1) that the bit boundary is

known, 2) compressive measurements are only taken

over chips belonging to the same bit, and 3) the num-

ber of chips to be integrated varies (as reflected in the

measurement matrix given in Section 4.1.2). Here, we

first relax the latter two requirements and then return to

address the former.

4.3.1 Fixed-length integrate-and-dump

Rather than have variable-length integration periods, an

alternative is to have a fixed integration length l and oc-

casionally integrate fractions of a chip value into a mea-

surement. For example, the following measurement ma-

trix (which we employ when the clock is operated at 4/11

of the original rate) serves as a concrete example:

H =









1 1 1 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 0.5 0 0
0 0 0 0 0 0 0 0 0.5 1 1









Note that the third and fourth samples each integrate a

fraction of the 9th chip. Alternatively, if integrating a

fraction of the chip turns out to be challenging, we could

integrate a fixed number of chips and extend the decod-

ing to multiple bits group.

At a raw data bit rate of 1 Mbps, Nyquist requires

a minimum of two measurements per 11-bit chip se-

quence; we cannot downclock the receiver a full 11×.

Hence, the useful range of integration lengths is between

2 and 5 chips. Since 11 is a prime number, for any inte-

gration length k (2 ≤ k ≤ 5), the number of compressed

samples is not an integer for a single bit. In fact, we

need to perform compressive sensing over a minimum of

11k chips to produce an integer number of measurements

3Except when m = 2 where the two chips last for 6 and 5×, re-

spectively, which we found to be more reliable than two chips of 5.5×.
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(i.e., 11 measurements). Therefore, rather than decoding

one bit at a time, we jointly decode k bits in a group—

which exactly corresponds to 11k chips.

4.3.2 Synchronization

Symbol synchronization is a fairly standard technique

and is often implemented in hardware [23]. Unfortu-

nately, locating the bit boundary is slightly more chal-

lenging when using compressive sensing. After pass-

ing through the integrate-and-dump circuit, the com-

pressed measurements no longer exhibit the excellent

auto-correlation property provided by the original Barker

sequence. Therefore, the standard correlation and peak

searching-based method described in the previous sec-

tion no longer suffices.

Recall that we are decoding our sample stream in

groups of k bits at a time, where each bit consists of 11

chips, but our integrate-and-dump sampler has reduced

these chips by a factor of k. Hence, we are always de-

coding exactly 11 samples at once. If we knew where to

start decoding, the first compressed measurement would

correspond to the sum of the first k chips of the first bit.

Rather than trying to identify the bit boundaries ahead of

time, we observe that 11 is a prime number, so one and

only one alignment with the sample stream will produce

successful decodings—all others will never align regard-

less of the downclocking factor k.

Because we have no idea which one of the 11 com-

pressed measurements starts a group, we store the de-

coding results for each possible position simultaneously.

For implementation purposes, we keep 11 bit arrays (B0-

B10). Suppose the incoming compressed measurements

are labeled S0, S1, · · ·; we decode S0 − S10 and store

the result in B0, S1 − S11 to B1, S2 − S12 to B2, · · ·,
S10∗j+i − S10∗j+i+10 to Bi (0 ≤ i, j,≤ 10). Each in-

coming compressed measurement will complete the de-

coding of one of the 11 bit arrays. Meanwhile, we look

for the fixed bit pattern of the Start of Frame Delimiter

(SFD) among the 11 stored bit arrays. Once the SFD is

identified in one of the arrays, we know the correct bit

boundary and we only need to keep decoding in one of

the arrays.

While the synchronization operation can be conducted

in parallel, we implement the process in a single soft-

ware thread in SloMo as the synchronization stage only

lasts for the duration of the preamble (72 µs and 144 µs

for short and long preambles, respectively). The SFD

is guaranteed to be found within this well-defined time

bound (or equivalently, a fixed number of decoded bits)

for any valid frame. If no SFD is detected after a rea-

sonable amount of time, the synchronization process is

aborted and we start to search for the next packet.

4.4 Interacting with existing networks

Because SloMo requires modifications only to the down-

clocked wireless node and is entirely 802.11b-compliant,

it is fully compatible with existing WiFi deployments.

No changes need to be made to the access point or other

devices on the network to support SloMo. In this sec-

tion, we discuss how SloMo interacts with a standard

802.11b/g/n basestation, as well the potential interac-

tions with other client nodes due to its use of 802.11b

(as opposed to 11g or 11n).

4.4.1 Rate selection

When operating in downclocked mode, a SloMo node

can only decode frames encoded using DSSS—in par-

ticular, it is not able to use CCK encoding (i.e., 5.5 and

11-Mbps 802.11b frames) or communicate at 802.11g/n

rates. Fortunately, the 802.11b standard includes mecha-

nisms for the SloMo node to convey these constraints to

the AP. If the SloMo node is currently connected to an

AP, before it goes into downclocked mode it can trans-

mit a re-association request frame to inform the AP it

only supports 1 and 2 Mbps. Even if a SloMo node

fails to notify the AP of the supported rate change, most

APs employ a dynamic transmission rate adjustment al-

gorithm that will throttle the sending rate until it suc-

cessfully communicates with the SloMo station: when

the AP fails to receive an ACK for frames it transmits at

a higher data rate, it will retry at a lower rate and eventu-

ally step down to 1 or 2 Mbps.

4.4.2 Protocol interactions

While SloMo devices must operate at 802.11b speeds, it

is clearly desirable to ensure that other network nodes

can continue to transmit at 11g or 11n rates if they are

so capable. The concern in such environments is that

the SloMo node cannot decode such frames, and might

cause collisions. Luckily, collisions are straightforward

to avoid. 802.11b specifies three different clear channel

assessment methods: energy detection, frame detection,

or a combination of the two. An 802.11b-compliant de-

vice can implement whichever method it chooses. Re-

lying on energy detection alone as its CCA method, our

SloMo node could co-exist with any other 11g/n node

in the network without requiring them to turn on pro-

tection mode to minimize the impact of throughput loss

due to slower 11b rates. This approach may require the

network operator to manually turn off protection mode

on the AP if SloMo nodes are the only possible set of

802.11b clients.

Additionally, because 11b and 11g employ different

inter-frame timings (for example, the slot time is 20 µs

and 9 µs for 11b and 11g with protection mode off, re-

spectively), one might be concerned about the potential

7
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unfairness in channel access contention. We could mod-

ify the inter-frame timings for SloMo nodes to ensure

fair channel access, but we observe that the standard

settings penalize the SloMo node, not the other nodes,

and the SloMo node is unlikely to have high demand for

the channel given it has elected to go into downclocked

mode. Hence, we have not deployed this change on our

prototype.

5 Prototype

To assess the feasibility of our approach, we implement

a prototype CS-based 802.11b transceiver architecture

in Microsoft Sora, a fully programmable software de-

fined radio [32]. We show that compressive sensing

achieves similar packet reception rates as standard WiFi

under reasonable network conditions, even when clock

rates are reduced by a factor of five. We also show that

downclocked transmission using short “Barker-like” se-

quences is feasible when communicating with standard

WiFi devices.

5.1 Implementation

To allow maximum generality of their radio platform, the

Sora architecture differs from the typical WiFi chipset

design discussed previously. Rather than implementing

a matched filter in hardware and sampling thereafter, the

Sora radio board has a fixed sampling rate of 44 MHz and

passes the raw data samples directly to the processing

pipeline. The matched filter and decoding stages are all

implemented in software.

We modified the Sora code by adding the integrate-

and-dump sampler in the receiver chain and re-design

the bit decoding algorithm as described by Equation 2.

We have implemented both versions of the integrate-

and-dump sampler. Since Sora’s clock rate is fixed at

44 MHz, we are unable to downclock it while transmit-

ting. Instead, we emulate downclocked transmission by

repeating data samples to effectively simulate a slower

clock. We then employ a root-raised-cosine filter for

pulse shaping. Since Sora does not have an on-board au-

tomatic gain control (AGC) circuit, we have to realize the

AGC in software. Finally, to compensate for the clock

oscillator difference between transmitter and receiver, we

also implement the phase tracking component to ensure

correct decoding of multiple-bit groups.

5.2 Experimental configuration

We conduct most of our experiments using two nodes, a

Sora node running our SloMo implementation and a lap-

top with a commercial WiFi device. The Sora hardware

is a Shuttle XPC SX58J3 machine with 8 CPU cores con-

figured with a Sora radio control board and an Ettus Re-

search XCVR2450 radio transceiver. It runs Windows

XP modified to support the baseline Sora software and

our SloMo modifications. The laptop is a Lenovo T410

with 2 CPU cores running Ubuntu 10.04 with an Intel

6200 WiFi card. We operate the Sora node and laptop as

an ad-hoc network for flexibility. By default we perform

our experiments using the 1-Mbps link rate of 802.11b

(experiments using 2-Mbps link rates double application

throughput as expected).

To experiment with different network conditions, we

varied the distance and path between the nodes. We fixed

the location of the SloMo node in a room, and moved the

laptop to various locations inside the building.

5.3 Downclocked reception

We start by evaluating downclocked reception in isola-

tion using compressive sensing (CS). We transmit pack-

ets using the commercial WiFi device on the laptop to our

experimental Sora node, which receives them using CS

with a configurable decoding clock rate. For each clock

rate and location, we transmit 1,000 UDP packets (each

1,000-bytes long) paced to allow the network to settle

between transmissions. We repeat each experiment 10

times to account for variations. We perform the experi-

ment across a wide range of clock rates, and in different

locations that result in a variety of network conditions.

In each case we record the fraction of transmitted pack-

ets successfully received and decoded using CS on the

Sora node, and also report the corresponding SNR value

for each location.

Figure 4(a) shows that downclocked reception oper-

ates nearly as well as standard WiFi across a wide range

of decoding clock rates. Each point is the average of 10

runs, and the error bars show the standard deviation. A

clock rate of 100% corresponds to standard WiFi pro-

cessing as the baseline, and smaller rates correspond to

more aggressive use of compressive sensing with lower

power requirements. When the SNR is good (≥48 dB),

packet reception using compressive sensing is nearly

equivalent to standard WiFi, even for very low clock rates

of 18–36%. Recall from Section 3.1 that downclocking

at such rates corresponds to more than 40% savings in

power consumption for a popular WiFi chipset.

Unfortunately, our ability to evaluate SloMo down-

clocked reception performance for a wider range of

SNRs is limited by the Sora platform. We observe that

Sora has a rather narrow dynamic range in terms of re-

ceiver sensitivity and exhibits a sharp cut-off behavior

when the SNR is around 46 dB, likely due to the lack

of hardware automatic gain control. While operating in

this regime, Sora’s standard WiFi implementation only

achieves a 53% reception rate, and compressive sensing

delivers 73% of that performance at the lowest clock rate.
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(b) SloMo → WiFi (small packets)
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(c) SloMo → WiFi (large packets)

Figure 4: Frame reception rates at SloMo Sora node (commercial WiFi device) for packets sent by commercial WiFi device (SloMo

Sora node) using downclocked compressive sensing reception (downclocked “Barker-like” transmission). As a baseline, the 100%

clock rate corresponds to using the default 802.11b implementation.

5.4 Downclocked transmission

Next we evaluate downclocked transmission in isola-

tion using the shorter “Barker-like” sequences. We send

packets from our experimental Sora node using down-

clocked transmission to the commercial WiFi device on

the laptop, and record the fraction of transmitted packets

successfully received and decoded by the commercial de-

vice. We use the same methodology as with compressive

sensing: 10 runs of 1,000 UDP packets at each combi-

nation of downclock rate and network location. We also

experiment with two packet sizes. The first is a small

packet size of 60 bytes, corresponding to apps sending

small data packets and sending ACKs in response to a

packet received using compressive sensing. The second

is a larger packet size of 1,000 bytes.

Figures 4(b) and 4(c) show the results for down-

clocked transmission for small and large packets, respec-

tively. Compared to downclocked reception with com-

pressive sensing, we note that the operational SNR range

is much larger; commercial WiFi cards have much better

receiver sensitivity than Sora.

Focusing on results relative to the commercial WiFi

baseline, however, shows that downclocked transmission

using shorter “Barker-like” sequences more strongly de-

pends on network conditions, clock rate and packet size.

A clock rate of 100% transmits using the full Barker se-

quence in standard WiFi, and smaller rates correspond to

transmission using increasingly shorter Barker-like se-

quences (Figure 3); the lowest transmission clock rate

is 20%, which corresponds to transmitting with just two

chips (Section 4.2). As shown in Figure 4(b), with small

packet sizes downclocked transmission is nearly as good

as standard WiFi for moderate and good network con-

ditions (≥ 26 dB) for nearly all downclock rates (at the

lowest 20% clock rate, reception rates are 10–20% below

the baseline). With larger packets sizes, as shown in Fig-

ure 4(c), downclocked transmission continues to do well

for the majority of clock rates. Note that downclocked

rates of 73% and 82% underperform other clock rates by

7–10% when the SNR is moderate or low (≤26 dB). This

variation is due to how well a “Barker-like” sequence

approximates the original Barker sequence; a longer se-

quence (higher clock rate) does not necessarily yield bet-

ter correlation results. As with small packets, the lowest

clock rate of 20% substantially degrades reception rela-

tive to the baseline, pushing the limit of downclocking.

Overall, when SNR is poor (≤ 13 dB), downclocked

reception rates are on average 10% less than the stan-

dard WiFi implementation; otherwise, the packet recep-

tion rates are approximately the same. These results indi-

cate that downclocked transmission is feasible for a wide

range of SNR scenarios, especially transmitting ACKs at

the same downclocked rate used to receive data frames.

5.5 Further prototype experiments

We performed additional experiments with the SloMo

prototype, which we summarize for space considera-

tions. First, we combined downclocked reception and

transmission to evaluate the quality of Skype VoIP com-

munication using SloMo. We found that downclocked

VoIP using SloMo only significantly degrades call qual-

ity when network conditions are poor, as expected,

but otherwise delivers equivalent Mean Opinion Scores

(MOS) for calls. To stress SloMo’s downclocking im-

plementation, we also evaluated application throughput

at both 1 Mbps and 2 Mbps link rates using iperf

with 1,000-byte UDP packets. The 1-Mbps results track

the packet reception results in Figure 4(a) very closely.

SloMo can also take full advantage of 2-Mbps link rates

under stable network conditions: application throughputs

at 2 Mbps are double those at 1 Mbps. Finally, in addi-

tion to evaluating SloMo with the Intel WiFi card, we

also performed similar throughput experiments between

the Sora node running SloMo and a Macbook Pro lap-

top with an Apple Airport Extreme WiFi card using the

Broadcom BCM43xx firmware. Both downclocked re-

9
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ception and transmission performed as expected between

SloMo and the Macbook.

6 Trace-based energy evaluation

Our experiments with the SloMo implementation

demonstrate the feasibility and performance of down-

clocked 802.11 communication. Next we evaluate the

potential energy savings when using downclocking in the

context of contemporary smartphones and popular apps.

6.1 Methodology

Since we could not directly measure the power consump-

tion of a downclocked WiFi chipset in an actual smart-

phone, we construct a power model based on measure-

ments of a real device. We also collect MAC-layer packet

traces of a variety of real apps running on two differ-

ent smartphones. We use these packet traces to infer

the instantaneous power state of the smartphones’ WiFi

chipsets and compute the total energy cost for each phone

based on the power model.

6.1.1 WiFi power model

Similar to Mittal et al. [19], we parameterize our smart-

phone WiFi power model on the measurements of a

Nexus One reported by Manweiler and Choudhury [18].

When actively transmitting and receiving frames, a WiFi

chipset must be in a high power state. Once a network

transfer completes, the card moves to the idle state. If

there is no network activity for a while, the card transi-

tions to the light sleep mode. The light sleep state still

consumes a significant amount of power in anticipation

of efficiently waking up for incoming traffic. On the

Nexus One, the light sleep tail time is roughly 500 ms;

if no further network activity occurs, the card returns to

the deep sleep state. Table 2 summarizes the model pa-

rameters we used. Most are reproduced from [18, 19];

the downclocked values marked with an asterix are esti-

mated as follows.

WiFi power consumption falls into two parts, the ana-

log front-end Pa and the digital processing logic Pd. In

the sleep state, the digital logic part is turned off. Given

the description of the two sleep modes, we infer that

the power difference between them is due to the ana-

log front end remaining functional in light sleep mode

but turned off in deep sleep mode. Therefore, we use

the light sleep state power as an estimate for the ana-

log power consumption Pa. We then estimate the down-

clocked power consumption as proportional to the full

digital power consumption Pd/α, where α is the clock

scaling ratio. When downclocking by a factor of 4, for

4We observe the Nexus One employing a variety of beacon wakeup

periods (2.5,5,10 ms) on the power measurement trace obtained from

the authors of [18]; we use 2.5 ms in our model to be conservative.

Parameter
Full Clock /

Downclocked (1/4)

Beacon Interval (ms) 100 / 100

Beacon Wakup Period (ms)4 2.5 / 2.5

Light Sleep Tail time (ms) 500 / 500

Deep Sleep Power (mW) 10 / 10

Light Sleep Power (mW) 120 / 120

Beacon Wakeup Power (mW) 250 / 185*

Idle Power (mW) 400 / 260*

Rx Power (mW) 600 / 360*

Tx Power (mW) 700 / 460*

Table 2: WiFi Power Characteristics

instance, α at best would be 4 as well. Since it is likely

that a practical implementation would experience subop-

timal scaling, we conservatively choose α = 2 to obtain

a lower bound estimate. Note also that the analog part

Pa for Tx is greater than Rx since transmission includes

an additional power amplifier component. We use the

difference between Rx and Tx power (100 mW) from

the measurements in previous work to approximate the

power consumption of the amplifier.

6.1.2 Smartphone app traces

To comprehensively evaluate the benefits of SloMo, we

sampled a wide range of popular smartphone apps (each

has at least 5 million downloads). These nine apps in-

clude familiar Internet services like Facebook and Gmail,

as well as smartphone-specific services like Pocket

Legends (a real-time massively multiplayer game) and

TuneIn Radio (a streaming audio service). They differ

significantly in the way they interact with the network,

spanning interactive real-time traffic to content prefetch-

ing to intensive data rates.

We collect high fidelity WiFi packet traces [28] by

configuring two MacBook Pro laptops as sniffer nodes in

the vicinity of the smartphone and the AP, respectively,

and merge the two traces to minimize frame losses. To

eliminate bias due to starting and closing the app, we

only record a trace when an app is in steady state. Each

such capture session lasts for 200 seconds. Finally, to

avoid tying our conclusions to a particular smartphone

platform, we conduct our experiments on the Google

Samsung Nexus S (Nexus) and the Apple iPhone 4S

(iPhone). We collected the traces with 4–5 other WiFi

devices concurrently using the network, and we emulated

a typical SNR scenario where the AP and the wireless

station are in the same building but different rooms (i.e.,

no line-of-sight between the two). Since WiFi devices

signal the AP of their intention to sleep and wake up, we

are able to faithfully recreate the power state transitions

of the WiFi cards on the smartphones using the captured

network traces.
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Figure 5: Energy cost of various apps under 802.11 PSM and SloMo. For each app, the upper bar corresponds to the breakdown of

energy consumption under 802.11 PSM while the lower bar corresponds to SloMo. The number at the end of the bar group shows

the relative energy saving of SloMo over PSM, the higher the better. We also report the bi-directional MAC layer data rate.
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Figure 6: PDFs of the IFT for a selected set of apps on Neuxs

S. We remove the inter frame time (SIFS) between DATA and

ACK frame for better presentation. IFTs larger than a sleep

period are also removed.

6.2 SloMo energy consumption

Figures 5 and 6 combined show the energy and timing

behavior of the apps. Figure 5 compares the network

energy costs of the apps by power state when using stan-

dard 802.11 PSM (top bar) and when using downclocked

communication with SloMo (bottom bar). To empha-

size energy consumption, we assume SloMo operates at

2 Mbps and the data rates for PSM are the ones reported

by the packet capture software. The graphs show results

for running the apps on both the Nexus and iPhone. The

trends for both phones are similar, but since the iPhone

has shorter idle tail times (30–90 ms in our traces versus

220 ms for the Nexus) the benefits of SloMo are smaller

for the iPhone than the Nexus.

Figure 5 shows that a wide range of popular apps ben-

efit from SloMo, but they do so for different reasons. To

provide insight into the different app behaviors, Figure 6

shows the PDFs of the inter-frame times (IFTs) for four

distinctive apps.

Energy consumption in the first group of apps (Skype

Voice, Pocket Legends, TuneIn Radio) is dominated

by time spent in the idle listening state. Since WiFi

cards still consume substantial energy while idle (Table

2), downclocking significantly reduces idle state energy

consumption [39]. And since these apps have low data

rates, the energy saved during idle listening far exceeds

the additional energy consumed for slower data transmis-

sion and reception, resulting in energy savings of 30–

34% overall on the Nexus. Although these apps have low

data rates, their network behavior prevents them from

entering sleep mode while idle and makes them rela-

tively power-hungry: As real-time apps, they send and

receive packets at frequencies that keep the WiFi card

awake in constant active mode (CAM). Figure 6 shows

that Skype Voice exchanges packets roughly every 10

ms, and that the Pocket Legend client exchanges game

updates with its server as a burst of packets every 100

ms (the peak near 100 µs is the IFT between packets in

a burst). TuneIn Radio similarly keeps the WiFi card

awake for frequent incoming packets (curve not shown

for clarity).

The next group of apps (Facebook, Gmail, Instagram)

interact with the network much more intermittently at

human time scales. Users navigate through the app and

download bursts of content, with pauses in between (e.g.,
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Instagram had an average pause time of 1.5 seconds). For

such apps, the WiFi card wakes up intermittently when

downloading content, and transitions first to idle and then

to sleep mode during the longer pause times. Even so,

SloMo can still reduce energy consumption during the

idle tail time after intermittent network activity and, to a

minor effect, during the sleep states. Again, the benefits

of downclocking and saving energy during these states

outweigh (by 19–26%) the additional energy spent trans-

mitting and receiving at low data rates.

Angry Birds is a good example of many “offline” free

apps. Although the game itself does not require network

interaction, the embedded ads in the free version cause

the app to have similar network characteristics as Face-

book and Instagram. The app has intermittent network

activity uploading user information and downloading tai-

lored ads, but after each interaction the WiFi card enters

the idle state before transitioning to sleep. As a result,

Angry Birds spends over 95% of its network energy in

the idle tail time, which can account for 65–75% of the

entire app energy consumption [21]. (Although the data

rate of Angry Birds is just 14% of Instagram, it consumes

comparable network energy.) Once again downclocking

can substantially reduce energy consumption in the idle

state for a 25% savings overall.

Although a music streaming service, Pandora differs

from the previous apps in that it prefetches entire songs

at a time. In our trace, it downloads a song in the first 10

seconds and has very little network activity for the next

60 seconds. With this behavior, Pandora already uses the

network efficiently. Although SloMo does reduce energy

consumption by downclocking during the idle and sleep

states, it correspondingly increases it for reception and

on balance only marginally improves total consumption.

Finally, Skype Video exhibits a similar tradeoff as

Pandora. The energy saved by SloMo in downclocking

during idle time is matched by the energy expended in

using the network at low data rates. In terms of network

energy, Skype Video is a wash. As we discuss below,

however, SloMo is a poor choice for this kind of app be-

cause of the channel airtime it consumes.

6.3 Network impact

Given that SloMo trades off data rates for energy con-

sumption, it is also important to consider the overall net-

work impact due to the use of slower data rates by SloMo

in terms of channel airtime. As discussed in Section 3.3,

an app might save itself energy by downclocking but un-

duly impact other devices on the network by consuming

more airtime using lower data rates.

Figure 7 shows the channel airtime breakdown of the

apps on the Nexus S. It compares the time spent in the

states when the apps use standard 802.11 PSM (top bar)

and SloMo (bottom bar). The number to the right of
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Figure 7: Comparing the timing breakdown for various apps

under 802.11 PSM (upper bar) and SloMo on Google Nexus S

(lower bar). The number at the end of the bar group shows the

free channel airtime contraction ratio, the lower the better with

1.0 as the minimum.

each paired bar denotes the contraction in free channel

airtime for using SloMo with the app. For instance, the

free channel airtime for Skype Voice using PSM divided

by the free channel airtime using SloMo is 1.15. The

graph shows that downclocking with SloMo does cause

the apps to spend more time in actively transmitting

and/or receiving. For all apps except Skype Video, the

impact on free channel airtime is modest, with contrac-

tions ranging between 1.02–1.15. With the much higher

data rates of Skype Video, though, using SloMo causes

the app to spend most of its time receiving and transmit-

ting data, greatly reducing the free channel airtime com-

pared to PSM. The channel airtime results for the iPhone

4S are very similar (the largest contraction ratio is 1.16

for apps other than Skype Video).

6.4 Alternative approaches

So far we have compared SloMo with current WiFi

implementations using PSM. As the traces revealed,

though, a critical source of network energy consumption

is the tail time of the idle state. Of course, other solu-

tions have been proposed to address this issue as well.

As a final evaluation, we compare SloMo with two other

approaches, U-APSD [38] and E-MiLi [39], from indus-

try standards and the research community, respectively.

U-APSD. When traffic patterns are periodic, pre-

dictable, and symmetric, such as real-time VoIP traf-

fic, the Unscheduled Automatic Power Save Delivery

(U-APSD) optimization (defined by the 802.11e stan-

dard [38]) could allow devices to enter the sleep state

immediately after network activity and avoid the stan-

12
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Figure 8: Comparing energy consumption among PSM, E-

MiLi and SloMo on the Nexus trace set.

dard tail time in the idle state. Based upon the U-APSD

specification, we emulated its use5 for the Skype Voice

and Video apps using the Nexus traces and estimate im-

pressive energy savings of 56% and 44%, respectively,

compared with savings of 30.5% and 3.2% using SloMo.

Although clearly better in the ideal case of Skype, as

noted by others [24] U-APSD is not a general optimiza-

tion because its effectiveness depends greatly on the de-

gree of symmetry in the traffic. For real-time apps where

the traffic pattern is asymmetric, such as Pocket Legends

and TuneIn Radio in our examples, U-APSD would not

apply. Further, U-APSD is not suitable for intermittent

traffic, such as with the Facebook and Gmail apps, which

could lead to unnecessary energy waste due to frequent

polling of the AP [27].

E-MiLi. E-MiLi redesigns the addressing mechanism

of WiFi devices, enabling receivers to determine whether

traffic is addressed to them without leaving a low-power

listening state [39]. We emulate the use of E-MiLi on

our Nexus app traces based upon the WiFi power model

and measurements reported by the E-MiLi authors.6 To

facilitate the comparison, we apply the E-MiLi power

model to SloMo in contrast to our previous experiments.7

Figure 8 compares the network energy consumption of

PSM, SloMo and E-MiLi on the Nexus apps traces (re-

sults were similar for the iPhone traces). Across all apps,

downclocking with SloMo saves on average 37.5% en-

ergy relative to the default PSM, about 10% more than

the 27.7% savings achieved with E-MiLi. For the ini-

tial three real-time apps, both SloMo and E-Mili obtain

comparable savings. For the others, SloMo performs sig-

nificantly better than E-Mili, while E-MiLi performs sig-

nificantly better on Skype Video.

5We attempted to purchase U-APSD compliant APs and WiFi cards

to experiment with a real implementation, but could not find a hard-

ware, OS, and driver combination that enabled its use in practice.
6We measure a WiFi card (Atheros AR9380) from the same manu-

facturer as the published E-MiLi results to obtain details regarding the

power consumption of the sleep state not reported in the E-MiLi paper.

The card wakes up at every beacon interval and stays awake for 20 ms

before going back to sleep.
7As a result, the SloMo energy savings are 10–20% larger relative

to PSM compared to the results presented in Figure 5(a).

7 Conclusion

Downclocked 802.11 reception and transmission using

compressive sensing is both beneficial and practical.

Analysis of the network traffic of a wide range of pop-

ular smartphone apps shows that downclocking has the

potential to reduce WiFi power consumption on contem-

porary smartphones by 30%. And our SloMo prototype

shows the practicality of implementing downclocking on

WiFi clients that communicate seamlessly with unmod-

ified commercial WiFi hardware. While SloMo demon-

strates that compressive-sensing techniques are effective

for the DSSS encoding used by 802.11b, consumer de-

vices are increasingly employing the higher-rate encod-

ings of 802.11a/g/n. Since the OFDM-based modula-

tion scheme used by these protocols does not share the

same inherent spectral sparsity, a tantalizing challenge

going forward is to what extent alternative techniques

can achieve the same goals for these modulations.
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