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Abstract
This paper presents PinPoint, a technique for localizing
rogue interfering radios that adhere to standard proto-
cols in the inhospitable ISM band without any cooper-
ation from the interfering radio. PinPoint is designed
to be incrementally deployed on top of existing 802.11
WLAN infrastructure, and used by network administra-
tors to identify and troubleshoot sources of interference
which may be disrupting the network. PinPoint’s key con-
tribution is a novel algorithm that accurately computes
the line of sight angle of arrival (AoA) and cyclic sig-
nal strength indicator (CSSI) of the target interfering sig-
nal at all APs, even when the line of sight (LoS) com-
ponent is buried by stronger multipath components, inter-
ference and noise. PinPoint leverages this algorithm to
design an optimization technique, which can localize in-
terfering radios and simultaneously identify the type of in-
terference. Unlike several localization techniques which
require extensive pre-deployment calibration (e.g. RF-
Fingerprinting), PinPoint requires very little calibration
by the network administrator, and uses a novel algorithm
to self-initialize its bearings, even if the locations of some
AP are initially unknown and are oriented randomly. We
implement PinPoint on WARP software radios and de-
ploy in an indoor testbed spanning an entire floor of our
department. We compare PinPoint with the best known
prior RSSI [8, 11] and MUSIC-AoA based approaches
and show that PinPoint achieves a median localization
error of 0.97 meters, which is around three times lower
compared to the RSSI [8, 11] and MUSIC-AoA based ap-
proaches.

1 Introduction

Interference is the number one cause for poor wireless
performance. All of us have had anecdotal experiences,
where, even though the AP is quite close, we experience
poor performance and more often that not, interference is
to blame. Yet, in spite of these pervasive problems, we of-
ten know very little about where this interference is com-
ing from. We do not know the nature of the interfering ra-
dio (e.g. whether it is another WiFi network, Bluetooth or
Zigbee), neither do we know where it is located. Without
such localization, troubleshooting performance problems
becomes hard.

One might imagine that we could leverage the extensive
prior work [4, 8, 11, 15, 20, 21, 22, 23, 24, 25] that has

tackled indoor localization. However, none of it is appli-
cable to localizing interfering radios. First, most of them
are RSSI based and work typically with WiFi, i.e. they
measure the RSSI of the WiFi signal from multiple van-
tage points, and then leverage propagation models and tri-
angulation techniques to localize. However, when local-
izing interference, the source could often be a non-WiFi
radio. Further, its unlikely we can get a good estimate of
the interfering signals RSSI because there could be mul-
tiple signals present from concurrent transmitting radios.
Another class of RSSI techniques requires extensive RF
fingerprinting of the indoor environment. However these
techniques do not work under interference either since
the RSSI fingerprints will be distorted when there are
multiple concurrent transmissions. Further, these tech-
niques are expensive to deploy since they require con-
stant and recurring site fingerprinting. Another class of
techniques [16, 17, 18, 19, 24] use non-RSSI based tech-
niques such as range-finding and time of arrival, however
all of them require modifications to and cooperation from
the client radio (e.g in the form of special beaconing hard-
ware), which is untenable when we are trying to localize
an interferer not under our control.

In this paper we present PinPoint, a system that com-
putes the nature as well as the location of the interfering
radio(s) with sub-meter accuracy. PinPoint is robust, it
can localize each interfering radio even when multiple in-
terfering radios may be transmitting concurrently. Fur-
thermore, PinPoint’s accuracy is at least two times better
as compared to RSSI based techniques even when no in-
terference is present. Hence even though PinPoint’s de-
sign is motivated by the scenario of localizing interfer-
ence, it provides a general indoor localization technique
that works across a wide variety of scenarios. The system
consists of an indoor AP infrastructure with PinPoint ca-
pability, of which a small subset ( 3−5 per floor of a large
department building) are anchor APs that already know
their absolute indoor location. The PinPoint APs work
together to detect and localize interfering radios. Pin-
Point assumes no co-operation from the interfering radio,
works with legacy client radios, and it does not assume
any knowledge of the protocol, power or the spectrum at
which interfering radios are transmitting. Further, Pin-
Point does not require any expensive calibration or sur-
veying, either at installation or in subsequent operation.
We believe this combination of accuracy, robustness and
generality is a first.

PinPoint’s key contribution is a novel algorithm that ac-
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Figure 1: PinPoint Architecture: PinPoint is deployed incrementally on top of existing WLAN infrastructure. PinPoint first
leverages DOF [2] to identify and separate out multiple sources of interference. PinPoint then uses this information to build a novel
algorithm which detects the LOS AoA, even when it is buried by stronger multipath reflections. Finally, PinPoint leverages the
LOS AoA at individual APs by aggregating all of the measurements at a central server and solving an optimization algorithm which
triangulates the source of interference.

curately computes the LoS AoA and the signal strength
(CSSI) of only the target interfering radio signal at all
APs where the LoS component is at least barely percep-
tible (i.e. its signal strength is at least −10dB relative to
the strongest path). Once the LoS AoA and the corre-
sponding CSSI is estimated at a few of the APs, PinPoint
runs an optimization algorithm based on triangulation to
compute the exact location. Computing the LoS AoA and
CSSI in practice, however, is challenging because of two
inherent environmental factors. First, since we have no
control over the interfering radios, the APs could be re-
ceiving signals that consist of contributions from multi-
ple interfering radios, potentially using different physical
layer protocols. Second, radio signals bounce off walls
and other objects, and create numerous multi-path com-
ponents that arrive at the AP at a variety of angles. Often,
the strongest component of the received signal will be a
reflection and the LoS component might be weak due to
obstructions. Hence, PinPoint’s algorithm has to disen-
tangle the LoS AoA and CSSI in spite of these factors
that make the signal look like it is coming at the AP from
a variety of sources and a variety of angles.

Our key insight is that both multipath and angles of
arrival manifest themselves as relative delays between
copies of the same signal arriving at an AP from the tar-
get radio. For example, since the LoS component will
have the shortest path to the AP, it will arrive before any
reflected component. Similarly, a signal arriving at a par-
ticular AoA at an AP, will arrive at slightly different times
at the different antennas in a multiple antenna AP be-
cause the signal has to travel slightly different distances.
We design novel algorithms based on cyclostationary sig-
nal analysis [2, 1] that can exploit these relative delays.
Specifically we isolate the LoS component by finding the
relative delay between the first time we see a signal and

when its reflection arrives. Next, we find the relative de-
lays at which the isolated LoS component arrives at differ-
ent antennas at the AP, and from that infer the AoA of the
LoS component. The cyclostationary signal analysis also
allows us to accurately infer the signal strength of the tar-
get interfering radio without much contribution from the
noise and signal sources that do not bear the same cyclic
signature as the interfering radio, we will refer to this as
CSSI in the rest of the paper.

PinPoint’s main conceptual contributions are novel al-
gorithms to accurately, efficiently and robustly extract
these relative delays and LoS AoAs and CSSI measure-
ments from noisy interfered signals. As far as we are
aware, no prior localization technique has been able to
isolate and compute accurate LoS estimates in the pres-
ence of severe multipath and interference. We imple-
ment PinPoint using standard WARP software radios [6]
equipped with 4 antennas as the RF hardware. We evalu-
ate PinPoint using testbed experiments in an indoor en-
vironment with typical multipath and interference and
compare it against the state of the art RSSI based ap-
proach [8, 11] and MUSIC-AoA algorithm. We find that:

• PinPoint is significantly more accurate than both the
RSSI and MUSIC-AoA approaches. In our testbed
experiments PinPoint’s median error is 0.97 me-
ters, while the RSSI and MUSIC-AoA approaches
achieve median errors of 3.35 meters and 2.94 me-
ters respectively.

• PinPoint is even more accurate when there is no sec-
ondary interference and a single target radio is be-
ing localized, it achieves a median error of 0.83 me-
ters, while the RSSI and MUSIC-AoA approaches
achieve 2.32 meters and 2.9 meters respectively.
Thus even though PinPoint’s original design goal
was to localize interference, it provides a general and
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accurate technique for all localization problems.
• PinPoint works accurately even if the AP deploy-

ment is sparse. In our testbed, by default we used five
APs to cover an entire floor (this was the number rec-
ommended by our network manager to provide WiFi
coverage for the floor). However, we found that even
if we used only three APs, PinPoint still achieves a
median error of 1.76 meters, thus providing good ac-
curacy even in sparse deployments.

Finally, while PinPoint has significant advantages over
RSSI based approaches, it does require that the APs per-
form extra DSP computation to calculate LoS AoAs and
CSSIs. While this does not require any extra RF hardware
(such as filters, synchronization circuitry etc), it does re-
quire extra compute horsepower at the APs. RSSI based
approaches do not, they can directly use the RSSI estimate
from the AP. We believe this cost is modest, in fact, Cisco
has started adding similar interference detection (but not
localization) capability to its enterprise APs, and given the
unique features PinPoint provides, the extra cost is quite
reasonable.

2 PinPoint: Overview

Fig. 1 shows the overall PinPoint architecture. PinPoint
assumes that it is deployed on multiple antenna APs (4
antennas are sufficient in our current prototype). Further,
we assume that a small number of the APs (3-5) act as an-
chor nodes and know their absolute location. Both these
assumptions are easily satisfied, almost all new AP de-
ployments use MIMO APs with at least four antennas [7],
and finding the location at the time of deployment for a
few APs (e.g. the ones near a window where GPS works)
is relatively straightforward.

To localize interfering radios, PinPoint has to deal with
two major challenges

• Most likely, we are not going to have a priori knowl-
edge about the interfering radios. We cannot assume
we know their transmit power, the frequencies or
even the protocol they are using (e.g. WiFi, Blue-
tooth, Zigbee etc). Further, we cannot ask these ra-
dios to send special beacon packets for localization
when we need them to. Consequently existing RSSI
based techniques are difficult to apply, under inter-
ference even measuring the RSSI of an individual
radio’s signal is hard.

• In indoor environments, where PinPoint is likely to
be employed, a localization system has to deal with
multipath effects and the lack of strong LoS paths
between the radios and the APs. Specifically, an in-
terfering radio may not have a visual LoS path to any
AP (e.g. the AP is outside your office). Further, in
the ISM band radio signals will bounce off walls and

other objects and arrive at the AP from multiple di-
rections.

PinPoint deals with both these challenges and is more
accurate than any existing localization system under these
scenarios. At a high level, PinPoint’s localization algo-
rithm proceeds with the following steps:

1. Identify the source of interference: PinPoint takes
the received signal and first identifies the nature of
the interfering radio (e.g. whether it is WiFi, Blue-
tooth or Zigbee). To do so, PinPoint builds upon
prior work (DOF) in interference identification [2]
to discriminate between the signals of different in-
terference types.

2. Compute the Line of Sight Angle of Arrival (LoS
AoA) For Each Interfering Source: PinPoint next
computes all the AoAs at which the interfering ra-
dio’s signal is arriving at an AP. PinPoint uses a novel
technique to compute the AoA of only the LoS com-
ponent of a radio signal, even when the LoS path is
obstructed. PinPoint does not compute AoA corre-
sponding to the non-LoS paths, which are not useful
for localization, thus reducing computation power
compared to methods like SAGE [5].

3. Compute the Cyclic Signal Strength Indicator
(CSSI) for each interfering Source: PinPoint also
computes the signal strength of only the interfering
sources that have been identified in step 1.

4. Localize the interfering radio: PinPoint then col-
lects the LoS AoA and CSSI measurements from
multiple APs in the deployment, and runs a triangu-
lation based optimization algorithm to compute the
location of the interfering radio. Note that this re-
quires that we know the location of the APs them-
selves in advance, however requiring that the opera-
tor measures the absolute location of all the APs dur-
ing deployment is cumbersome. Instead, PinPoint
leverages the above techniques to localize the APs
themselves at the time of deployment. PinPoint only
requires that we know the location of a few (typi-
cally 3-5 suffice) anchor APs at the time of deploy-
ment. Such computed AP locations are then used in
the localization of interfering radios.

For step 1, PinPoint builds on prior work (DOF) in in-
terference identification based on cyclostationary signal
analysis [2], while this paper designs novel algorithms for
the other three steps. In the next section, we describe how
the first three steps above are performed, followed by a
discussion of the localization algorithms in Sections 4 and
5.
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Figure 2: Obstructed LOS and Multipath: The LOS path,
even when it is obstructed, is the first to impinge on the AP. But
when there are reflected paths which are stronger (NLOS sce-
nario), they can mask the LOS component reflections. PinPoint
applies novel techniques to detect this LOS component, even
when it is >10dB weaker than the reflected paths.

3 Design: Computing LoS AoA and CSSI

PinPoint’s design is based on the insight that multipath ef-
fects and different AoAs manifest themselves in relative
delays at which the signal arrives at the AP. For example,
a multipath environment shown in Fig. 2 results in signal
reflections, and thus the AP receives multiple copies of the
signal at different delays depending on the relative delay
between the different paths. However, the LoS component
(even if it passes through an obstruction) will have the
shortest path to the AP and hence will arrive first, assum-
ing the obstruction does not completely block the signal.
It may be weak however, relative to some unobstructed
multipath reflection. Thus there will be a relative delay
between the LoS component (which might be relatively
quite weak) and the first multipath reflection component.

Similarly, different angles of arrival manifest them-
selves as relative delays at which the same signal arrives
at different antennas. Fig. 3 demonstrates the idea for a
linear multiple antenna array. Since the antenna #1 is a bit
further away than the antenna #2 for the given AoA, the
signal hitting the antenna #2 will take a little bit longer to
hit the antenna #1 and so on. Thus if one knew the relative
delay that a signal component took between impinging on
two consecutive antennas, we can infer the AoA of that
signal component.

Based on the above geometrical insights, we invent a
novel algorithm for identifying the angle of arrival of the
line of sight component of a signal. The algorithm pro-
ceeds in two steps

• First, it isolates the component of the signal that cor-
responds to the LoS path by leveraging the insight
that this will be very likely the first component to
arrive at the AP.

• Next, it repeats the above step at each antenna at
the AP, and then correlates the isolated LoS compo-
nents across all the antennas with each other to infer
their relative delay, and thus the AoA corresponding
to that component. By construction, this will corre-
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Figure 3: Uniform Linear Array: The delays/phase shifts ex-
perienced at each antenna is proportional to the AoA.

spond to the AoA of the LoS component.

Our first goal therefore is to isolate the LoS compo-
nent of the signal by exploiting the insight that it will be
the first to arrive at the AP. However, there are several
challenges to accomplish this step. First, the AP does not
know the interfering signal, as it does not know what data
is encoded, what rate it is sent at, what modulation is used
and so on. Hence relying on such properties to identify the
LoS component is not possible. Second, the LoS compo-
nent may be too weak due to obstructions, or interfered
by other signals.

To tackle this challenge, PinPoint exploits signatures
that result from hidden repeating patterns in the signal ob-
tained by cyclostationary signal analysis. The signatures
are robust as they can be detected even when the signal is
very weak [1], or even when it is interfered with [1]. As
discussed before, PinPoint builds on DOF [2], an interfer-
ence identification system based on cyclostationary signal
analysis.

PinPoint then designs novel algorithms that leverage
these cyclostationary signatures to determine the LoS AoA
and CSSI, even in severely obstructed environments dom-
inated by multipath components or under heavy interfer-
ence. PinPoint exploits the knowledge of the signal types
to correlate known signatures with the received signals.
Note that this does not imply that we know the interfering
signal’s contents, only that we know how the underlying
structure of the signal has patterns independent of the in-
formation that the signal is carrying.

In the following section, we’ll describe the above pro-
cess in detail. We will begin by providing a quick primer
on how the hidden repeating patterns within wireless sig-
nals can be leveraged to form unique signatures for every
signal type [2]. We will then explore how these signatures
can be exploited to determine the LOS AoA and CSSI.

3.1 Multipath Signal Model
We start with a more formal description of how both mul-
tipath and different angles of arrival manifest themselves
as relative delays between copies of the same signal arriv-
ing at the AP. This description is well known, but serves
to set up the context in which PinPoint operates.
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The scattering caused by the indoor environment
causes each signal to traverse multiple paths to our APs.
The multipath arrivals are shifted and scaled copies of the
same signal, occurring at varying angles and delays. We
can explicitly model the total signal impinging on a single
antenna at our AP as

y1(t) =
L

∑
k=1

sk(t)+n1(t) (1)

where L is the number of multipath components, n1(t)
represents additive noise at the antenna, and

sk(t) = αks(t −dk)e2πi fc(t−dk) (2)

represents each multipath component, where s(t) is the
transmitted signal, αk ∈ R is the attenuation for each ar-
riving path, dk is the time delay of each path, and fc is the
carrier frequency used in the transmission.

Assuming each AP has multiple antenna, the delays in
propagation paths between each of the antennas enables
us to measure the varying angles of each multipath com-
ponent. The delay is a function of the antenna arrange-
ment and for exposition simplicity, we consider a Uniform
Linear Array (ULA), which is an array that has all of its
antennas on a line with equal half-wavelength ( λ

2 ) spac-
ing between the antennas. In the ULA configuration, the
signal arriving at the ith antenna has a difference in prop-
agation path that results in a time delay of (i− 1)λ sinθ

2c ,
where c is the speed of propagation through the medium.
The output of the antenna array in response to the L mul-
tipath signals can be expressed as,

y1(t) = ∑L
k=1 sk(t)+n1(t)

y2(t) = ∑L
k=1 sk(t)e j2π fc

λ sinθk
2c +n2(t)

...

yM(t) = ∑L
k=1 sk(t)e j2π fc(M−1) λ sinθk

2c +nM(t)

This can be written is vector form as,

y(t) =
L

∑
k=1

sk(t)a(θk)+n(t), (3)

where y(t) ∈ CM is the received vector, n(t) ∈ CM is the
noise vector, and a(θ) is the steering vector of the array
given by

a(θ) =
[
e0 e j2π fc

λ sinθk
2c . . . e j2π fc(M−1) λ sinθk

2c

]T
.

3.2 Leveraging Knowledge of Signal Type
PinPoint builds on DOF [2], an interference identifica-
tion system that leverages the hidden and repeating pat-
terns that are unique and necessary for operation and are

Figure 4: Binning in Time/AoA: The CCCF embeds both the
delay and AoA of every arriving propagation path - as shown
above the residual function (eq. 7) peaks at the angles and rela-
tive delays of each path. By searching for the first peak with the
minimum delay, we can detect the LOS component’s AoA.

present in all wireless protocols. DOF builds on prior
work in cyclostationary signal analysis [1] and leverages
the following idea from that work: if a signal has a re-
peating pattern, then if we correlate the received signal
against itself delayed by a fixed amount, the correlation
will peak when the delay is equal to the period at which
the pattern repeats. Specifically, let’s denote the raw sig-
nal samples we are receiving by x[n]. Consider the fol-
lowing function

Rα
x (τ) =

∞

∑
n=−∞

x(n)x∗(n− τ)e− j2παn (4)

For an appropriate value of τ corresponding to the time
period between the repeating patterns, the above value
will be maximized, since the repeating patterns in x[n] will
be aligned. Further, these peak values occur only at peri-
odic intervals in n. Hence the second exponential term
e− j2παn is in effect computing the frequency α at which
this hidden pattern repeats. We define such a frequency as
a pattern frequency, and (4) is known as the Cyclic Auto-
correlation Function (CAF) [1] at a particular pattern fre-
quency α and delay τ . The CAF will exhibit a high value
only for delays and pattern frequencies that correspond to
repeating patterns in the signal.

Because each wireless protocol utilizes a different set
of parameters (encoding, modulation, etc.), each proto-
col exhibits a unique set of repeating patterns and there-
fore have unique signature CAFs. Hence, DOF uses ma-
chine learning heuristics to uniquely identify different sig-
nal types. We omit the details of how DOF accomplishes
this for brevity and refer the reader to [2] for a more de-
tailed description. For our purposes it suffices to know
that PinPoint uses DOF to identify the signal type.

5
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Figure 5: Data clustering/mining for LOS AoA when the received power differences between the LOS path and the strongest
multipath is (A) -10dB (B) 0dB (C) 10dB: The direct LOS AoA is arriving at 35◦, while the strongest multipath component is
arriving at −10◦. You can see that even when the direct LOS component is more than 10dB weaker than the strongest multipath
component in (A), PinPoint is still able to detect the LOS AoA. When the LOS AoA is stronger, it is of course easier to detect and
PinPoint does well in these scenarios as expected.

3.3 Line of Sight AoA Identification
The challenge is to identify the LOS component (s1(t))
and its corresponding AoA (θ1) even when it is signifi-
cantly weaker than the multipath components. To do this,
PinPoint leverages what is already known - specifically
the type of interfering source and thus the pattern frequen-
cies at which the signatures repeat, enabling us to create
a test signature. PinPoint has a set of test signatures cor-
responding to the expected set of interfering radios (e.g.
one signature for 802.11, another for ZigBee, etc.) which
exhibit features at the corresponding pattern frequencies
for each protocol. Note that these signatures do not as-
sume that the data in the target interfering signal is known,
they are merely creating a dummy signal which has the
same repeating patterns as the identified signal type. Fur-
ther, there is a different test signature for each pattern fre-
quency. In other words since WiFi exhibits hidden re-
peating patterns at several pattern frequencies, there is a
separate test signature for each pattern frequency in WiFi.

Once the type has been identified by DOF, it is cross
correlated against the corresponding signature for a par-
ticular pattern frequency. Specifically, we can calculate
the cross correlation between our target signal yi(t) and
our test signature sT (t) using the following function [10]:

Rα
yisT

(τ) =
∞

∑
t=−∞

yi(t)s∗T (t − τ)e−i2παt (5)

Unlike the CAF, the Cyclic Cross Correlation Func-
tion (CCCF) peaks at values of τ corresponding to the
relative delays between the multipath components. The
reason is because the multipath signal is a linear combi-
nation of copies of the same signal shifted in time due
to reflections. When the test signature is aligned with
one of the multipath components, in effect the hidden re-
peating patterns in the signature and the received signal
align and the CCCF peaks. Thus the first peak in the

CCCF will be for the signal component that is received
first, i.e. likely the LoS component, the next peak is for
the first reflected component and so on. The relative dis-
tance between the peaks thus corresponds to the relative
delays between multipath components. The benefit of us-
ing the CCCF is that it provides robust detectable peaks
even when the received signal is very weak or interfered
with, because the hidden repeating patterns allow us to
integrate and eliminate the uncorrelated noise and inter-
ference to produce a robust peak.

When we apply the CCCF to the all signals of the an-
tenna array, we obtain a function which is dependent on
the pattern characteristics (τ), the delay between the mul-
tipath components (dk), and the angles at which each path
impinges (θk)

Rα
yisT

(τ) =
L

∑
k=1

βkRα
sT sT

(τ −dk)a(θk), (6)

where βk = αke−πiαdk e−2πi fcdk .

We leverage this fact to form a residual function which
is a function of both the delay and the angle of arrival:

resα
k (τ,θ) =

M

∑
m=1

∣∣∣∣∣
Rα

ymsT
(τ)

Rα
yksT

(τ)
− am(θ)

ak(θ)

∣∣∣∣∣
2

, k = {1, ...,M}.
(7)

Observe that in (6), the delays (τ) at which the func-
tion typically peaks at are shifted by the physical propaga-
tion delay experienced by each multipath component dk.
Thus when τ = dk, the first term in the residual function,
Rα

ymsT
(τ)

Rα
yksT

(τ) , will become the ratio of the steering vectors, as

βk and Rα
sT sT

(τ) are canceled because the patterns in the
signal are identical to the ones in the signature. The sec-
ond term then cancels with the first when the value of θ
matches the value of each multipath’s AoA.

6
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We can leverage this insight to form an optimization
problem that computes the LoS AoA. Specifically, if we
solve

θ̂1 = argmax
{(τ,θ):τmin≤τ≤τmax,θmin≤θ≤θmax}

1

∑α ∑M
k=1 resα

k (τ,θ)
(8)

where [τmin,τmax] and [θmin,θmax] are the range of interest
for the unknown variables τ and θ respectively. The out-
put of the above optimization is an estimate of the AoA of
the LoS component, with the relative delay between the
LoS component and the first multipath component. Fig. 4
shows the result of this optimization.

3.3.1 Mining Multiple Measurements Across Time

The above optimization provides a noisy estimate of LoS
AoA and its relative delay. In order to minimize the uncer-
tainty, PinPoint performs the optimization (8) separately
over multiple packets received from the same source. By
running PinPoint over time for different sequences of
data, we can build sets of relative delay and AOA pairs.
We found empirically that these sets can be clustered to
find an accurate estimate of the LoS AoA, if it exists and
is perceptible (i.e. if it has a signal strength of at least -10
dB). However, if the LoS component is extremely weak
(less than -10dB signal strength) perhaps because of a
strong obstruction, we found that the computed relative
delays and AoAs do not cluster and are all over the place.
PinPoint leverages this insight to eliminate signals where
a perceptible LoS component does not exist.

Algorithmically, we use a clustering technique based
on Gaussian mixture models. Results of this clustering
for various scenarios are shown in Fig. 5. After clus-
tering, PinPoint checks if there are multiple clusters, and
then calculates the mean and standard deviation for each
cluster. Prioritizing the minimization of false positives,
we discarded clusters which did not possess a minimum
number of data points and clusters with AoA standard de-
viation above a certain threshold.These steps are not nec-
essary for the operation of PinPoint but helps to fine-tune
the AoA estimates. Of the remaining clusters, the mean
AoA corresponding to the cluster which has the smallest
relative delay is declared to be θ1, the AoA of the direct
LOS component.

3.4 Computing the Cyclic Signal Strength
Indicator (CSSI)

PinPoint leverages cyclostationary analysis to compute
the signal strength of only the target interfering radios.
This is different from traditional RSSI, those techniques
will not work in our context because in the presence of
interference those techniques cannot measure the RSSI of

the different constituent signals making up the interfer-
ence. PinPoint on the other hand can leverage its ability
to isolate the target interfering signal using cyclostation-
ary signal analysis (the CAF and the CCCF functions),
and then use the correlation values themselves as a proxy
for the relative strength of that signal arriving at differ-
ent APs. Note that the stronger the target signal , the
higher the correlation value. Hence instead of trying to
measure the agggregate signal strength, we can simply
use the correlation values at different APs to represent the
strength contributed by only the target interfering radio.
We call this correlation value cyclic signal strength indi-
cator (CSSI).

Plugging the relative delay of the LOS component τ
into eq. (5) and taking the magnitude of Rα

yisT
(τ) gives us

a value that is a proxy of the signal strength of the target
radio, which PinPoint can use to further constrain its lo-
calization search as we’ll show in the next section. Note
that for localization we do not need to know the actual
RSSI as long as the value we use as a proxy exhibits the
same attenuation pattern as RSSI. PinPoint’s localization
only needs to compare the relative RSSI across multiple
APs, and for that the proxy computed above suffices.

4 Initializing PinPoint

PinPoint collects the LoS AoA and RSSI measurements
from multiple APs in the enterprise deployment, and runs
a triangulation based optimization algorithm to compute
the location of the interfering radio.

The challenge is that the above process implicitly as-
sumes that we know the location of the APs themselves.
However, enterprise WiFi networks often consist of tens
to potentially several hundreds of APs. Providing the pre-
cise location of each AP is cumbersome since GPS signals
are unreliable indoors and orientation is similarly tricky
since most APs are not equipped with compasses. At best,
the position and orientation information that is gathered
for the central controller will certainly not be optimized
and most likely will be ill-defined. Given that each AP
could potentially have a varying frame of reference, and
an imprecise knowledge of its own location - the ability
to measure LOS AoA components is useless in localizing
an interfering radio.

To overcome the calibration problems associated with
a large scale deployment of APs, PinPoint leverages the
LOS AoA measurement capability to first localize and ori-
ent the APs themselves. By doing so, PinPoint minimizes
the burden placed on the network administrator as they
no longer have to ensure that all of the APs are perfectly
positioned and oriented. We do assume however that we
know the location and orientation of a small number (typ-
ically 3-5 per floor) of APs (referred to as anchor APs),
either via GPS or manual calibration by the network ad-

7
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ministrator. Note that this requirement is not unusual and
is relatively easy to satisfy, for example, it is possible to
localize a few APs that are near a window with GPS .
Further, this is a one-time requirement at the time of in-
stallation, and does not require repeated surveying unlike
some prior techniques [12, 13, 14].

To demonstrate how a typical enterprise network would
be calibrated, we consider a deployment which consists of
n APs. We assume that l of the APs (the anchor APs) al-
ready know their locations and orientations. We define
N (i) as the set of neighboring APs within the detection
range of the ith AP. Each AP is equipped with ULA and
has ability to measure AoA αi j relative to its own axis
from neighboring APs in N (i). The orientation hi of
each AP is the angle made by its axis to the x-axis. If
the estimate of the orientation and location [hi xi yi] of
the ith AP and the location of the jth AP [x j y j], where
j ∈ N (i), are known, estimate of the AoA ᾱi j, can be
computed as ᾱi j = Ψ([hi (x j −xi) (y j −yi)]

T ). Where the
function Ψ : R3 → R computes angle formed by the vec-
tor [x y]T with the axis of an ULA located at the origin
that has orientation h.

We form penalty Φ(αi j − ᾱi j) for each AP pairs i and
j that are in communication range of each other. Here
Φ : R → R is a penalty function of the form Φ(u) =
|u|p,where p ≥ 1 [3, §6.1.2], for the residue between the
measured angle αi j and the estimated angle ᾱi j .

The ith AP can also compute cyclic RSSI pi j for signal
arriving from the neighboring jth AP, where j ∈ N (i).
Given distance di j between the ith and the jth AP, the
cyclic RSSI can be computed using standard path loss
model as p̄i j = βi − 10γi logdi j. Where βi is a constant
that is dependent on the environment of the ith AP and
γi is the path loss exponent. Since exact distance di j is
not known a priori, we form penalty Φ(pi j − p̄i j) for each
AP pairs i and j that are in communication range of each
other.

To find the location of APs, we solve the following op-
timization problem,

minimize ∑
i
(∑

j
Φ(αi j − ᾱi j)+λ ∑

j
Φ(pi j − p̄i j))

subject to [hn+k xn+k yn+k] = [ck ak bk],k = {1, . . . , l}
Ψ([hi (x j − xi) (y j − yi)]

T ) = ᾱi j,
p̄i j = βi −10γi logdi j,
i = {1, . . . ,n+ l}, j ∈ N (i)

(9)
where the variables are x,y,h,β ,γ with dimension Rn+l .
The problem data a,b and c with dimension Rl are the
known x-location, y-location, and the orientation of the
anchor APs. And the data αi j and pi j are the AoA
and cyclic RSSI measurements by each APs. The above
optimization problem is non-convex therefore we solve
it approximately using Sequential Convex Programming
(SCP) [26]. At each iteration of SCP we will fit the non-

convex function Ψ and p̄i j to some convex function within
a trust region and then solve the resulting convex opti-
mization problem to obtain a locally optimal solution. At
the end of each iteration step, trust region will be updated
and the convergence of the algorithm will be evaluated.

5 Interference Localization

Once the APs have been calibrated, the respective lo-
cations and orientations of every AP in the network is
known. Localizing an interfering radio is now relatively
straightforward. PinPoint leverages its knowledge of the
signal type, direct line of sight AoA and cyclc RSSI to
localize sources of interference.

In order to localize an interfering radio, PinPoint re-
lies on the local measurements from APs near the source
of interference. These APs measure the LOS AoA and
cyclic RSSI and send the measurement results back to a
central server. The server then aggregates the data, av-
erages it over time to weed out noisy measurements, and
triangulates the source of interference with the following
optimization problem to find the location of the target ra-
dio.

minimize ∑
j

Φ(α jm − ᾱ jm)+λ ∑
j

Φ(p jm − p̄ jm

subject to [h j x j y j] = [c j a j b j],
Ψ([h j (xm − x j) (ym − y j)]

T ) = ᾱ jm,
p̄ jm = β j −10γ j logd jm, j ∈ N (m)

(10)
where the interference radio whose location [xm ym]

T has
to be estimated is seen by Nm = |N (m)| APs. x,y with
dimension RNm+1 and h ∈ RNm are the optimization vari-
ables. The problem data c,a,b with dimension RNm are
the estimated orientations and locations of the APs that
detect the interference radio. Although this problem for-
mulation is similar to the problem (9), the size of opti-
mization variable in this case is much smaller than the size
of the optimization variable in problem (9). As a result,
interfering radio sources can be localized within seconds,
enabling network operators to quickly diagnose and trou-
bleshoot sources of interference within their networks.

6 Experimental Evaluation

In this section, we evaluate the localization accuracy of
PinPoint in an indoor testbed and determine how different
factors such as calibration offsets, signal SNRs, and over-
lapping sources of interference effect performance. Be-
low we first summarize our findings:

• PinPoint is robust and accurate, it’s median error
is 0.97m, around three times lower than the 3.35m
and 2.94m median error for RSSI and MUSIC-AoA

8
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Figure 6: Testbed Setup for PinPoint Experiments: 4 of the
APs were situated in locations where GPS signals were obtain-
able, and 2 among them are randomly selected as anchor nodes
were selected for each experiment. Red circles indicate potential
locations where interfering WiFi, Bluetooth and Zigbee radios
are placed.

based approaches in our testbed across all scenarios
(with and without interference). Further, PinPoint
is significantly better in the tail, its 80th percentile
error is approximately 1.75m whereas for the RSSI
and MUSIC-AoA based approaches it can be as high
as 7m. Note that PinPoint can localize even though
it has no information about the target radio, such as
protocol, transmit power, spectrum used, data for-
mats etc. Several prior RSSI based approaches re-
quire such a priori information to work accurately.

• PinPoint is even more accurate when there is no
interference (median error of 0.83m), whereas the
RSSI and MUSIC-AoA based approaches achieve
2.32m and 3.06 respectively. Thus even though Pin-
Point is designed to localize interference, it provides
a general and accurate localization technique for all
scenarios. In scenarios where there is interference,
PinPoint’s median error is 1.05m, while the RSSI ap-
proach worsens to a median error of more than 4m
because it is unable to accurately measure RSSI un-
der interference.

• PinPoint achieves its high accuracy assuming typical
WiFi AP densities (we used the same deployment lo-
cations as the ones used by our WiFi network man-
ager). Further, we found that even if AP density is
reduced, i.e. instead of the 5 APs used to cover the
full floor of 15000 sq. ft. we use only 3 APs, Pin-
Point can still localize accurately achieving a median
error of 1.76m.

Compared Approaches: We compare PinPoint against
the state of the art RSSI based approach [8, 11, 14]. Fur-
ther, to make a fair comparison, we allow the RSSI based
approach to know the interferer transmit power, even
though in practice this may be hard to achieve since the in-
terfering radio could be using a different modulation for-
mat (e.g. Bluetooth, Zigbee) and whatever transmit power
it is capable of without the AP knowing it. Note that we
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Figure 7: Overall CDF of Localization Error for PinPoint,
RSSI, and MUSIC-AoA: PinPoint achieves a median error of
0.97 meters while both the RSSI and MUSIC-AoA only manage
median errors of 3+ meters, and are worse in the 90th percentile
- with errors of 10+ meters.

do not compare against any approach that requires modi-
fying the clients since one of our design goals is to make
our technique work with legacy clients. Neither do we
compare against any approach that requires extensive RF
fingerprinting of the environment since our design goal is
to allow quick and one-time deployment of the system.

Second, we also do not compare directly against a
recently proposed approach that uses AoA measure-
ments [15] . This technique uses a modified version of
the MUSIC algorithm [9] to compute all the AoAs of sig-
nals at an AP, and then runs a heuristic to compute the
location of the radio after collecting measurements from
multiple APs. However, the published prior work assumes
APs equipped with 8 antennas. In this evaluation however
we equip APs only with 4 antennas because, in our opin-
ion we do not see WiFi APs with more than 4 antennas
being widely available and deployed, most new deploy-
ments over the next few years are expected to be with
4 antenna APs. This is due to two reasons, first MIMO
throughput benefits are marginal beyond 4 antennas [7]
and second the space occupied by an antenna is a ma-
jor concern in many large scale deployments (e.g. an 8
antenna AP would span at least 3-4 feet assuming half
wavelength spacing in the ISM band).
Setup: We evaluate PinPoint in the testbed environment
shown in Fig. 6 which covers one floor of our depart-
ment building and spans nearly 15000 sq. ft. We checked
with our network manager the number of APs he would
deploy for such a setting, and used the number he sug-
gested (5 APs) as our baseline. Five APs to cover one
floor is a common number and thus represents typical AP
density. Of these 3 of the APs are manually localized
and calibrated, while the rest of the APs are calibrated
using PinPoint’s self initialization algorithm. We also
hand measure every location and orientation to determine
the ground truth, however these are not used to perform

9
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Figure 8: Comparison of Localization Results without In-
terference: PinPoint’s ability to identify the LOS component’s
AoA helps mitigate the impact of multipath, improving perfor-
mance relative to MUSIC-AoA and RSSI even when additional
interference does not exist.

the actual localization unless mentioned otherwise. Three
types of radio interferers (802.11g, Bluetooth, 802.15.4
ZigBee) are placed at random static locations within the
testbed and transmit with bursty traffic patterns which are
representative of typical operation. Traces are gathered at
each AP and the aggregate data is processed for localiza-
tion.

6.1 Interference Localization Results

Overall Localization Performance: We start by exam-
ining the overall localization error that PinPoint achieves.
For all experiments in this section, in each trial we at-
tempt to localize one of the three radios (802.11g, Zigbee
and Bluetooth) that are randomly placed in the testbed.
Note that all of them could be transmitting concurrently,
and other WiFi interference from the department network
may also be present. Fig. 7 plots the CDF of errors for
all of the interference localization trials. The curves show
the performance for the three compared techniques - Pin-
Point, RSSI, and MUSIC-AoA.

PinPoint can localize an interfering radio to within a
median error of 0.97 meters, the RSSI and MUSIC-AoA
approaches can only manage median errors of 3.35 and
2.94 meters respectively, i.e. at least three times worse
than PinPoint. There are two reasons for PinPoint’s ac-
curacy. First, PinPoint is inherently more accurate since
it can disentangle and infer the LoS component’s AoA
even in severe multipath environments. Second, it is able
to disentangle the target radio’s signal and infer its CSSI
even when there are other concurrent interfering transmis-
sions. Neither the RSSI or MUSIC-AoA based approach
possess these features.

To show that PinPoint’s benefits are not primarily de-
rived from its ability to disentangle the target radio’s sig-
nal from interference, we show the performance of all
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Figure 9: Comparison of Localization Results with Interfer-
ence:.PinPoint’s ability to utilize the cyclic RSSI enables it to
discriminate between the signal strengths of different interfer-
ing sources, allowing it to maintain its performance even when
there are multiple sources of interference.

three approaches when only the target radio is transmit-
ting and no other concurrent transmissions are present.
Fig. 8 shows the results. PinPoint has the best accuracy
of 0.83m, while the RSSI and MUSIC-AoA approaches
exhibit median errors of 2.32 and 2.98 meters respec-
tively. The reason is PinPoint’s ability to identify the LoS
component’s AoA, which the other two techniques do not
possess and consequently their performance suffers in the
harsh multipath environments that we find in indoor de-
ployments. We therefore believe that even though Pin-
Point’s initial design motivation was to localize interfer-
ence for network management, it is a general localization
technique that can be applied in a wide variety of scenar-
ios to different applications.

In Fig. 9 we plot the performance of the three tech-
niques with one additional interference source transmit-
ting concurrently with the target source. PinPoint main-
tains sub-meter accuracy, while the RSSI approach per-
forms poorly (median error of 4 meters and often tail er-
rors as high as 15 meters). The MUSIC-AoA approach
is less sensitive, its median error stays near 2.9 meters.
The RSSI approach suffers because it cannot accurately
measure RSSI of the target radio’s signal alone under in-
terference. The MUSIC-AoA approach uses the MUSIC
algorithm which is robust to interference when it comes
to computing the AoAs, and therefore maintains its per-
formance.
Effect of AP Density: Intuitively, AP density affects lo-
calization accuracy since more measurements help miti-
gate the effects of uncertainty in the LoS AoA and CSSI
measurements from individual APs. Fig. 10 plots the im-
pact of AP density which we vary by reducing the number
of APs in the testbed. As expected the median error in-
creases as fewer APs are deployed to 1.76m when 3 APs
are used to cover the entire floor. We note that this accu-
racy is still better than the RSSI and AoA approaches with
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Figure 10: Impact of AP Density on PinPoint Localization:
PinPoint performs well even in sparse AP deployments, achiev-
ing a median error of 1.76m even when only 3 APs are used to
cover the entire floor.

5 APs. At 2 APs however, the error is significantly worse
(around 6m). As a rule of thumb, and this agrees with in-
tuition, we found that target radios need to be visible to at
least three APs to achieve good accuracy.
Impact of AP self-calibration: In Fig. 11 we measure
the impact of PinPoint’s AP self calibration technique on
overall localization error. Specifically, we allow each AP
to know its ground truth location and orientation and then
compute the overall localization error for interfering ra-
dios. As we can see, there is virtually no difference in
the median error, the difference is less than 5 centime-
ters. PinPoint’s AP self-calibration performs well enough
to provide very good performance that is close to the case
when all APs are manually calibrated.

6.2 Performance of LOS Identification

Next, we examine how well PinPoint can disentangle the
LoS component’s AoA from multipath and interference.
As we discussed in the design, this process has two steps:
first the relative delay and angle for several packets are
determined. Next, PinPoint determines whether or not a
LOS component actually exists and determines how re-
liable the estimate actually is by using clustering tech-
niques. If the LOS component is too weak to reliably
detect, based on how large the standard deviation of the
LoS cluster is, PinPoint discards the measurement so that
it does not skew the subsequent localization if it is not a
direct LOS path. If a sufficiently strong path exists, then it
estimates the AoA and the CSSI measurement. We eval-
uate the accuracy of the AoA measurement alone, since
there is no way of knowing the ground truth CSSI mea-
surement reliably because it varies with time for every
measurement.
Method: In this experiment, we statically place a sin-
gle source of WiFi 802.11 interference within an indoor
office environment. The interfering source transmits con-
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Figure 11: Comparison of Localization with Different Cal-
ibration Procedures: PinPoint’s localization performance with
self-calibrated AP locations and orientations performs just as
well as PinPoint’s localization performance when it is optimally
calibrated by hand.

tinuously at a constant average power. Measurements are
then performed at various locations within the office, with
the locations selected in such a way that different types of
propagation paths from the source to the APs are tested.

In order to determine the ground truth for the LOS
propagation path, we equip each source and receiver with
compasses and annotate the placement of each with re-
spect to landmarks in the office (wall corners, poles, etc.).
We then calculate the AoA that the direct LOS path should
traverse from the interference source to the receiver and
use it as the benchmark for our algorithm.
Compared Approach: We compare PinPoint’s LOS
AoA identification against the standard algorithm used to
measure AoAs, the MUSIC algorithm [9]. Since MU-
SIC computes all AoAs and cannot explicitly compute the
LoS path’s AoA, the heuristic we use is that the compo-
nent with the strongest signal is the LoS AoA for MUSIC.
Clearly this will not work in many scenarios, but this is
the best heuristic we could come up with for comparison
since it will be accurate when a strong LoS path exists.
Analysis of AoA Estimation: First, we show in Fig. 12
the CDF of the estimation error across all experimental
runs. We can see that PinPoint’s LOS detection achieves
an accuracy of ±20◦ more than 65% of the time, sig-
nificantly outperforming MUSIC. Notice that while Pin-
Point’s performance degrades gracefully, MUSIC’s per-
formance drops sharply at a certain point (e.g. at the 70%
mark on the CDF).
AoA Estimation in LOS vs. NLOS scenarios: In or-
der to dive a little deeper, Fig. 13 plots the data from
the previous graph in two separate groups differentiated
by whether a dominant LOS path is present (solid lines)
or not (dotted lines). When there is an obvious physical
LOS component with no obstruction between the inter-
fering source and the receiver, we can see that both al-
gorithms perform quite similarly. But even in these sce-
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Figure 12: Overall CDF of AoA error for PinPoint and MU-
SIC: PinPoint’s ability to detect the LoS AoA is demonstrated
as its median AoA error is more than 25 degrees better than MU-
SIC.

narios where the LOS component is the dominant path,
MUSIC sometimes locks onto the weaker multipath com-
ponent, causing sharp drop offs in performance which are
seen at the tails of Fig. 13

The dotted lines in Fig. 13 show the performance of
PinPoint and MUSIC when the LOS is physically ob-
structed. While the performance of PinPoint is only
slightly worse, MUSIC is unable to correctly identify the
LOS path’s AoA because the secondary multipath reflec-
tions become stronger than the direct LOS path. Their
performance degrades rapidly and are unable to reliably
detect the LOS AoA.

7 Related Work

RSSI modeling based systems like EZ [8] assume that
they get GPS locations from the users while they are walk-
ing. This training data consisting of RSSI measurements
is collected at various points with a hand held mobile de-
vice across different points in the floor plan and is used
to create a RSS model of the entire network. EZ achieves
a median error of 2m. Another approach WiFiNet [11]
also uses the RSSI for localizing the source of interfer-
ence. This approach uses the off the shelf hardware to
build the localization system and achieve errors of <4m.
Both of these are the most recent and the best perform-
ing approaches based on RSSI modeling, other prior such
approaches include [20] [21] [22] [23]. While these
RSSI based methods have the attractive property of being
simple and deployable on current WiFi APs, they cannot
localize interference and neither are they accurate due to
the inherent inaccuracy of standard RSSI as a predictor of
physical distance in a rich indoor multipath environment
with interference.

Other RSSI based localization systems like HORUS
[12] , RADAR [13], and PINLOC [14] require signifi-
cant pre-deployment effort in RF-fingerprinting. HORUS
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Figure 13: AoA Error breakdown for LOS and NLOS Sce-
narios: PinPoint is still able to identify the LOS component
reliably when it is > 10dB weaker than the strongest multipath
reflection, while MUSIC’s performance suffers in NLOS scenar-
ios from locking onto stronger multipath components.

achieves median error of 0.7m, RADAR achieves median
error of 1.3 m and PINLOC achieves localization gran-
ularity in 1mx1m box with 90% accuracy. All such ap-
proaches rely on the precomputed fingerprint which can
become obsolete if location of some of the APs changes
or if the environment changes. Fingerprinting is time con-
suming and expensive and has to be done periodically.
Pinpoint requires no fingerprinting, and lightweight cal-
ibration of a few anchor APs at deployment. Since Pin-
point can self-calibrate the remaining APs, any changes
in AP locations or the environment can be easily handled.
Thus PinPoint is easy to deploy and maintain.

A recently proposed AoA based localization algo-
rithm [15] achieves high accuracy of 0.36 m using ULA
with 8 antennas. The algorithm weights the received AoA
(calculated with a variant of MUSIC) by the power of the
received signal. In [15], they cannot distinguish the LOS
or NLOS component of the received signal, and therefore
might suffer in low SNR NLOS scenarios as we saw in
Sec. 6. Further, these techniques require 8 antennas at
each AP, which is unrealistic for standard WiFi deploy-
ments. Other examples of the AoA based techniques are
[24] [25] but these share the same shortcomings as above
and generally do not provide good accuracy.

8 Conclusion

PinPoint’s design highlights how one can solve interfer-
ence localization tasks by leveraging the rich information
hidden in RF signals. This paper designs novel signal
processing algorithms and applies them to solve practi-
cal systems problems. We believe the RF signals flying
around us can be mined for many more practical appli-
cations, including mapping, context detection and so on,
and our future work aims to explore novel signal process-
ing algorithms to build such applications.
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