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Abstract
Web page load time is a key performance metric that

many techniques aim to reduce. Unfortunately, the com-
plexity of modern Web pages makes it difficult to iden-
tify performance bottlenecks. We present WProf, a
lightweight in-browser profiler that produces a detailed
dependency graph of the activities that make up a page
load. WProf is based on a model we developed to cap-
ture the constraints between network load, page pars-
ing, JavaScript/CSS evaluation, and rendering activity
in popular browsers. We combine WProf reports with
critical path analysis to study the page load time of 350
Web pages under a variety of settings including the use
of end-host caching, SPDY instead of HTTP, and the
mod pagespeed server extension. We find that computa-
tion is a significant factor that makes up as much as 35%
of the critical path, and that synchronous JavaScript plays
a significant role in page load time by blocking HTML
parsing. Caching reduces page load time, but the reduc-
tion is not proportional to the number of cached objects,
because most object loads are not on the critical path.
SPDY reduces page load time only for networks with
high RTTs and mod pagespeed helps little on an average
page.

1 Introduction
Web pages delivered by HTTP have become the de-facto
standard for connecting billions of users to Internet ap-
plications. As a consequence, Web page load time (PLT)
has become a key performance metric. Numerous stud-
ies and media articles report its importance for user ex-
perience [5, 4], and consequently to business revenues.
For example, Amazon increased revenue 1% for every
0.1 second reduction in PLT, and Shopzilla experienced
a 12% increase in revenue by reducing PLT from 6 sec-
onds to 1.2 seconds [23].

Given its importance, many techniques have been de-
veloped and applied to reduce PLT. They range from
caching and CDNs, to more recent innovations such as
the SPDY protocol [28] that replaces HTTP, and the
mod pagespeed server extension [19] to re-write pages.
Other proposals include DNS pre-resolution [9], TCP
pre-connect [30], Silo [18], TCP fast open [24], and
ASAP [35].

Thus it is surprising to realize that the performance
bottlenecks that limit the PLT of modern Web pages are
still not well understood. Part of the culprit is the com-
plexity of the page load process. Web pages mix re-

sources fetched by HTTP with JavaScript and CSS eval-
uation. These activities are inter-related such that the
bottlenecks are difficult to identify. Web browsers com-
plicate the situation with implementation strategies for
parsing, loading and rendering that significantly impact
PLT. The result is that we are not able to explain why a
change in the way a page is written or how it is loaded
has an observed effect on PLT. As a consequence, it is
difficult to know when proposed techniques will help or
harm PLT.

Previous studies have measured Web performance in
different settings, e.g., cellular versus wired [13], and
correlated PLT with variables such as the number of re-
sources and domains [7]. However, these factors are
only coarse indicators of performance and lack explana-
tory power. The key information that can explain per-
formance is the dependencies within the page load pro-
cess itself. Earlier work such as WebProphet [16] made
clever use of inference techniques to identify some of
these dependencies. But inference is necessarily time-
consuming and imprecise because it treats the browser as
a black-box. Most recently, many “waterfall” tools such
as Google’s Pagespeed Insight [22] have proliferated to
provide detailed and valuable timing information on the
components of a page load. However, even these tools
are limited to reporting what happened without explain-
ing why the page load proceeded as it did.

Our goal is to demystify Web page load performance.
To this end, we abstract the dependency policies in four
browsers, i.e., IE, Firefox, Chrome, and Safari. We run
experiments with systematically instrumented test pages
and observe object timings using Developer Tools [8].
For cases when Developer Tools are insufficient, we de-
duce dependencies by inspecting the browser code when
open source code is available. We find that some of
these dependency policies are given by Web standards,
e.g., JavaScript evaluation in script tags blocks HTML
parsing. However, other dependencies are the result of
browser implementation choices, e.g., a single thread of
execution shared by parsing, JavaScript and CSS evalu-
ation, and rendering. They have significant impacts on
PLT and cannot be ignored.

Given the dependency policies, we develop a
lightweight profiler, WProf, that runs in Webkit browsers
(e.g., Chrome, Safari) while real pages are loaded.
WProf generates a dependency graph and identifies a
load bottleneck for any given Web page. Unlike exist-
ing tools that produce waterfall or HAR reports [12], our
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profiler discovers and reports the dependencies between
the browser activities that make up a page load. It is this
information that pinpoints why, for example, page pars-
ing took unexpectedly long and hence suggests what may
be done to improve PLT.

To study page load performance, we run WProf while
fetching pages from popular servers and apply critical
path analysis, a well-known technique for analyzing the
performance of parallel programs [25]. First, we identify
page load bottlenecks by computing what fraction of the
critical path the activity occupies. Surprisingly, we find
that while most prior work focuses on network activity,
computation (mostly HTML parsing and JavaScript exe-
cution) comprises 35% of the critical path. Interestingly,
downloading HTML and synchronous JavaScript (which
blocks parsing) makes up a large fraction of the critical
path, while fetching CSS and asynchronous JavaScript
makes up little of the critical path. Second, we study
the effectiveness of different techniques for optimizing
web page load. Caching reduces the volume of data sub-
stantially, but decreases PLT by a lesser amount because
many of the downloads that benefit from it are not on
the critical path. Disappointingly, SPDY makes little dif-
ference to PLT under its default settings and low RTTs
because it trades TCP connection setup time for HTTP
request sending time and does not otherwise change page
structure. Mod pagespeed also does little to reduce PLT
because minifying and merging objects does not reduce
network time on critical paths.

We make three contributions in this paper. The first is
our activity dependency model of page loads, which cap-
tures the constraints under which real browsers load Web
pages. The second contribution is WProf, an in-browser
profiling tool that records page load dependencies and
timings with minimal runtime overhead. Our third con-
tribution is the study of extensive page loads that uses
critical path analysis to identify bottlenecks and explain
the limited benefits of SPDY and mod pagespeed.

In the rest of this paper, we describe the page load pro-
cess (§2) and our activity dependency model (§3). We
then describe the design and implementation of WProf
(§4). We use WProf for page load studies (§5) before
presenting related work (§6) and concluding (§7).

2 Background
We first provide background on how browsers load Web
pages. Figure 1 shows the workflow for loading a page.
The page load starts with a user-initiated request that
triggers the Object Loader to download the correspond-
ing root HTML page. Upon receiving the first chunk
of the root page, the HTML Parser starts to iteratively
parse the page and download embedded objects within
the page, until the page is fully parsed. The embed-
ded objects are Evaluated when needed. To visualize
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Figure 1: The workflow of a page load. It involves four
processes (shown in gray).

the page, the Rendering Engine progressively renders the
page on the browser. While the HTML Parser, Evalu-
ator, and Rendering Engine are computation processes,
the Object Loader is a network process.

HTML Parser: The Parser is key to the page load pro-
cess, and it transforms the raw HTML page to a docu-
ment object model (DOM) tree. A DOM tree is an in-
termediate representation of a Web page; the nodes in
the DOM tree represent HTML tags, and each node is
associated with a set of attributes. The DOM tree repre-
sentation provides a common interface for programs to
manipulate the page.

Object Loader: The Loader fetches objects requested
by the user or those embedded in the HTML page. The
objects are fetched over the Internet using HTTP or
SPDY [28], unless the objects are already present in the
browser cache. The embedded objects fall under dif-
ferent mime types: HTML (e.g., IFrame), JavaScript,
CSS, Image, and Media. Embedded HTMLs are pro-
cessed separately and use a different DOM tree. Inlined
JavaScript and inlined CSS do not need to be loaded.

Evaluator: Two of the five embedded object types,
namely, JavaScript and CSS, require additional evalua-
tion after being fetched. JavaScript is a piece of soft-
ware that adds dynamic content to Web pages. Evalu-
ating JavaScript involves manipulating the DOM, e.g.,
adding new nodes, modifying existing nodes, or chang-
ing nodes’ styles. Since both JavaScript Evaluation
and HTML Parsing modify the DOM, HTML parsing
is blocked for JavaScript evaluation to avoid conflicts in
DOM modification. However, when JavaScript is tagged
with an async attribute, the JavaScript can be down-
loaded and evaluated in the background without block-
ing HTML Parsing. In the rest of the paper, JavaScript
refers to synchronous JavaScript unless stated.

Cascading style sheets (CSS) are used for specifying
the presentational attributes (e.g., colors and fonts) of
the HTML content and is expressed as a set of rules.
Evaluating a CSS rule involves changing styles of DOM
nodes. For example, if a CSS rule specifies that certain
nodes are to be displayed in blue color, then evaluating
the CSS involves identifying the matching nodes in the
DOM (known as CSS selector matching) and adding the
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style to each matched node. JavaScript and CSS are com-
monly embedded in Web pages today [7].

Rendering engine: Browsers render Web pages progres-
sively as the HTML Parser builds the DOM tree. Render-
ing involves two processes–Layout and Painting. Layout
converts the DOM tree to the layout tree that encodes the
size and position of each visible DOM node. Painting
converts this layout tree to pixels on the screen.

3 Browser Dependency Policies
Web page dependencies are caused by various factors
such as co-dependence between the network and the
computation activities, manipulation of common objects,
limited resources, etc. Browsers use various policies to
enforce these dependencies. Our goal is to abstract the
browser dependency policies. We use this policy abstrac-
tion to efficiently extract the dependency structure of any
given Web page (§4).

3.1 Dependency definition

Ideally, the four processes involved in a page load (de-
scribed in Figure 1) would be executed in parallel, so that
the page load performance is determined by the slow-
est process. However, the processes are inter-dependent
and often block each other. To represent the dependency
policies, we first discretize the steps involved in each
process. The granularity of discretization should be fine
enough to reflect dependencies and coarse enough to pre-
serve semantics. We consider the most coarse-grained
atomic unit of work, which we call an activity. In the
case of HTML Parser, the activity is parsing a single tag.
The Parser repeatedly executes this activity until all tags
are parsed. Similarly, the Object Loader activity is load-
ing a single object, the Evaluator activity is evaluating a
single JavaScript or CSS, and the activity of the Render-
ing process is rendering the current DOM.

We say an activity ai is dependent on a previously
scheduled activity aj , if ai can be executed only after
aj has completed. There are two exceptions to this defi-
nition, where the activity is executed after only a partial
completion of the previous activity. We discuss these ex-
ceptions in §3.3.

3.2 Methodology

We extract browser dependency policies by (i) inspect-
ing browser documentation, (ii) inspecting browser code
if open-source code is available, and (iii) systematically
instrumenting test pages. Note that no single method
provides a complete set of browser policies, but they
complement each other in the information they provide.
Our methodology assumes that browsers tend to parse
tags sequentially. However, one exception is preloading.
Preloading means that the browser preemptively loads
objects that are embedded later in the page, even before

their corresponding tags are parsed. Preloading is often
used to speed up page loads.

Below, we describe how we instrument and experi-
ment with test pages. We conduct experiments in four
browsers: Chrome, Firefox, Internet Explorer, and Sa-
fari. We host our test pages on controlled servers. We
observe the load timings of each object in the page using
Developer Tools [8] made available by the browsers. We
are unable to infer dependencies such as rendering using
Developer Tools. Instead, for open-source browsers, we
inspect browser code to study the dependency policies
associated with rendering.

Instrumenting test pages (network): We instrument
test pages to exhaustively cover possible loading sce-
narios: (i) loading objects in different orders, and (ii)
loading embedded objects. We list our instrumented test
pages and results at wprof.cs.washington.edu/
tests. Web pages can embed five kinds of objects as
described in §2. We first create test pages that embed
all combinations of object pairs, e.g., the test page may
request an embedded JavaScript followed by an image.
Next, we create test pages that embed more than two
objects in all possible combinations. Embedded objects
may further embed other objects. We create test pages for
each object type that in-turn embeds all combinations of
objects. To infer dependency policies, we systematically
inject delays to objects and observe load times of other
objects to see whether they are delayed accordingly, sim-
ilar to the technique used in WebProphet [16]. For exam-
ple, in a test page that embeds a JavaScript followed by
an image, we delay loading the Javascript and observe
whether the image is delayed.

Instrumenting test pages (computation): Developer
tools expose timings of network activities, but not tim-
ings of computational activities. We instrument test
pages to circumvent this problem and study dependen-
cies during two main computational activities: HTML
parsing and JavaScript evaluation. HTML parsing is of-
ten blocked during page load. To study the blocking be-
havior across browsers, we create test pages for each ob-
ject type. For each page, we also embed an IFrame in
the end. During page load, if the IFrame begins load-
ing only after the previous object finishes loading, we in-
fer that HTML parsing is blocked during the object load.
IFrames are ideal for this purpose because they are not
preloaded by browsers. To identify dependencies related
to JavaScript evaluation, we create test pages that con-
tain scripts with increasing complexity; i.e., scripts that
require more and more time for evaluation. We embed
an IFrame at the end. As before, if IFrame does not load
immediately after the script loads, we infer that HTML
parsing is blocked for script evaluation.
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Dependency Name Definition

Flow

F1 Loading an object → Parsing the tag that references the object
F2 Evaluating an object → Loading the object
F3 Parsing the HTML page → Loading the first block of the HTML page*
F4 Rendering the DOM tree → Updating the DOM
F5 Loading an object referenced by a JavaScript or CSS → Evaluating the JavaScript or CSS*
F6 Downloading/Evaluating an object → Listener triggers or timers

Output
O1 Parsing the next tag → Completion of a previous JavaScript download and evaluation
O2 JavaScript evaluation → Completion of a previous CSS evaluation
O3 Parsing the next tag → Completion of a previous CSS download and evaluation

Lazy/Eager
binding

B1 [Lazy] Loading an image appeared in a CSS → Parsing the tag decorated by the image
B2 [Lazy] Loading an image appeared in a CSS → Evaluation of any CSS that appears in front of the tag

decorated by the image
B3 [Eager] Preloading embedded objects does not depend on the status of HTML parsing. (breaks F1)

Resource
constraint

R1 Number of objects fetched from different servers → Number of TCP connections allowed per domain
R2 Browsers may execute key computational activities on the same thread, creating dependencies among

the activities.This dependency is determined by the scheduling policy.
* An activity depends on partial completion of another activity.

Table 1: Summary of dependency policies imposed by browsers. → represents “depends on” relationship.

3.3 Dependency policies

Using our methodology, we uncover the dependency
policies in browsers and categorize them as: Flow de-
pendency, Output dependency, Lazy/Eager binding de-
pendency, and dependencies imposed by resource con-
straints. Table 1 tabulates the dependency policies.
While output dependencies are required for correctness,
the dependencies imposed by lazy/eager binding and re-
source constraints are a result of browser implementation
strategies.

Flow dependency is the simplest form of dependency.
For example, loading an object depends on parsing a tag
that references the object (F1). Similarly, evaluating a
JavaScript depends on loading the JavaScript (F2). Of-
ten, browsers may load and evaluate a JavaScript based
on triggers and timeouts, rather than the content of the
page (F6). Table 1 provides the complete set of flow de-
pendencies. Note that dependencies F3 and F5 are spe-
cial cases, where the activity only depends on the par-
tial completion of the previous activity. In case of F3,
the browser starts to parse the page when the first chunk
of the page is loaded, not waiting for the entire load to
be completed. In case of F5, an object requested by a
JavaScript/CSS is loaded immediately after evaluation
starts, not waiting for the evaluation to be completed.

Output dependency ensures the correctness of execu-
tion when multiple processes modify a shared resource
and execution order matters. In browsers, the shared re-
source is the DOM. Since both JavaScript evaluation and
HTML parsing may write to the DOM, HTML parsing
is blocked until JavaScript is both loaded and evaluated
(O1). This ensures that the DOM is modified in the or-

der specified in the page. Since JavaScript can modify
styles of DOM nodes, execution of JavaScript waits for
the completion of CSS processing (O2). Note that async
JavaScript is not bounded by output dependencies be-
cause the order of script execution does not matter.

Lazy/Eager binding: Several lazy/eager bindings tech-
niques are used by the browser to trade off between
decreasing spurious downloads and improving latency.
Preloading (B3) is an example of an eager binding tech-
nique where browsers preemptively load objects that are
embedded later in the page. Dependency B1 is a result of
a lazy binding technique. When a CSS object is down-
loaded and evaluated, it may include an embedded im-
age, for example, to decorate the background or to make
CSS sprites. The browser does not load this image as
soon as CSS is evaluated, and instead waits until it parses
a tag that is decorated by the image. This ensures that the
image is downloaded only if it is used.

Resource constraints: Browsers constrain the use of
two resources—compute power and network resource.
With respect to network resources, browsers limit the
number of TCP connections. For example, Firefox limits
the number of open TCP connections per domain to 6 by
default. If a page load process needs to load more than
6 embedded objects from the same domain simultane-
ously, the upcoming load is blocked until a previous load
completes. Similarly, some browsers allocate a single
compute thread to execute certain computational activi-
ties. For example, WebKit executes parts of rendering in
the parsing thread. This results in blocking parsing un-
til rendering is complete (R2). We were able to observe
this only for the open-source WebKit browser because
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<html>
  <head>
    <link href='a.css'
       rel='stylesheet'>
    <script src='b.js' />
  </head>
  <!-- req a JS -->
  <body onload='...'>
    <img src='c.png' />
  </body>
</html>

Figure 4: Corresponding
example code.

Dependency IE Firefox WebKit
Output all no O3 no O3
Late binding all all all
Eager ∗Preloads Preloads Preloads
Binding img, JS, CSS img, JS, CSS JS, CSS
Resource (R1) 6 conn. 6 conn. 6 conn.

Table 2: Dependency policies across browsers.

we directly instrumented the WebKit engine to log pre-
cise timing information of computational activities.

Figure 2 summarizes how these dependencies affect
the four processes. Note that more than one dependency
relationship can exist between two activities. For exam-
ple, consider a page containing a CSS object followed by
a JavaScript object. Evaluating the JavaScript depends
on both loading the JavaScript (F2) and evaluating the
previously appearing CSS (O3). The timing of these two
dependencies will determine which of the two dependen-
cies occur in this instance.

3.4 Dependency policies across browsers

Table 2 show the dependency policies across browsers.
Only IE enforces dependency O3 that blocks HTML
parsing to download and evaluate CSS. The preloading
policies (i.e., when and what objects to preload) also
differ among browsers, while we note that no browser
preloads embedded IFrames. Note that flow dependency
is implicitly imposed by all browsers. We were unable to
compare the compute dependency (R2) across browsers
because it requires modification to the browser code.

3.5 Dependency graph of an example page

Figure 3 shows a dependency graph of an example
page. The DOMContentLoaded refers to the event
that HTML finishes parsing, load refers to the event
that all embedded objects are loaded, and DOMLoad
refers to the event that DOM is fully loaded. Our ex-
ample Web page (Figure 4) contains an embedded CSS,
a JavaScript, an image, and a JavaScript triggered on the
load event. Many Web pages (e.g., facebook.com)
may load additional objects on the load event fires.

The page load starts with loading the root HTML page
(a1), following which parsing begins (a2). When the
Parser encounters the CSS tag, it loads the CSS (a4) but
does not block parsing. However, when the Parser en-
counters the JavaScript tag, it loads the JavaScript (a5)
and blocks parsing. Note that loading the CSS and the
JavaScript subjects to a resource constraint; i.e., both
CSS and JavaScript can be loaded simultaneously only
if multiple TCP connections can be opened per domain.
CSS is evaluated (a6) after being loaded. Even though
JavaScript finishes loading, it needs to wait until the CSS
finishes evaluating, and then the JavaScript is evaluated
(a7). The rendering engine renders the current DOM (a8)
after which HTML parsing resumes (a9). The Parser
then encounters and loads an image (a10) after which
HTML parsing is completed and fires a load event. In
our example, the triggered JavaScript is loaded (a12) and
evaluated (a13). When all embedded objects are eval-
uated and the DOM is updated, the DOMLoad event is
fired. Even our simple Web page exhibits over 10 depen-
dencies of different types. For example, a2 → a1 is a
flow dependency; a7 → a6 is an output dependency; and
a9 → a8 is a resource dependency.

The figure also illustrates the importance of using
dependency graphs for fine-grained accounting of page
load time. For example, both activity a4 and a5 are net-
work loads. However, only activity a4 contributes to
page load time; i.e., decreasing the load time of a5 does
not decrease total page load time. Tools such as HTTP
Archival Records [12] provide network time for each ac-
tivity, but this cannot be used to isolate the bottleneck
activities. The next section demonstrates how to isolate
the bottleneck activities using dependency graphs.

4 WProf
We present WProf, a tool that captures the dependency
graph for any given Web page and identifies the delay
bottlenecks. Figure 5 shows WProf architecture. The
primary component is an in-browser profiler that instru-
ments the browser engine to obtain timing and depen-
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Figure 5: The WProf Architecture. WProf operates just
above the browser engine, allowing it to collect precise
timing and dependency information.

dency information at runtime. The profiler is a shim layer
inside the browser engine and requires minimal changes
to the rest of the browser. Note that we do not work at
the browser extension or plugin level because they pro-
vide limited visibility into the browser internals. WProf
then analyzes the profiler logs offline to generate the de-
pendency graphs and identify the bottleneck path. The
profiler is lightweight and has negligible effect on page
load performance (§4.4).

4.1 WProf Profiler

The key role of WProf profiler is to record timing and
dependency information for a page load. While the de-
pendency information represents the structure of a page,
the timing information captures how dependencies are
exhibited for a specific page load; both are crucial to pin-
point the bottleneck path.

Logging Timing: WProf records the timestamps at the
beginning and end of each activity executed during the
page load process. WProf also records network tim-
ing information, including DNS lookup, TCP connec-
tion setup, and HTTP transfer time. To keep track of the
number of TCP connections being used/re-used, WProf
records the IDs of all TCP connections.

Logging dependencies: WProf assumes the dependency
policies described in §3 and uses different ways to log
different kinds of dependencies. Flow dependencies are
logged by attaching the URL to an activity. For example
in Figure 3, WProf learns that the activity that evaluates
b.js depends on the activity that loads b.js by recording
b.js. WProf logs resource constraints by IDs of the con-
strained resources, e.g., thread IDs and TCP IDs.

To record output dependencies and lazy/eager bind-
ings, WProf tracks a DOM-specific ordered sequence
of processed HTML tags as the browser loads a page.
We maintain a separate ordered list for each DOM tree
associated with the page (e.g., the DOM for the root

page and the various IFrames). HTML tags are recorded
when they are first encountered; they are then attached to
the activities that occur when the tags are being parsed.
For example, when objects are preloaded, the tags under
parsing are attached to the preloading activity, not the
tags that reference the objects. For example in Figure 4,
the Parser first processes the tag that references a.css, and
then processes the tag that references b.js. This ordering,
combined with the knowledge of output dependencies,
result in the dependency a7 → a6 in Figure 3. Note that
the HTML page itself provides an implicit ordering of
the page activities; however, this ordering is static. For
example, if a JavaScript in a page modifies the rest of the
page, statically analyzing the Web page provides an in-
correct order sequence. Instead, WProf records the Web
page processing order directly from the browser runtime.

Validating the completeness of our dependency poli-
cies would require either reading all the browser code or
visiting all the Web pages, neither of which is practical.
As browsers evolve constantly, changes in Web standard
or browser implementations can change the dependency
policies. Thus, WProf needs to be modified accord-
ingly. Since WProf works as a shim layer in browsers
that does not require knowledge about underlying com-
ponents such as CSS evaluation, the effort to record an
additional dependency policy would be minimal.

4.2 Critical path analysis

To identify page load bottlenecks, we apply critical path
analysis to dependency graphs. Let the dependency
graph G = (V,E), where V is the set of activities re-
quired to render the page and E is the set of dependencies
between the activities. Each activity a ∈ V is associated
with the attribute that represents the duration of the activ-
ity. The critical path P consists of a set of activities that
form the longest path in the dependency graph such that,
reducing the duration of any activity not on the critical
path (a /∈ P ), will not change the critical path; i.e., opti-
mizing an activity not on the critical path will not reduce
page load performance. For example, the critical path for
the dependency graph shown in Figure 3 is (a1, a2, a4,
a6, a7, a8, a9, a11, a12, a13).

We estimate the critical path P of a dependency graph
using the algorithm below. We treat preloading as a spe-
cial case because it breaks the flow dependency. When
preloading occurs, we always add it to the critical path.

4.3 Implementation

We implement WProf on Webkit [33], an open source
Web browser engine that is used by Chrome, Safari, An-
droid, and iOS. The challenge is to ensure that the WProf
shim layer is lightweight. Creating a unique identifier
for each activity (for logging dependency relationship) is
memory intensive as typical pages require several thou-
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P ← ∅; a ← Activity that completes last;
P ← P ∪ a;
while a is not the first activity do

A ← Set of activities that a is dependent on;
if a is preloaded from an activity a′ in A then

a ← a′;
else

a← Activity in A that completes last;
end
P ← P ∪ a;

end
return P

WProf CPU % Memory %
on 58.5 65.5
off 53.5 54.9

Table 3: Maximum sampled CPU and memory usage.

sands of unique identifiers (e.g., for HTML tags). In-
stead, we use pointer addresses as unique identifiers. The
WProf profiler keeps all logs in memory and transfers
them to disk after the DOM is loaded, to minimize the
impact on page load.

We extended Chrome and Safari by modifying 2K
lines of C++ code. Our implementation can be easily
extended to other browsers that build on top of Webkit.
Our dependency graph generation and critical path anal-
ysis is written in Perl and PHP. The WProf source code
is available at wprof.cs.washington.edu.

4.4 System evaluation

In this section, we present WProf micro-benchmarks. We
perform the experiments on Chrome. We use a 2GHz
CPU dual core and 4GB memory machine running Ma-
cOS. We load 200 pages with a five second interval be-
tween pages. The computer is connected via Ethernet,
and to provide a stable network environment, we limit
the bandwidth to 10Mbps using DummyNet [10].

Figure 6(a) shows the CDF of page load times with
and without WProf. We define page load time as the time
from when the page is requested to when the DOMLoad
(Figure 3) event is fired. We discuss our rationale for the
page load time definition in §5.1. The figure shows that
WProf’s in-browser profiler only has a negligible effect
on the page load time. Similarly, Figure 6(b) shows the
CDF of size of the logs generated by the WProf profiler.
The median log file size is 268KB even without com-
pression, and is unlikely to be a burden on the storage
system. We sample the CPU and memory usage at a rate
of 0.1 second when loading the top 200 web pages with
and without WProf. Table 3 shows that even in the maxi-
mum case, WProf only increases the CPU usage by 9.3%
and memory usage by 19.3%.
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Figure 6: WProf evaluation.

5 Studies with WProf
The goal of our studies is to use WProf’s dependency
graph and critical path analysis to (i) identify the bottle-
neck activities during page load (§5.2), (ii) quantify page
load performance under caching (§5.3), and (iii) quantify
page load performance under two proposed optimization
techniques, SPDY and mod pagespeed (§5.4).

5.1 Methodology

Experimental setup: We conduct our experiments on
default Chrome and WProf-instrumented Chrome. We
automate our experiments using the Selenium Web-
driver [27] that emulates browser clicks. By default,
we present experiments conducted on an iMac with a
3GHz quad core CPU and 8GB memory. The computer
is connected to campus Ethernet at UW Seattle. We use
DummyNet [10] to provide a stable network connection
of 10Mbps bandwidth; 10Mbps represents the average
broadband bandwidth seen by urban users [6]. By de-
fault, we assume page loads are cold, i.e., the local cache
is cleared. This is the common case, as 40%–60% of
page loads are known to be cold loads [18]. We report
the minimum page load time from a total of 5 runs.

Web pages: We experiment with the top 200 most vis-
ited websites from Alexa [3]. Because some websites
get stuck due to reported hang bugs in Selenium Web-
driver, we present results from the 150 websites that pro-
vide complete runs.

Page load time metric: We define Page Load Time
(PLT) as the time between when the page is requested
and when the DOMLoad event is fired. Recall that the
DOMLoad event is fired when all embedded objects are
fetched and added to the DOM (see Figure 3). We ob-
tain all times directly from the browser engine. There
are a few alternative definitions to PLT. The above-the-
fold time [1] metric is a user-driven metric that mea-
sures the time until the page is shown on the screen.
However, this metric requires recording and manually
analyzing page load videos, a cumbersome and non-
scalable process. Other researchers use load [7] or
DOMContentLoaded [18] events logged in the HTTP
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Figure 8: A breakdown of computational time to total
page load time on the critical path.

Archival Record (HAR) [12] to indicate the end of the
page load process. Since we can tap directly into the
browser, we do not need to rely on the external HAR.

We perform additional experiments with varying lo-
cation, compute power, and Internet speeds. To exclude
bias towards popular pages, we also experiment on 200
random home pages that we choose from the top 1 mil-
lion Alexa websites. We summarize our results of these
experiments in §5.5.

5.2 Identifying load bottlenecks (no caching)

The goal of this section is to characterize bottleneck ac-
tivities that contribute to the page load time. Note that all
of these results focus on delays on critical paths. In ag-
gregate, a typical page we analyzed contained 32 objects
and 6 activities on the critical path (all median values).
Computation is significant: Figure 7 shows that 35% of
page load time in the critical path is spent on computa-
tion; therefore computation is a critical factor in model-
ing or simulating page loads. Related measurements [14]
do not estimate this computational component because
they treat the browser engine as a black box.

We further break down computation into HTML pars-
ing, JavaScript and CSS evaluation, and rendering in Fig-
ure 8. The fractions are with respect to the total page load
time. Little time on the critical path is spent on firing
timers or listeners, and so we do not show them. Inter-
estingly, we find that HTML parsing costs the most in
computation, at 10%. This is likely because: (i) many
pages contain a large number of HTML tags, requiring
a long time to convert to DOM; (ii) there is a significant
amount of overhead when interacting with other compo-
nents. For example, we find an interval of two millisec-
onds between reception of the first block of an HTML
page and parsing the first HTML tag. JavaScript evalu-
ation is also significant as Web pages embed more and
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Figure 9: Fractions of domains, objects, and bytes on
critical paths.

more scripts. In contrast, CSS evaluation and rendering
only cost a small fraction of page load time. This sug-
gests that optimizing CSS is unlikely to be effective at
reducing page load time.
Network activities often block parsing. First, we break
down network time by how it interacts with HTML pars-
ing in Figure 10(a): pre-parsing, block-parsing, and post-
parsing. As before, the fractions are with respect to the
total page load time. The pre-parsing phase consists of
fetching the first chunk of the page during which no con-
tent can be rendered. 15% of page load time is spent
in this phase. The post-parsing phase refers to load-
ing objects after HTML parsing (e.g., loading a10 and
a12 in Figure 3). Because rendering can be done be-
fore or during post parsing, post parsing is less impor-
tant, though significant. Surprisingly, much of the net-
work delay in the critical path blocks parsing. Recall
that network loads can be done in parallel with parsing
unless there are dependencies that block parsing, e.g.,
JavaScript downloads. Parsing-blocking downloads of-
ten occur at an early stage of HTML parsing that blocks
loading subsequent embedded objects. The result sug-
gests that a large portion of the critical path delay can
be reduced if the pages are created carefully to avoid
blocked parsing.

Second, we break down network time by functional-
ity in Figure 10(b): DNS lookup, TCP connection setup,
server roundabouts, and receive time. DNS lookup and
TCP connection setup are summed up for all the objects
that are loaded, if they are on the critical path. Server
roundabout refers to the time taken by the server to pro-
cess the request plus a round trip time; again for every
object loaded on the critical path. Finally, the receive
time is the total time to receive each object on the criti-
cal path. DNS lookup incurs almost 13% of the critical
path delay. To exclude bias towards one DNS server, we
repeated our experiments with an OpenDNS [21] server,
and found that the lookup time was still large. Our results
suggest that reducing DNS lookup time alone can reduce
page load time significantly. The server roundabout time
is 8% of the critical path.

Third, we break down network time by MIME type in
Figure 10(c). We find that loading HTML is the largest
fraction (20%) and mostly occurs in the pre-parsing
phase. Loading images is also a large fraction on critical
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Figure 10: A breakdown of fractions of network time on the critical path.
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Figure 11: Warm and hot loads results. All results are a fraction of total page load time.

paths. Parsing-blocking JavaScript is significant on criti-
cal paths while asynchronous JavaScript only contributes
a small fraction. Interestingly, we find a small fraction of
CSS that blocks JavaScript evaluation and thus blocks
HTML parsing. This blocking can be reduced simply by
moving the CSS tag after the JavaScript tag. There is
almost no non-blocking CSS on critical paths, and there-
fore we omit it in Figure 10(c).

Last, we look at the page load time for external objects
corresponding to Web Analytics and Ads but not CDNs.
We find that one fourth of Web pages have downloads
of external objects on their critical path. Of those pages,
over half spends 15% or more page load time to fetch
external objects and one even spends up to 60%.
Most object downloads are non-critical: Figure 9 com-
pares all object downloads and the object downloads only
on the critical path. Interestingly, only 30% bytes of con-
tent is on critical paths. This suggests that minifying and
caching content may not improve page load time, unless
they reduce content downloaded along the critical path.
We analyze this further in the next section. Note that ob-
ject downloads off the critical paths are not completely
unimportant. Degrading the delay of some activities that
are not on the critical path may cause them to become
critical.

5.3 Identifying load bottlenecks (with caching)

We analyze the effects of caching under two conditions:
hot load and warm load. Hot loads occur when a page
is loaded immediately after a cold load. Warm loads oc-
cur when a page is loaded a small amount of time after
a cold load when the immediate cache would have ex-
pired. We set a time interval of 12 minutes for warm
loads. Both cases are common scenarios, since users of-

ten reload pages immediately as well as after a short pe-
riod of time.

Caching gains are not proportional to saved bytes. Fig-
ure 11(a) shows the distributions of page load times un-
der cold, warm, and hot loads. For 50% of the pages,
caching decreases page load time by over 40%. How-
ever, further analysis shows that 90% of the objects were
cached during the experiments. In other words, the de-
crease in page load time is not proportional to the cached
bytes. To understand this further, we analyze the fraction
of cached objects that are on and off the critical path, dur-
ing hot loads. Figure 11(b) shows that while caching re-
duces 65% of total object loads (marked objs-all), it only
reduces 20% of object loads on the critical path (marked
objs-cp). Caching objects that are not on the critical path
leads to the disproportional savings.

Caching also reduces computation time. Figures 11(c)
and 11(d) compare the network times and computation
times of hot, warm, and cold loads, on the critical path.
As expected, hot and warm loads reduce DNS lookup
time and TCP connection setup. Especially during hot
loads, DNS lookup time is an insignificant fraction of
the page load time in contrast to cold loads. Interest-
ingly, caching not only improves network time, but also
computation time. Figure 11(d) shows the time taken by
compute and layout activities during page load time. The
figure suggests that modern browsers cache intermediate
computation steps, further reducing the page load time
during hot and warm loads.

5.4 Evaluating proposed techniques

This section evaluates two Web optimization techniques,
SPDY [28] and mod pagespeed [19].

9
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Figure 12: SPDY and mod pagespeed results.

5.4.1 SPDY

SPDY is an application-level protocol in place of HTTP.
The key ideas in SPDY are—(i) Multiplexing HTTP
transactions into a single TCP connection to reduce TCP
connection setup time and to avoid slow start, (ii) priori-
tizing some object loads over others (e.g., JavaScript over
images), and (iii) reducing HTTP header sizes. SPDY
also includes two optional techniques—Server Push and
Server Hint. Exploiting these additional options require
extensive knowledge of Web pages and manual configu-
rations. Therefore, we do not include them here.

We evaluate SPDY with controlled experiments on our
own server with 2.4GHz 16 core CPU 16GB memory
and Linux kernel 2.6.39. By default, we use a link with
a controlled 10Mbps bandwidth, and set the TCP initial
window size to 10 (increased from the default 3, as per
SPDY recommendation). We use the same set of pages
as the real-world experiments and download all embed-
ded objects to our server1 to avoid domain sharding [20].
We run SPDY version 2 over SSL.
SPDY only improves performance at high RTTs. Fig-
ure 12(a) and Figure 12(b) compares the page load time
of SPDY versus non-SPDY (i.e., default HTTP) under
20ms and 200ms RTTs, respectively. SPDY provides
few benefits to page load time under low RTTs. How-
ever, under 200ms RTT, SPDY improves page load time
by 5%–40% for 30% of the pages. We conduct additional
experiments by varying the TCP initial window size and
packet loss, but find that the results are similar to the de-
fault setting.

1Because we are unable to download objects that are dynamically
generated, we respond to these requests with a HTTP 404 error.

SPDY reduces TCP connection setup time but increases
request sending time. To understand SPDY performance,
we compare SPDY and non-SPDY network activities on
the critical path and break down the network activities
by functionality; note that SPDY does not affect compu-
tation activities. For the 20ms RTT case, Figure 12(c)
shows that SPDY significantly reduces TCP connection
setup time. However, since SPDY delays sending re-
quests to create a single TCP connection, Figure 12(d)
shows that SPDY increases the time taken to send re-
quests. Other network delays such as server roundabout
time and total receive time remained similar.

Further, Figure 12(e) shows that although SPDY re-
duces TCP setup times, the number of TCP connection
setups in the critical path is small. Coupled with the in-
crease in request sending time, the total improvement due
to SPDY cancels out, resulting in no net improvement in
page load time.

The goal of our evaluation is to explain the page load
behavior of SPDY using critical path analysis. Improv-
ing SPDY’s performance and leveraging SPDY’s op-
tional techniques are part of future work.

5.4.2 mod pagespeed

mod pagespeed [19] is an Apache module that enforces
a number of best practices to improve page load perfor-
mance, by minifying object sizes, merging multiple ob-
jects into a single object, and externalizing and/or inlin-
ing JavaScripts. We evaluate mod pagespeed using the
setup described in §5.4.1 with a 20ms RTT.

Figure 12(f) compares the page load times with
and without mod pagespeed on top 200 Alexa pages.
mod pagespeed provides little benefits to page load time.

10
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Since the top 200 pages may be optimized, we load 200
random pages from the top one million Alexa Web pages.
Figure 12(g) shows that mod pagespeed helps little even
for random pages.

To understand the mod pagespeed performance, we
analyze minification and merging multiple objects. The
analysis is based on loading the top 200 Web pages. Fig-
ure 12(h) shows that the total number of bytes down-
loaded on the critical path remains unchanged with and
without mod pagespeed. In other words, minifying ob-
ject does not reduces the size of the objects loads on the
critical path, and therefore does not provide page load
benefits. Similarly, our experiments show that merging
objects does not reduce the network delay on the criti-
cal path, because the object loads are not the bottleneck
(not shown here). These results are consistent with our
earlier results (Figure 9) that shows that only 30% of the
object loads are on the critical path. We were unable to
determine how mod pagespeed decides to inline or exter-
nalize JavaScripts, and therefore are unable to conduct
experiments on how inlining/externalizing affects page
load performance.

5.5 Summarizing results from alternate settings

In addition to our default experiments, we conducted
additional experiments: (i) with 2 machines, one with
2GHz dual core 4GB memory, and another with 2.4GHz
dual core 2GB memory, (ii) in 2 different locations, one
at UMass Amherst with campus Ethernet connectivity,
and another in a residential area in Seattle with broad-
band connectivity, and (iii) using 200 random Web pages
chosen from the top 1 million Alexa Web pages. All
other parameters remained the same as default.

Below, we summarize the results of our experiments:

• The fraction of computation and network times on
the critical path were quantitatively similar in dif-
ferent locations.

• The computation time as a fraction of the total page
load time increased when using slower machines.
For example, computation time was 40% of the crit-
ical path for the 2GHz machine, compared to 35%
for the 3GHz machine.

• The 200 random Web pages experienced 2x page
load time compared to the top Web pages. Of all the
network components, the server roundabout time of
random pages (see Figure 10(b)) was 2.3x of that
of top pages. However, the total computation time
on the critical path was 12% lower compared to the
popular pages, because random pages embed less
JavaScript.

6 Discussion
In this work, we have demonstrated that WProf can help
identify page load bottlenecks and that it can help evalu-
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Figure 13: Median reduction in page load times if com-
putation and network speeds are improved.

ate evolving techniques that optimize page loads. WProf
can be potentially used in several other applications.
Here, we briefly discuss two applications: (i) Conduct-
ing what-if analysis, and (ii) identifying potential Web
optimizations.

What-if analysis: As CPUs and networks evolve, the
question we ask is—how can page load times benefit
from improving the network speed or CPU speed? We
use the detailed dependency graphs generated by WProf
to conduct this what-if analysis. Figure 13 plots the
reduction in page load time for a range of <network
speedup, CPU speedup> combinations. When computa-
tional time is zeroed but the network time is unchanged,
the page load time is reduced by 20%. If the network
time is reduced to one fourth, but the computational time
is unchanged, 45% of the page load time is reduced. Our
results suggest that speeding up both network and com-
putation together is more beneficial than just improving
one of them. Note that our what-if analysis is limited
as it does not capture all lower-level dependencies and
constraints, e.g., TCP window sizes. We view our results
here as estimates and leave a more extensive analysis for
future work.

Potential optimizations: Our own experience and stud-
ies with WProf suggest a few optimization opportunities.
We find that synchronous JavaScript significantly affects
page load time, not only because of loading and eval-
uation, but also because of block-parsing (Figure 10(a)).
Asynchronous JavaScript or in-lining the scripts can help
reduce page load times. To validate this opportunity, we
manually transform synchronous JavaScript to async
on top five pages and find that this helps page load time.
However, because asynchronous JavaScript may alter
Web pages, we need further research to understand how
and when JavaScript transformation affects Web pages.
Another opportunity is with respect to prioritizing object
loading according to the dependency graph. Prioritiza-
tion can be either implemented at the application level
such as SPDY or reflected using latency-reducing tech-
niques [31]. For example, prioritizing JavaScript loads
can decrease the time that HTML parsing is blocked. Re-
cently, SPDY considers applying the dependency graph
to prioritize object loading in version 4 [29]. Other op-

11
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portunities include parallelizing page load activities and
more aggressive preloading strategies, both of which re-
quire future exploration.

7 Related Work

Profiling page load performance: Google Pagespeed
Insight [22] includes a (non open-source) critical path
explorer. The explorer presents the critical path for the
specific page load instance, but does not extract all de-
pendencies inherent in a page. For example, the ex-
plorer does not include dependencies due to resource
constraints and eager/late binding. Also, the explorer
will likely miss dependencies if objects are cached, if the
network speed improves, if a new CDN is introduced,
if the DNS cache changes, and many other instances.
Therefore, it is difficult to conduct what-if-analysis or
to explain the behavior of Web page optimizations using
the explorer.

The closest research to WProf is WebProphet [16]
that identifies dependencies in page loads by systemat-
ically delaying network loads, a technique we borrow in
this work. The focus of WebProphet is to uncover de-
pendencies only related to object loading. As a result,,
WebProphet does not uncover dependencies with respect
to parsing, rendering, and evaluation. WebProphet also
predicts page load performance based on its dependency
model; we believe that WProf’s more complete depen-
dency model can further improve the page load perfor-
mance prediction.

Tools such as Firebug [11], Developer Tools [8], and
more recently HAR [12] provide detailed timings infor-
mation about object loading. While their information is
important to augment WProf profiling, they do not ex-
tract dependencies and only focus on the networking as-
pect of page loads.

Web performance measurements: Related measure-
ment studies focus on either network aspects of Web per-
formance or macro-level Web page characteristics. Ihm
and Pai [14], presented a longitudinal study on Web traf-
fic, Ager et al. [2] studied the Web performance with
respect to CDNs, and Huang et al. [13] studied the
page load performance under a slower cellular network.
Butkiewicz et al. [7] conducted a macro-level study,
measuring the number of domains, number of objects,
JavaScript, CSS, etc. in top pages. Others [26, 15]
studied the effect of dynamic content on performance.
Instead, WProf identifies internal dependencies of Web
pages that let us pinpoint bottlenecks on critical paths.

Improving page load performance: There has been
several efforts to improve page load performance by
modifying the page, by making objects load faster, or
by reducing computational time. At the Web page level,
mod pagespeed [19] and Silo [18] modify the structure

and content of the Web page to improve page load. At the
networking level, SPDY [28], DNS pre-resolution [9],
TCP pre-connect [30], TCP fast open [24], ASAP [35]
and other caching techniques [34, 32] reduce the time
taken to load objects. At the computation level, in-
line JavaScript caching [18] and caching partial lay-
outs [18, 17] have been proposed. While these tech-
niques provide improvement for certain aspects of page
loads, the total page load performance depends on sev-
eral inter-related factors. WProf helps understand these
factors to guide effective optimization techniques.

8 Conclusion
In this paper, we abstract a model of browser dependen-
cies, and design WProf, a lightweight, in-browser pro-
filer that extracts dependency graphs of any given page.
The goal of WProf is to identify bottleneck activities that
contribute to the page load time. By extensively loading
hundreds of pages and performing critical path analysis
on their dependency graphs, we find that computation is
a significant factor and makes up as much as 35% of the
page load time on the critical path. We also find that syn-
chronous JavaScript evaluation plays a significant role in
page load time because it blocks parsing. While caching
reduces the size of downloads significantly, it is less ef-
fective in reducing page load time because loading does
not always affect the critical path. We conducted exper-
iments over SPDY and mod pagespeed. While the ef-
fects of SPDY and mod pagespeed vary over pages, sur-
prisingly, we find that they help very little on average.
In the future, we plan to extend our dependency graphs
with more lower-level dependencies (e.g., in servers) to
understand how page loads would be affected by these
dependencies.
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