Stronger Semantics for Low-Latency Geo-Replicated Storage

Wyatt Lloyd*, Michael J. Freedman*, Michael Kaminsky', and David G. Andersen*

*Princeton University, TIntel Labs, 1ECarnegie Mellon University

Abstract

We present the first scalable, geo-replicated storage sys-
tem that guarantees low latency, offers a rich data model,
and provides “stronger” semantics. Namely, all client
requests are satisfied in the local datacenter in which
they arise; the system efficiently supports useful data
model abstractions such as column families and counter
columns; and clients can access data in a causally-
consistent fashion with read-only and write-only transac-
tional support, even for keys spread across many servers.

The primary contributions of this work are enabling
scalable causal consistency for the complex column-
family data model, as well as novel, non-blocking al-
gorithms for both read-only and write-only transactions.
Our evaluation shows that our system, Eiger, achieves
low latency (single-ms), has throughput competitive with
eventually-consistent and non-transactional Cassandra
(less than 7% overhead for one of Facebook’s real-world
workloads), and scales out to large clusters almost lin-
early (averaging 96% increases up to 128 server clusters).

1 Introduction

Large-scale data stores are a critical infrastructure com-
ponent of many Internet services. In this paper, we
address the problem of building a geo-replicated data
store targeted at applications that demand fast response
times. Such applications are now common: Amazon,
EBay, and Google all claim that a slight increase in
user-perceived latency translates into concrete revenue
loss [25, 26, 41, 50].

Providing low latency to the end-user requires two
properties from the underlying storage system. First, stor-
age nodes must be near the user to avoid long-distance
round trip times; thus, data must be replicated geographi-
cally to handle users from diverse locations. Second, the
storage layer itself must be fast: client reads and writes
must be local to that nearby datacenter and not traverse
the wide area. Geo-replicated storage also provides the
important benefits of availability and fault tolerance.

Beyond low latency, many services benefit from a
rich data model. Key-value storage—perhaps the sim-

plest data model provided by data stores—is used by a
number of services today [4, 29]. The simplicity of this
data model, however, makes building a number of in-
teresting services overly arduous, particularly compared
to the column-family data models offered by systems
like BigTable [19] and Cassandra [37]. These rich data
models provide hierarchical sorted column-families and
numerical counters. Column-families are well-matched
to services such as Facebook, while counter columns are
particularly useful for numerical statistics, as used by
collaborative filtering (Digg, Reddit), likes (Facebook),
or re-tweets (Twitter).

Unfortunately, to our knowledge, no existing geo-
replicated data store provides guaranteed low latency,
a rich column-family data model, and stronger consis-
tency semantics: consistency guarantees stronger than
the weakest choice—eventual consistency—and support
for atomic updates and transactions. This paper presents
Eiger, a system that achieves all three properties.

The consistency model Eiger provides is tempered by
impossibility results: the strongest forms of consistency—
such as linearizability, sequential, and serializability—
are impossible to achieve with low latency [8, 42] (that is,
latency less than the network delay between datacenters).
Yet, some forms of stronger-than-eventual consistency
are still possible and useful, e.g., causal consistency [2],
and they can benefit system developers and users. In addi-
tion, read-only and write-only transactions that execute a
batch of read or write operations at the same logical time
can strengthen the semantics provided to a programmer.

Many previous systems satisfy two of our three design
goals. Traditional databases, as well as the more re-
cent Walter [52], MDCC [35], Megastore [9], and some
Cassandra configurations, provide stronger semantics
and a rich data model, but cannot guarantee low latency.
Redis [48], CouchDB [23], and other Cassandra config-
urations provide low latency and a rich data model, but
not stronger semantics. Our prior work on COPS [43]
supports low latency, some stronger semantics—causal
consistency and read-only transactions—but not a richer
data model or write-only transactions (see §7.8 and §8
for a detailed comparison).

A key challenge of this work is to meet these three
goals while scaling to a large numbers of nodes in a

USENIX Association

10th USENIX Symposium on Networked Systems Design and Implementation (NSDI "13) 313

single datacenter, which acts as a single logical replica.
Traditional solutions in this space [10, 12, 36], such as
Bayou [44], assume a single node per replica and rely on
techniques such as log exchange to provide consistency.
Log exchange, however, requires serialization through a
single node, which does not scale to multi-node replicas.

This paper presents Eiger, a scalable geo-replicated
data store that achieves our three goals. Like COPS,
Eiger tracks dependencies to ensure consistency; instead
of COPS’ dependencies on versions of keys, however,
Eiger tracks dependencies on operations. Yet, its mecha-
nisms do not simply harken back to the transaction logs
common to databases. Unlike those logs, Eiger’s oper-
ations may depend on those executed on other nodes,
and an operation may correspond to a transaction that
involves keys stored on different nodes.

Eiger’s read-only and write-only transaction algo-
rithms each represent an advance in the state-of-the-art.
COPS introduced a read-only transaction algorithm that
normally completes in one round of local reads, and two
rounds in the worst case. Eiger’s read-only transaction
algorithm has the same properties, but achieves them
using logical time instead of explicit dependencies. Not
storing explicit dependencies not only improves Eiger’s
efficiency, it allows Eiger to tolerate long partitions be-
tween datacenters, while COPS may suffer a metadata
explosion that can degrade availability.

Eiger’s write-only transaction algorithm can atomi-
cally update multiple columns of multiple keys spread
across multiple servers in a datacenter (i.e., they are
atomic within a datacenter, but not globally). It was de-
signed to coexist with Eiger’s read-only transactions, so
that both can guarantee low-latency by (1) remaining in
the local datacenter, (2) taking a small and bounded num-
ber of local messages to complete, and (3) never blocking
on any other operation. In addition, both transaction algo-
rithms are general in that they can be applied to systems
with stronger consistency, e.g., linearizability [33].

The contributions of this paper are as follows:

e The design of a low-latency, causally-consistent data
store based on a column-family data model, including
all the intricacies necessary to offer abstractions such
as column families and counter columns.

* A novel non-blocking read-only transaction algo-
rithm that is both performant and partition tolerant.

e A novel write-only transaction algorithm that atomi-
cally writes a set of keys, is lock-free (low latency),
and does not block concurrent read transactions.

* An evaluation that shows Eiger has performance com-
petitive to eventually-consistent Cassandra.

2 Background

This section reviews background information related to
Eiger: web service architectures, the column-family data
model, and causal consistency.

2.1 Web Service Architecture

Eiger targets large geo-replicated web services. These
services run in multiple datacenters world-wide, where
each datacenter stores a full replica of the data. For
example, Facebook stores all user profiles, comments,
friends lists, and likes at each of its datacenters [27].
Users connect to a nearby datacenter, and applications
strive to handle requests entirely within that datacenter.

Inside the datacenter, client requests are served by
a front-end web server. Front-ends serve requests by
reading and writing data to and from storage tier nodes.
Writes are asynchronously replicated to storage tiers in
other datacenters to keep the replicas loosely up-to-date.

In order to scale, the storage cluster in each datacen-
ter is typically partitioned across 10s to 1000s of ma-
chines. As a primitive example, Machine 1 might store
and serve user profiles for people whose names start with
‘A’, Server 2 for ‘B’, and so on.

As a storage system, Eiger’s clients are the front-end
web servers that issue read and write operations on behalf
of the human users. When we say, “a client writes a
value,” we mean that an application running on a web or
application server writes into the storage system.

2.2 Column-Family Data Model

Eiger uses the column-family data model, which provides
a rich structure that allows programmers to naturally ex-
press complex data and then efficiently query it. This
data model was pioneered by Google’s BigTable [19].
It is now available in the open-source Cassandra sys-
tem [37], which is used by many large web services
including EBay, Netflix, and Reddit.

Our implementation of Eiger is built upon Cassandra
and so our description adheres to its specific data model
where it and BigTable differ. Our description of the data
model and API are simplified, when possible, for clarity.

Basic Data Model. The column-family data model is
a “map of maps of maps” of named columns. The first-
level map associates a key with a set of named column
families. The second level of maps associates the column
family with a set composed exclusively of either columns
or super columns. If present, the third and final level of
maps associates each super column with a set of columns.
This model is illustrated in Figure 1: “Associations” are a
column family, “Likes” are a super column, and “NSDI”
is a column.

314 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI "13)

USENIX Association

bool <+— Dbatch_mutate
bool <+— atomic_mutate
{key—columns} <+— multiget_slice

({key—mutation})
({key—mutation})
({key, column_parent, slice_predicate})

Table 1: Core API functions in Eiger’s column family data model. Eiger introduces atomic_mutate and con-
verts multiget_slice into a read-only transaction. All calls also have an actor_id.

I User Data Associations I

Friends Likes

ID Town | Alice | Bob | Carol | NSDI | SOSP

Alice 1337 NYC - 3/2/11 | 9/2/12 | 9/1/12 -

Bob 2664 LA 3/2/11 - . R R

Figure 1: An example use of the column-family data
model for a social network setting.

Within a column family, each location is repre-
sented as a compound key and a single value, i.e., “Al-
ice:Assocs:Friends:Bob” with value “3/2/11”. These
pairs are stored in a simple ordered key-value store. All
data for a single row must reside on the same server.

Clients use the API shown in Table 1. Clients can
insert, update, or delete columns for multiple keys with a
batch_mutate or an atomic_mutate operation; each
mutation is either an insert or a delete. If a column
exists, an insert updates the value. Mutations in a
batch_mutate appear independently, while mutations
in an atomic_mutate appear as a single atomic group.

Similarly, clients can read many columns for mul-
tiple keys with the multiget_slice operation. The
client provides a list of tuples, each involving a key,
a column family name and optionally a super column
name, and a slice predicate. The slice predicate can
be a (start,stop, count) three-tuple, which matches
the first count columns with names between start and
stop. Names may be any comparable type, e.g., strings
or integers. Alternatively, the predicate can also be a list
of column names. In either case, a slice is a subset of the
stored columns for a given key.

Given the example data model in Figure 1 for a social
network, the following function calls show three typical
API calls: updating Alice’s hometown when she moves,
ending Alice and Bob’s friendship, and retrieving up to
10 of Alice’s friends with names starting with B to Z.

batch_mutate (Alice—insert(UserData:Town=Rome))

atomic_mutate (Alice—delete(Assocs:Friends:Bob),
Bob—delete(Assocs:Friends:Alice))

multiget_slice ({Alice, Assocs:Friends, (B, Z, 10)})

Counter Columns. Standard columns are updated by
insert operations that overwrite the old value. Counter

User OplID Operation
Alice wy insert(Alice, “-,Town”, NYC)
Bob) get(Alice, “-,Town”)
Bob w3 insert(Bob, “-,Town”, LA)
Alice 14 get(Bob, “-,Town”))
Carol ws insert(Carol, “Likes, NSDI”, 8/31/12)
Alice wg insert(Alice, “Likes, NSDI”, 9/1/12)
Alice ry get(Carol, “Likes, NSDI”)
Alice wg insert(Alice, “Friends, Carol”, 9/2/12)
(a)
zZ x £
g & 2
e Dependencies
g, T og _
g w| B
@ w3 wi
(b) (d)

Figure 2: (a) A set of example operations; (b) the
graph of causality between them; (c) the correspond-
ing dependency graph; and (d) a table listing nearest
(bold), one-hop (underlined), and all dependencies.

columns, in contrast, can be commutatively updated us-
ing an add operation. They are useful for maintaining
numerical statistics, e.g., a “liked_by_count” for NSDI
(not shown in figure), without the need to carefully read-
modify-write the object.

2.3 Causal Consistency

A rich data model alone does not provide an intuitive and
useful storage system. The storage system’s consistency
guarantees can restrict the possible ordering and timing
of operations throughout the system, helping to simplify
the possible behaviors that a programmer must reason
about and the anomalies that clients may see.

The strongest forms of consistency (linearizability, se-
rializability, and sequential consistency) are provably in-
compatible with our low-latency requirement [8, 42], and
the weakest (eventual consistency) allows many possible
orderings and anomalies. For example, under eventual
consistency, after Alice updates her profile, she might not
see that update after a refresh. Or, if Alice and Bob are
commenting back-and-forth on a blog post, Carol might
see a random non-contiguous subset of that conversation.

USENIX Association

10th USENIX Symposium on Networked Systems Design and Implementation (NSDI "13) 315

Fortunately, causal consistency can avoid many such
inconvenient orderings, including the above examples,
while guaranteeing low latency. Interestingly, the moti-
vating example Google used in the presentation of their
transactional, linearizable, and non-low-latency system
Spanner [22]—where a dissident removes an untrustwor-
thy person from his friends list and then posts politically
sensitive speech—only requires causal consistency.

Causal consistency provides a partial order over oper-
ations in the system according to the notion of potential
causality [2, 38], which is defined by three rules:

e Thread-of-Execution. An operation performed by a
thread is causally after all of its previous ones.

* Reads-From. An operation that reads a value is
causally after the operation that wrote the value.

* Transitive-Closure. If operation a is causally after
b, and b is causally after c, then a is causally after c.

Figure 2 shows several example operations and illustrates
their causal relationships. Arrows indicate the sink is
causally after the source.

Write operations have dependencies on all other write
operations that they are causally after. Eiger uses these
dependencies to enforce causal consistency: It does not
apply (commit) a write in a cluster until verifying that
the operation’s dependencies are satisfied, meaning those
writes have already been applied in the cluster.

While the number of dependencies for a write grows
with a client’s lifetime, the system does not need to track
every dependency. Rather, only a small subset of these,
the nearest dependencies, are necessary for ensuring
causal consistency. These dependencies, which have a
longest path of one hop to the current operation, tran-
sitively capture all of the ordering constraints on this
operation. In particular, because all non-nearest depen-
dencies are depended upon by at least one of the nearest,
if this current operation occurs after the nearest depen-
dencies, then it will occur after all non-nearest as well (by
transitivity). Eiger actually tracks one-hop dependencies,
a slightly larger superset of nearest dependencies, which
have a shortest path of one hop to the current operation.
The motivation behind tracking one-hop dependencies is
discussed in Section 3.2. Figure 2(d) illustrates the types
of dependencies, e.g., wg’s dependency on wy is one-hop
but not nearest.

3 Eiger System Design

The design of Eiger assumes an underlying partitioned,
reliable, and linearizable data store inside of each data-
center. Specifically, we assume:

1. The keyspace is partitioned across logical servers.
2. Linearizability is provided inside a datacenter.

3. Keys are stored on logical servers, implemented
with replicated state machines. We assume that a
failure does not make a logical server unavailable,
unless it makes the entire datacenter unavaible.

Each assumption represents an orthogonal direction of
research to Eiger. By assuming these properties instead
of specifying their exact design, we focus our explanation
on the novel facets of Eiger.

Keyspace partitioning may be accomplished with con-
sistent hashing [34] or directory-based approaches [6,
30]. Linearizability within a datacenter is achieved by
partitioning the keyspace and then providing lineariz-
ability for each partition [33]. Reliable, linearizable
servers can be implemented with Paxos [39] or primary-
backup [3] approaches, e.g., chain replication [57]. Many
existing systems [5, 13, 16, 54], in fact, provide all as-
sumed properties when used inside a single datacenter.

3.1 Achieving Causal Consistency

Eiger provides causal consistency by explicitly check-
ing that an operation’s nearest dependencies have been
applied before applying the operation. This approach is
similar to the mechanism used by COPS [43], although
COPS places dependencies on values, while Eiger uses
dependencies on operations.

Tracking dependencies on operations significantly im-
proves Eiger’s efficiency. In the column family data
model, it is not uncommon to simultaneously read or
write many columns for a single key. With dependencies
on values, a separate dependency must be used for each
column’s value and thus |column| dependency checks
would be required; Eiger could check as few as one. In
the worst case, when all columns were written by dif-
ferent operations, the number of required dependency
checks degrades to one per value.

Dependencies in Eiger consist of a locator and a
unique id. The locator is used to ensure that any other
operation that depends on this operation knows which
node to check with to determine if the operation has been
committed. For mutations of individual keys, the locator
is simply the key itself. Within a write transaction the
locator can be any key in the set; all that matters is that
each “sub-operation” within an atomic write be labeled
with the same locator.

The unique id allows dependencies to precisely map
to operations and is identical to the operation’s times-
tamp. A node in Eiger checks dependencies by sending a
dep_check operation to the node in its local datacenter
that owns the locator. The node that owns the locator
checks local data structures to see if has applied the op-
eration identified by its unique id. If it has, it responds
immediately. If not, it blocks the dep_check until it ap-
plies the operation. Thus, once all dep_checks return, a

316 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI "13)

USENIX Association

server knows all causally previous operations have been
applied and it can safely apply this operation.

3.2 Client Library

Clients access their local Eiger datacenter using a client
library that: (1) mediates access to nodes in the local
datacenter; (2) executes the read and write transaction
algorithms; and, most importantly (3) tracks causality
and attaches dependencies to write operations. '

The client library mediates access to the local data-
center by maintaining a view of its live servers and the
partitioning of its keyspace. The library uses this infor-
mation to send operations to the appropriate servers and
sometimes to split operations that span multiple servers.

The client library tracks causality by observing a
client’s operations.> The API exposed by the client li-
brary matches that shown earlier in Table 1 with the addi-
tion of a actor_id field. As an optimization, dependen-
cies are tracked on a per-user basis with the actor_id
field to avoid unnecessarily adding thread-of-execution
dependencies between operations done on behalf of dif-
ferent real-world users (e.g., operations issued on behalf
of Alice are not entangled with operations issued on
behalf of Bob).

When a client issues a write, the library attaches de-
pendencies on its previous write and on all the writes
that wrote a value this client has observed through reads
since then. This one-hop set of dependencies is the set of
operations that have a path of length one to the current
operation in the causality graph. The one-hop dependen-
cies are a superset of the nearest dependencies (which
have a longest path of length one) and thus attaching and
checking them suffices for providing causal consistency.

We elect to track one-hop dependencies because we
can do so without storing any dependency information
at the servers. Using one-hop dependencies slightly in-
creases both the amount of memory needed at the client
nodes and the data sent to servers on writes.>

3.3 Basic Operations

Eiger’s basic operations closely resemble Cassandra,
upon which it is built. The main differences involve
the use of server-supplied logical timestamps instead of
client-supplied real-time timestamps and, as described
above, the use of dependencies and dep_checks.

!Our implementation of Eiger, like COPS before it, places the client
library with the storage system client—typically a web server. Alterna-
tive implementations might store the dependencies on a unique node per
client, or even push dependency tracking to a rich javascript application
running in the client web browser itself, in order to successfully track
web accesses through different servers. Such a design is compatible
with Eiger, and we view it as worthwhile future work.

Logical Time. Clients and servers in Eiger maintain a
logical clock [38], and messages include a logical times-
tamp that updates these clocks. The clocks and times-
tamps provide a progressing logical time throughout the
entire system. The low-order bits in each timestamps are
set to the stamping server’s unique identifier, so each is
globally distinct. Servers use these logical timestamps to
uniquely identify and order operations.

Local Write Operations. All three write operations in
Eiger—insert, add, and delete—operate by replac-
ing the current (potentially non-existent) column in a
location. insert overwrites the current value with a
new column, e.g., update Alice’s home town from NYC
to MIA. add merges the current counter column with
the update, e.g., increment a liked-by count from 8 to 9.
delete overwrites the current column with a tombstone,
e.g., Carol is no longer friends with Alice. When each
new column is written, it is timestamped with the current
logical time at the server applying the write.

Cassandra atomically applies updates to a single row
using snap trees [14], so all updates to a single key in
abatch_mutate have the same timestamp. Updates to
different rows on the same server in a batch_mutate
will have different timestamps because they are applied
at different logical times.

Read Operations. Read operations return the current
column for each requested location. Normal columns
return binary data. Deleted columns return an empty
column with a deleted bit set. The client library
strips deleted columns out of the returned results, but
records dependencies on them as required for correct-
ness. Counter columns return a 64-bit integer.

Replication. Servers replicate write operations to their
equivalent servers in other datacenters. These are the
servers that own the same portions of the keyspace as the
local server. Because the keyspace partitioning may vary
from datacenter to datacenter, the replicating server must
sometimes split batch_mutate operations.

When a remote server receives a replicated add op-
eration, it applies it normally, merging its update with
the current value. When a server receives a replicated
insert or delete operation, it compares the times-
tamps for each included column against the current col-
umn for each location. If the replicated column is log-
ically newer, it uses the timestamp from the replicated
column and otherwise overwrites the column as it would
with a local write. That timestamp, assigned by the

2Eiger can only track causality it sees, so the traditional criticisms
of causality [20] still apply, e.g., we would not capture the causality
associated with an out-of-band phone call.

3In contrast, our alternative design for tracking the (slightly smaller
set of) nearest dependencies put the dependency storage burden on the
servers, a trade-off we did not believe generally worthwhile.

USENIX Association

10th USENIX Symposium on Networked Systems Design and Implementation (NSDI "13) 317

datacenter that originally accepted the operation that
wrote the value, uniquely identifies the operation. If
the replicated column is older, it is discarded. This sim-
ple procedure ensures causal consistency: If one column
is causally after the other, it will have a later timestamp
and thus overwrite the other.

The overwrite procedure also implicitly handles con-
flicting operations that concurrently update a location. It
applies the last-writer-wins rule [55] to deterministically
allow the later of the updates to overwrite the other. This
ensures that all datacenters converge to the same value for
each column. Eiger could detect conflicts using previous
pointers and then resolve them with application-specific
functions similar to COPS, but we did not implement
such conflict handling and omit details for brevity.

Counter Columns. The commutative nature of counter
columns complicates tracking dependencies. In normal
columns with overwrite semantics, each value was writ-
ten by exactly one operation. In counter columns, each
value was affected by many operations. Consider a
counter with value 7 from +1, +2, and +4 operations.
Each operation contributed to the final value, so a read of
the counter incurs dependencies on all three. Eiger stores
these dependencies with the counter and returns them to
the client, so they can be attached to its next write.

Naively, every update of a counter column would in-
crement the number of dependencies contained by that
column ad infinitum. To bound the number of contained
dependencies, Eiger structures the add operations occur-
ring within a datacenter. Recall that all locally originating
add operations within a datacenter are already ordered
because the datacenter is linearizable. Eiger explicitly
tracks this ordering in a new add by adding an extra
dependency on the previously accepted add operation
from the datacenter. This creates a single dependency
chain that transitively covers all previous updates from
the datacenter. As a result, each counter column contains
at most one dependency per datacenter.

Eiger further reduces the number of dependencies con-
tained in counter columns to the nearest dependencies
within that counter column. When a server applies an
add, it examines the operation’s attached dependencies.
It first identifies all dependencies that are on updates
from other datacenters to this counter column. Then, if
any of those dependencies match the currently stored de-
pendency for another datacenter, Eiger drops the stored
dependency. The new operation is causally after any
local matches, and thus a dependency on it transitively
covers those matches as well. For example, if Alice reads
a counter with the value 7 and then increments it, her +1
is causally after all operations that commuted to create
the 7. Thus, any reads of the resulting 8 would only bring
a dependency on Alice’s update.

1
Location1 |— A } B }—c—
2 12 19
Location2 | J —x } L
3 15
Location 3 | X } Y

Logical Time

Figure 3: Validity periods for values written to differ-
ent locations. Crossbars (and the specified numeric
times) correspond to the earliest and latest valid time
for values, which are represented by letters.

4 Read-Only Transactions

Read-only transactions—the only read operations in
Eiger—enable clients to see a consistent view of multiple
keys that may be spread across many servers in the local
datacenter. Eiger’s algorithm guarantees low latency be-
cause it takes at most two rounds of parallel non-blocking
reads in the local datacenter, plus at most one additional
round of local non-blocking checks during concurrent
write transactions, detailed in §5.4. We make the same
assumptions about reliability in the local datacenter as
before, including “logical” servers that do not fail due to
linearizable state machine replication.

Why read-only transactions? Even though Eiger
tracks dependencies to update each datacenter consis-
tently, non-transactional reads can still return an incon-
sistent set of values. For example, consider a scenario
where two items were written in a causal order, but read
via two separate, parallel reads. The two reads could
bridge the write operations (one occurring before either
write, the other occurring after both), and thus return
values that never actually occurred together, e.g., a “new’
object and its “old” access control metadata.

i

4.1 Read-only Transaction Algorithm

The key insight in the algorithm is that there exists a
consistent result for every query at every logical time.
Figure 3 illustrates this: As operations are applied in
a consistent causal order, every data location (key and
column) has a consistent value at each logical time.

At a high level, our new read transaction algorithm
marks each data location with validity metadata, and uses
that metadata to determine if a first round of optimistic
reads is consistent. If the first round results are not con-
sistent, the algorithm issues a second round of reads that
are guaranteed to return consistent results.

More specifically, each data location is marked with
an earliest valid time (EVT). The EVT is set to the
server’s logical time when it locally applies an opera-
tion that writes a value. Thus, in an operation’s accepting

318 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI "13)

USENIX Association

| 7 i 10
Locl b— a— —s— XB
2 9 12 16
toc2 F—1- S
3 8 3 15

Loc3 F—x—-d F—x

Logical Time

(b) Two Rounds Needed

Logical Time

(a) One Round Sufficient

Figure 4: Examples of read-only transactions. The
effective time of each transaction is shown with a
gray line; this is the time requested for location 1 in
the second round in (b).

datacenter—the one at which the operation originated—
the EVT is the same as its timestamp. In other datacen-
ters, the EVT is later than its timestamp. In both cases,
the EVT is the exact logical time when the value became
visible in the local datacenter.

A server responds to a read with its currently visible
value, the corresponding EVT, and its current logical
time, which we call the latest valid time (LVT). Because
this value is still visible, we know it is valid for at least
the interval between the EVT and LVT. Once all first-
round reads return, the client library compares their times
to check for consistency. In particular, it knows all values
were valid at the same logical time (i.e., correspond to a
consistent snapshot) iff the maximum EVT < the mini-
mum LVT. If so, the client library returns these results;
otherwise, it proceeds to a second round. Figure 4(a)
shows a scenario that completes in one round.

The effective time of the transaction is the minimum
LVT > the maximum EVT. It corresponds both to a logi-
cal time in which all retrieved values are consistent, as
well as the current logical time (as of its response) at
a server. As such, it ensures freshness—necessary in
causal consistency so that clients always see a progress-
ing datacenter that reflects their own updates.

For brevity, we only sketch a proof that read transac-
tions return the set of results that were visible in their
local datacenter at the transaction’s effective time, EffT.
By construction, assume a value is visible at logical time
t iff val.LEVT <t < val.LVT. For each returned value,
if it is returned from the first round, then val.EVT <
maxEVT < EffT by definition of maxEVT and EffT, and
val.LVT > EffT because it is not being requested in the
second round. Thus, val. EVT < EffT < val.LVT, and
by our assumption, the value was visible at EffT. If a
result is from the second round, then it was obtained by
a second-round read that explicitly returns the visible
value at time EffT, described next.

4.2 Two-Round Read Protocol

A read transaction requires a second round if there does
not exist a single logical time for which all values read

function read_only_trans(requests):
Send first round requests in parallel
for r in requests
val[r] = multiget_slice(r)
Calculate the maximum EVT
maxEVT = @
for r in requests
maxEVT = max(maxEVT, val[r].EVT)

Calculate effective time
EffT = o
for r in requests
if val[r].LVT > maxEVT
EffT = min(E£f£fT, val[r].LVT)

Send second round requests in parallel
for r in requests
if val[r].LVT < E£f£T
val[r] = multiget_slice_by_time(r, EffT)

Return only the requested data
return extract_keys_to_columns(res)

Figure 5: Pseudocode for read-only transactions.

in the first round are valid. This can only occur when
there are concurrent updates being applied locally to the
requested locations. The example in Figure 4(b) requires
a second round because location 2 is updated to value K
at time 12, which is not before time 10 when location 1’s
server returns value A.

During the second round, the client library issues
multiget_slice_by_time requests, specifying a read
at the transaction’s effective time. These reads are sent
only to those locations for which it does not have a valid
result, i.e., their LVT is earlier than the effective time. For
example, in Figure 4(b) amultiget_slice_by_time
request is sent for location 1 at time 15 and returns a new
value B.

Servers respond tomultiget_slice_by_time reads
with the value that was valid at the requested logical time.
Because that result may be different than the currently
visible one, servers sometimes must store old values for
each location. Fortunately, the extent of such additional
storage can be limited significantly.

4.3 Limiting Old Value Storage

Eiger limits the need to store old values in two ways.
First, read transactions have a timeout that specifies
their maximum real-time duration. If this timeout fires—
which happens only when server queues grow pathologi-
cally long due to prolonged overload—the client library
restarts a fresh read transaction. Thus, servers only need
to store old values that have been overwritten within this
timeout’s duration.

Second, Eiger retains only old values that could be
requested in the second round. Thus, servers store only

USENIX Association

10th USENIX Symposium on Networked Systems Design and Implementation (NSDI "13) 319

values that are newer than those returned in a first round
within the timeout duration. For this optimization, Eiger
stores the last access time of each value.

4.4 Read Transactions for Linearizability

Linearizability (strong consistency) is attractive to pro-
grammers when low latency and availability are not strict
requirements. Simply being linearizable, however, does
not mean that a system is transactional: There may be no
way to extract a mutually consistent set of values from
the system, much as in our earlier example for read trans-
actions. Linearizability is only defined on, and used with,
operations that read or write a single location (originally,
shared memory systems) [33].

Interestingly, our algorithm for read-only transactions
works for fully linearizable systems, without modifica-
tion. In Eiger, in fact, if all writes that are concurrent with
a read-only transaction originated from the local datacen-
ter, the read-only transaction provides a consistent view
of that linearizable system (the local datacenter).

5 Write-Only Transactions

Eiger’s write-only transactions allow a client to atomi-
cally write many columns spread across many keys in the
local datacenter. These values also appear atomically in
remote datacenters upon replication. As we will see, the
algorithm guarantees low latency because it takes at most
2.5 message RTTs in the /local datacenter to complete,
no operations acquire locks, and all phases wait on only
the previous round of messages before continuing.

Write-only transactions have many uses. When a user
presses a save button, the system can ensure that all of
her five profile updates appear simultaneously. Similarly,
they help maintain symmetric relationships in social net-
works: When Alice accepts Bob’s friendship request,
both friend associations appear at the same time.

5.1 Write-Only Transaction Algorithm

To execute an atomic_mutate request—which has iden-
tical arguments to batch_mutate—the client library
splits the operation into one sub-request per local server
across which the transaction is spread. The library ran-
domly chooses one key in the transaction as the coor-
dinator key. It then transmits each sub-request to its
corresponding server, annotated with the coordinator key.

Our write transaction is a variant of two-phase com-
mit [51], which we call two-phase commit with positive
cohorts and indirection (2PC-PCI). 2PC-PCI operates
differently depending on whether it is executing in the
original (or “accepting”) datacenter, or being applied in
the remote datacenter after replication.

There are three differences between traditional 2PC
and 2PC-PClI, as shown in Figure 6. First, 2PC-PCI has
only positive cohorts; the coordinator always commits
the transaction once it receives a vote from all cohorts.*
Second, 2PC-PCI has a different pre-vote phase that
varies depending on the origin of the write transaction. In
the accepting datacenter (we discuss the remote below),
the client library sends each participant its sub-request
directly, and this transmission serves as an implicit PRE-
PARE message for each cohort. Third, 2PC-PCI cohorts
that cannot answer a query—because they have voted but
have not yet received the commit—ask the coordinator if
the transaction is committed, effectively indirecting the
request through the coordinator.

5.2 Local Write-Only Transactions

When a participant server, which is either the coordina-
tor or a cohort, receives its transaction sub-request from
the client, it prepares for the transaction by writing each
included location with a special “pending” value (retain-
ing old versions for second-round reads). It then sends a
YESVOTE to the coordinator.

When the coordinator receives a YESVOTE, it updates
its count of prepared keys. Once all keys are prepared, the
coordinator commits the transaction. The coordinator’s
current logical time serves as the (global) timestamp and
(local) EVT of the transaction and is included in the
COMMIT message.

When a cohort receives a COMMIT, it replaces the
“pending” columns with the update’s real values, and
ACKs the committed keys. Upon receiving all ACKs, the
coordinator safely cleans up its transaction state.

5.3 Replicated Write-Only Transactions

Each transaction sub-request is replicated to its “equiv-
alent” participant(s) in the remote datacenter, possibly
splitting the sub-requests to match the remote key parti-
tioning. When a cohort in a remote datacenter receives a
sub-request, it sends a NOTIFY with the key count to the
transaction coordinator in its datacenter. This coordinator
issues any necessary dep_checks upon receiving its own
sub-request (which contains the coordinator key). The co-
ordinator’s checks cover the entire transaction, so cohorts
send no checks. Once the coordinator has received all
NOTIFY messages and dep_checks responses, it sends
each cohort a PREPARE, and then proceeds normally.
For reads received during the indirection window in
which participants are uncertain about the status of a

“Eiger only has positive cohorts because it avoids all the normal
reasons to abort (vote no): It does not have general transactions that
can force each other to abort, it does not have users that can cancel
operations, and it assumes that its logical servers do not fail.

320 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI 13)

USENIX Association

Client Coordinator Cohorts Local/Accepting Datacenter Accepting Remote Datacenter

Client Coordinator Cohorts Datacenter Coordinator Cohorts
| d]_Tran
Trﬁns T =25
—
[=Ta
Yes § §
Commiy
Ack
A [Ak
K
n‘A}
(a) Traditional 2PC (b) Local Write-Only Txn (c) Replicated Write-Only Txn

Figure 6: Message flow diagrams for traditional 2PC and write-only transaction. Solid boxes denote when
cohorts block reads. Striped boxes denote when cohorts will indirect a commitment check to the coordinator.

transaction, cohorts must query the coordinator for its
state. To minimize the duration of this window, before
preparing, the coordinator waits for (1) all participants
to NOTIFY and (2) all dep_checks to return. This helps
prevent a slow replica from causing needless indirection.

Finally, replicated write-only transactions differ in that
participants do not always write pending columns. If a lo-
cation’s current value has a newer timestamp than that of
the transaction, the validity interval for the transaction’s
value is empty. Thus, no read will ever return it, and it
can be safely discarded. The participant continues in the
transaction for simplicity, but does not need to indirect
reads for this location.

5.4 Reads when Transactions are Pending

If a first-round read accesses a location that could be
modified by a pending transaction, the server sends a
special empty response that only includes a LVT (i.e., its
current time). This alerts the client that it must choose
an effective time for the transaction and send the server a
second-round multiget_slice_by_time request.

When a server with pending transactions receives a
multiget_slice_by_time request, it first traverses its
old versions for each included column. If there exists a
version valid at the requested time, the server returns it.

Otherwise, there are pending transactions whose po-
tential commit window intersects the requested time and
the server must resolve their ordering. It does so by
sending a commit_check with this requested time to the
transactions’ coordinator(s). Each coordinator responds
whether the transaction had been committed at that (past)
time and, if so, its commit time.

Once a server has collected all commit_check re-
sponses, it updates the validity intervals of all ver-

sions of all relevant locations, up to at least the re-
quested (effective) time. Then, it can respond to the
multiget_slice_by_time message as normal.

The complementary nature of Eiger’s transactional al-
gorithms enables the atomicity of its writes. In particular,
the single commit time for a write transaction (EVT) and
the single effective time for a read transaction lead each
to appear at a single logical time, while its two-phase
commit ensures all-or-nothing semantics.

6 Failure

In this section, we examine how Eiger behaves under
failures, including single server failure, meta-client redi-
rection, and entire datacenter failure.

Single server failures are common and unavoidable
in practice. Eiger guards against their failure with the
construction of logical servers from multiple physical
servers. For instance, a logical server implemented with
a three-server Paxos group can withstand the failure of
one of its constituent servers. Like any system built on
underlying components, Eiger inherits the failure modes
of its underlying building blocks. In particular, if a log-
ical server assumes no more than f physical machines
fail, Eiger must assume that within a single logical server
no more than f physical machines fail.

Meta-clients that are the clients of Eiger’s clients (i.e.,
web browsers that have connections to front-end web tier
machines) will sometimes be directed to a different data-
center. For instance, a redirection may occur when there
is a change in the DNS resolution policy of a service.
When a redirection occurs during the middle of an active
connection, we expect service providers to detect it using
cookies and then redirect clients to their original data-
center (e.g., using HTTP redirects or triangle routing).

USENIX Association 10th USENIX Symposium on

Networked Systems Design and Implementation (NSDI "13) 321

When a client is not actively using the service, however,
policy changes that reassign it to a new datacenter can
proceed without complication.

Datacenter failure can either be transient (e.g., network
or power cables are cut) or permanent (e.g., datacenter
is physically destroyed by an earthquake). Permanent
failures will result in data loss for data that was accepted
and acknowledged but not yet replicated to any other
datacenter. The colocation of clients inside the datacenter,
however, will reduce the amount of externally visible
data loss. Only data that is not yet replicated to another
datacenter, but has been acknowledged to both Eiger’s
clients and meta-clients (e.g., when the browser receives
an Ajax response indicating a status update was posted)
will be visibly lost. Transient datacenter failure will not
result in data loss.

Both transient and permanent datacenter failures will
cause meta-clients to reconnect to different datacen-
ters. After some configured timeout, we expect service
providers to stop trying to redirect those meta-clients to
their original datacenters and to connect them to a new
datacenter with an empty context. This could result in
those meta-clients effectively moving backwards in time.
It would also result in the loss of causal links between the
data they observed in their original datacenter and their
new writes issued to their new datacenter. We expect that
transient datacenter failure will be rare (no ill effects),
transient failure that lasts long enough for redirection to
be abandoned even rarer (causality loss), and permanent
failure even rarer still (data loss).

7 Evaluation

This evaluation explores the overhead of Eiger’s stronger
semantics compared to eventually-consistent Cassandra,
analytically compares the performance of COPS and
Eiger, and shows that Eiger scales to large clusters.

7.1 Implementation

Our Eiger prototype implements everything described in
the paper as 5000 lines of Java added to and modifying
the existing 75000 LoC in Cassandra 1.1 [17, 37]. All of
Eiger’s reads are transactional. We use Cassandra con-
figured for wide-area eventual consistency as a baseline
for comparison. In each local cluster, both Eiger and
Cassandra use consistent hashing to map each key to a
single server, and thus trivially provide linearizability.
In unmodified Cassandra, for a single logical request,
the client sends all of its sub-requests to a single server.
This server splits batch_mutate andmultiget_slice
operations from the client that span multiple servers,
sends them to the appropriate server, and re-assembles

the responses for the client. In Eiger, the client library
handles this splitting, routing, and re-assembly directly,
allowing Eiger to save a local RTT in latency and poten-
tially many messages between servers. With this change,
Eiger outperforms unmodified Cassandra in most set-
tings. Therefore, to make our comparison to Cassandra
fair, we implemented an analogous client library that han-
dles the splitting, routing, and re-assembly for Cassandra.
The results below use this optimization.

7.2 Eiger Overheads

We first examine the overhead of Eiger’s causal consis-
tency, read-only transactions, and write-only transactions.
This section explains why each potential source of over-
head does not significantly impair throughput, latency, or
storage; the next sections confirm empirically.

Causal Consistency Overheads. Write operations
carry dependency metadata. Its impact on throughput
and latency is low because each dependency is 16B; the
number of dependencies attached to a write is limited
to its small set of one-hop dependencies; and writes are
typically less frequent. Dependencies have no storage
cost because they are not stored at the server.
Dependency check operations are issued in remote
datacenters upon receiving a replicated write. Limiting
these checks to the write’s one-hop dependencies mini-
mizes throughput degradation. They do not affect client-
perceived latency, occuring only during asynchronous
replication, nor do they add storage overhead.

Read-only Transaction Overheads. Validity-interval
metadata is stored on servers and returned to clients
with read operations. Its effect is similarly small: Only
the 8B EVT is stored, and the 16B of metadata returned
to the client is tiny compared to typical key/column/value
sets.

If second-round reads were always needed, they would
roughly double latency and halve throughput. Fortu-
nately, they occur only when there are concurrent writes
to the requested columns in the local datacenter, which
is rare given the short duration of reads and writes.

Extra-version storage is needed at servers to handle
second-round reads. It has no impact on throughput or
latency, and its storage footprint is small because we
aggressively limit the number of old versions (see §4.3).

Write-only Transaction Overheads. Write transac-
tions write columns twice: once to mark them pending
and once to write the true value. This accounts for about
half of the moderate overhead of write transactions, eval-
uated in §7.5. When only some writes are transactional
and when the writes are a minority of system operations
(as found in prior studies [7, 28]), this overhead has a

322 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI 13)

USENIX Association

Latency (ms)
50% 90% 95% 99%

Reads
Cassandra-Eventual 0.38 0.56 0.61 1.13
Eiger 1 Round 0.47 0.67 0.70 1.27
Eiger 2 Round 0.68 0.94 1.04 1.85
Eiger Indirected 0.78 1.11 1.18 2.28

Cassandra-Strong-A 8521 8572 8596 86.77
Cassandra-Strong-B 21.89 2228 2239 2292

Writes
Cassandra-Eventual

Cassandra-Strong-A 0.42 0.63 091 1.67
Eiger Normal 0.45 0.67 0.75 1.92
Eiger Normal (2) 0.51 0.79 1.38 4.05

Eiger Transaction (2) 0.73 2.28 2.94 4.39
Cassandra-Strong-B 21.65 2185 2193 2229

Table 2: Latency micro-benchmarks.

small effect on overall throughput. The second write
overwrites the first, consuming no space.

Many 2PC-PCI messages are needed for the write-
only algorithm. These messages add 1.5 local RTTs to
latency, but have little effect on throughput: the messages
are small and can be handled in parallel with other steps
in different write transactions.

Indirected second-round reads add an extra local RTT
to latency and reduce read throughput vs. normal second-
round reads. They affect throughput minimally, however,
because they occur rarely: only when the second-round
read arrives when there is a not-yet-committed write-only
transaction on an overlapping set of columns that pre-
pared before the read-only transaction’s effective time.

7.3 Experimental Setup

The first experiments use the shared VICCI testbed [45,
58], which provides users with Linux VServer instances.
Each physical machine has 2x6 core Intel Xeon X5650
CPUs, 48GB RAM, and 2x1GigE network ports.

All experiments are between multiple VICCI sites.
The latency micro-benchmark uses a minimal wide-area
setup with a cluster of 2 machines at the Princeton, Stan-
ford, and University of Washington (UW) VICCT sites.
All other experiments use 8-machine clusters in Stanford
and UW and an additional 8 machines in Stanford as
clients. These clients fully load their local cluster, which
replicates its data to the other cluster.

The inter-site latencies were 88ms between Princeton
and Stanford, 84ms between Princeton and UW, and
20ms between Stanford and UW. Inter-site bandwidth
was not a limiting factor.

Every datapoint in the evaluation represents the me-
dian of 5+ trials. Latency micro-benchmark trials are
30s, while all other trials are 60s. We elide the first and
last quarter of each trial to avoid experimental artifacts.

(2]
o
o

Keys/Server 1 @ 5 =1 10 mm -

(o))
o
o

N
o
o

N
[=]
o

_
o
o

Throughput (K Columns/sec)
]
o

o

1 2 3 4 5 6 7 8
Servers Per Transaction

Figure 7: Throughput of an 8-server cluster for write
transactions spread across 1 to 8 servers, with 1, 5,
or 10 keys written per server. The dot above each
bar shows the throughput of a similarly-structured
eventually-consistent Cassandra write.

7.4 Latency Micro-benchmark

Eiger always satisfies client operations within a local
datacenter and thus, fundamentally, is low-latency. To
demonstrate this, verify our implementation, and com-
pare with strongly-consistent systems, we ran an experi-
ment to compare the latency of read and write operations
in Eiger vs. three Cassandra configurations: eventual
(R=1, W=1), strong-A (R=3, W=1), and strong-B (R=2,
W=2), where R and W indicate the number of datacenters
involved in reads and writes.>

The experiments were run from UW with a single
client thread to isolate latency differences. Table 2 re-
ports the median, 90%, 95%, and 99% latencies from op-
erations on a single 1B column. For comparison, two 1B
columns, stored on different servers, were also updated
together as part of transactional and non-transactional
“Eiger (2)” write operations.

All reads in Eiger—one-round, two-round, and worst-
case two-round-and-indirected reads—have median la-
tencies under Ims and 99% latencies under 2.5ms.
atomic_mutate operations are slightly slower than
batch_mutate operations, but still have median latency
under Ims and 99% under Sms. Cassandra’s strongly
consistent operations fared much worse. Configuration
“A” achieved fast writes, but reads had to access all dat-
acenters (including the ~84ms RTT between UW and
Princeton); “B” suffered wide-area latency for both reads
and writes (as the second datacenter needed for a quorum
involved a ~20ms RTT between UW and Stanford).

7.5 Write Transaction Cost

Figure 7 shows the throughput of write-only transactions,
and Cassandra’s non-atomic batch mutates, when the

SCassandra single-key writes are not atomic across different nodes,
S0 its strong consistency requires read repair (write-back) and R>N/2.

USENIX Association

10th USENIX Symposium on Networked Systems Design and Implementation (NSDI "13) 323

Facebook
50% 90% 99%

Value Size (B) 1-4K 128 16 32 4K

Parameter Range Default

Cols/Key for Reads 1-32 5 1 2 128
Cols/Key for Writes 1-32 5 1 2 128
Keys/Read 1-32 5 1 16 128
Keys/Write 1-32 5 1

Write Fraction 0-1.0 1 .002

Write Txn Fraction 0-1.0 .5 Oor 1.0
Read Txn Fraction 1.0 1.0 1.0

Table 3: Dynamic workload generator parameters.
Range is the space covered in the experiments; Face-
book describes the distribution for that workload.

keys they touch are spread across 1 to 8 servers. The ex-
periment used the default parameter settings from Table 3
with 100% writes and 100% write transactions.

Eiger’s throughput remains competitive with batch
mutates as the transaction is spread across more servers.
Additional servers only increase 2PC-PCI costs, which
account for less than 10% of Eiger’s overhead. About
half of the overhead of write-only transactions comes
from double-writing columns; most of the remainder is
due to extra metadata. Both absolute and Cassandra-
relative throughput increase with the number of keys
written per server, as the coordination overhead remains
independent of the number of columns.

7.6 Dynamic Workloads

We created a dynamic workload generator to explore the
space of possible workloads. Table 3 shows the range and
default value of the generator’s parameters. The results
from varying each parameter while the others remain at
their defaults are shown in Figure 8.

Space constraints permit only a brief review of these
results. Overhead decreases with increasing value size,
because metadata represents a smaller portion of message
size. Overhead is relatively constant with increases in the
columns/read, columns/write, keys/read, and keys/write
ratios because while the amount of metadata increases,
it remains in proportion to message size. Higher frac-
tions of write transactions (within an overall 10% write
workload) do not increase overhead.

Eiger’s throughput is overall competitive with the
eventually-consistent Cassandra baseline. With the de-
fault parameters, its overhead is 15%. When they are
varied, its overhead ranges from 0.5% to 25%.

7.7 Facebook Workload

For one realistic view of Eiger’s overhead, we param-
eterized a synthetic workload based upon Facebook’s
production TAO system [53]. Parameters for value sizes,

Cassandra —e— Eiger =—f=—
1.0 & © -+
0.8 T
0.6
0.4
0.2
0.0 5 8 64 512 4056
Value Size (B)
1.0 ©
0.8
0.6
0.4
0.2
0.0 5 4 8 16 32
Columns/Read
‘g_ag © ©
5056
004
‘50.2
00 1 2 4 8 16 32
Columns/Write
1.0 & © ©
0.8
0.6
0.4
0.2
0.0 1 2 4 8 16 32
Keys/Read
31.0 e © ©
NO.8
©0.6
562
S0.
0.0 1 2 4 8 16 32
Keys/Write
1.0 © © © ©
0.8
0.6
0.4
0.2
0.0 0 0.2 0.4 0.6 0.8 1
Write Fraction
1.0 ©
0.8
0.6
0.4
0.2
005 02 04 06 08 1
Write Transaction Fraction
Figure 8: Results from exploring our dynamic-

workload generator’s parameter space. Each exper-
iment varies one parameter while keeping all others
at their default value (indicated by the vertical line).
Eiger’s throughput is normalized against eventually-
consistent Cassandra.

columns/key, and keys/operation are chosen from dis-
crete distributions measured by the TAO team. We show
results with a 0% write transaction fraction (the actual
workload, because TAO lacks transactions), and with
100% write transactions. Table 3 shows the heavy-tailed
distributions’ 50™, 90 and 99" percentiles.

Table 4 shows that the throughput for Eiger is within
7% of eventually-consistent Cassandra. The results for
0% and 100% write transactions are effectively identical
because writes are such a small part of the workload. For
this real-world workload, Eiger’s causal consistency and
stronger semantics do not impose significant overhead.

324 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI "13)

USENIX Association

Ops/sec Keys/sec ~ Columns/sec
Cassandra 23,657 94,502 498,239
Eiger 22,088 88,238 466,844
Eiger All Txns 22,891 91,439 480,904
Max Overhead 6.6% 6.6% 6.3%

Table 4: Throughput for the Facebook workload.

7.8 Performance vs. COPS

COPS and Eiger provide different data models and are
implemented in different languages, so a direct empirical
comparison is not meaningful. We can, however, intuit
how Eiger’s algorithms perform in the COPS setting.

Both COPS and Eiger achieve low latency around
Ims. Second-round reads would occur in COPS and
Eiger equally often, because both are triggered by the
same scenario: concurrent writes in the local datacenter
to the same keys. Eiger experiences some additional
latency when second-round reads are indirected, but this
is rare (and the total latency remains low). Write-only
transactions in Eiger would have higher latency than
their non-atomic counterparts in COPS, but we have also
shown their latency to be very low.

Beyond having write transactions, which COPS did
not, the most significant difference between Eiger and
COPS is the efficiency of read transactions. COPS’s read
transactions ("COPS-GT") add significant dependency-
tracking overhead vs. the COPS baseline under certain
conditions. In contrast, by tracking only one-hop de-
pendencies, Eiger avoids the metadata explosion that
COPS’ read-only transactions can suffer. We expect
that Eiger’s read transactions would operate roughly as
quickly as COPS’ non-transactional reads, and the sys-
tem as a whole would outperform COPS-GT despite
offering both read- and write-only transactions and sup-
porting a much more rich data model.

7.9 Scaling

To demonstrate the scalability of Eiger we ran the Face-
book TAO workload on N client machines that are fully
loading an N-server cluster that is replicating writes to
another N-server cluster, i.e., the N=128 experiment
involves 384 machines. This experiment was run on
PRODE’s Kodiak testbed [47], which provides an Emu-
lab [59] with exclusive access to hundreds of machines.
Each machine has 2 AMD Opteron 252 CPUS, 8GM
RAM, and an InfiniBand high-speed interface. The bot-
tleneck in this experiment is server CPU.

Figure 9 shows the throughput for Eiger as we scale N
from 1 to 128 servers/cluster. The bars show throughput
normalized against the throughput of the 1-server clus-
ter. Eiger scales out as the number of servers increases,
though this scaling is not linear from 1 to 8 servers/cluster.

g

~
Ny
®

64

Normalized Throughput (log)

1 2 4 8 16 32 64 128
Servers/Cluster (log)

Figure 9: Normalized throughput of N-server clus-
ters for the Facebook TAO workload. Bars are nor-
malized against the 1-server cluster.

The 1-server cluster benefits from batching; all opera-
tions that involve multiple keys are executed on a single
machine. Larger clusters distribute these multi-key oper-
ations over multiple servers and thus lose batching. This
mainly affects scaling from 1 to 8 servers/cluster (72%
average increase) and we see almost perfect linear scaling
from 8 to 128 servers/cluster (96% average increase).

8 Related Work

A large body of research exists about stronger consis-
tency in the wide area. This includes classical research
about two-phase commit protocols [51] and distributed
consensus (e.g., Paxos [39]). As noted earlier, protocols
and systems that provide the strongest forms of consis-
tency are provably incompatible with low latency [8, 42].
Recent examples includes Megastore [9], Spanner [22],
and Scatter [31], which use Paxos in the wide-area;
PNUTS [21], which provides sequential consistency on
a per-key basis and must execute in a key’s specified
primary datacenter; and Gemini [40], which provides
RedBlue consistency with low latency for its blue op-
erations, but high latency for its globally-serialized red
operations. In contrast, Eiger guarantees low latency.
Many previous system designs have recognized the
utility of causal consistency, including Bayou [44], lazy
replication [36], ISIS [12], causal memory [2], and
PRACTI [10]. All of these systems require single-
machine replicas (datacenters) and thus are not scalable.
Our previous work, COPS [43], bears the closest sim-
ilarity to Eiger, as it also uses dependencies to provide
causal consistency, and targets low-latency and scalable
settings. As we show by comparing these systems in
Table 5, however, Eiger represents a large step forward
from COPS. In particular, Eiger supports a richer data
model, has more powerful transaction support (whose al-
gorithms also work with other consistency models), trans-
mits and stores fewer dependencies, eliminates the need

USENIX Association

10th USENIX Symposium on Networked Systems Design and Implementation (NSDI "13) 325

COPS COPS-GT Eiger

Data Model Key Value Key Value Column Fam
Consistency Causal Causal Causal
Read-Only Txn No Yes Yes
Write-Only Txn No No Yes
Txn Algos Use - Deps Logic. Time
Deps On Values Values Operations
Transmitted Deps One-Hop All-GarbageC ~ One-Hop
Checked Deps One-Hop Nearest One-Hop
Stored Deps None All-GarbageC ~ None
GarbageC Deps Unneeded Yes Unneeded
Versions Stored One Few Fewer

Table 5: Comparing COPS and Eiger.

for garbage collection, stores fewer old versions, and is
not susceptible to availability problems from metadata
explosion when datacenters either fail, are partitioned, or
suffer meaningful slow-down for long periods of time.

The database community has long supported consis-
tency across multiple keys through general transactions.
In many commercial database systems, a single primary
executes transactions across keys, then lazily sends its
transaction log to other replicas, potentially over the
wide-area. In scale-out designs involving data partition-
ing (or “sharding”), these transactions are typically lim-
ited to keys residing on the same server. Eiger does not
have this restriction. More fundamentally, the single pri-
mary approach inhibits low-latency, as write operations
must be executed in the primary’s datacenter.

Several recent systems reduce the inter-datacenter
communication needed to provide general transactions.
These include Calvin [56], Granola [24], MDCC [35],
Orleans [15], and Walter [52]. In their pursuit of general
transactions, however, these systems all choose consis-
tency models that cannot guarantee low-latency opera-
tions. MDCC and Orleans acknowledge this with options
to receive fast-but-potentially-incorrect responses.

The implementers of Sinfonia [1], TxCache [46],
HBase [32], and Spanner [22], also recognized the im-
portance of limited transactions. Sinfonia provides “mini”
transactions to distributed shared memory and TXCache
provides a consistent but potentially stale cache for a rela-
tional database, but both only considers operations within
a single datacenter. HBase includes read- and write-only
transactions within a single “region,” which is a subset of
the capacity of a single node. Spanner’s read-only trans-
actions are similar to the original distributed read-only
transactions [18], in that they always take at least two
rounds and block until all involved servers can guarantee
they have applied all transactions that committed before
the read-only transaction started. In comparison, Eiger is
designed for geo-replicated storage, and its transactions
can execute across large cluster of nodes, normally only
take one round, and never block.

The widely used MVCC algorithm [11, 49] and Eiger
maintain multiple versions of objects so they can provide
clients with a consistent view of a system. MVCC pro-
vides full snapshot isolation, sometimes rejects writes,
has state linear in the number of recent reads and writes,
and has a sweeping process that removes old versions.
Eiger, in contrast, provides only read-only transactions,
never rejects writes, has at worst state linear in the num-
ber of recent writes, and avoids storing most old versions
while using fast timeouts for cleaning the rest.

9 Conclusion

Impossibility results divide geo-replicated storage sys-
tems into those that can provide the strongest forms of
consistency and those that can guarantee low latency.
Eiger represents a new step forward on the low latency
side of that divide by providing a richer data model and
stronger semantics. Our experimental results demon-
strate that the overhead of these properties compared to
a non-transactional eventually-consistent baseline is low,
and we expect that further engineering and innovations
will reduce it almost entirely.

This leaves applications with two choices for geo-
replicated storage. Strongly-consistent storage is re-
quired for applications with global invariants, e.g., bank-
ing, where accounts cannot drop below zero. And Eiger-
like systems can serve all other applications, e.g., social
networking (Facebook), encyclopedias (Wikipedia), and
collaborative filtering (Reddit). These applications no
longer need to settle for eventual consistency and can
instead make sense of their data with causal consistency,
read-only transactions, and write-only transactions.

Acknowledgments. The authors would like to thank
the NSDI program committee and especially our shep-
herd, Ethan Katz-Bassett, for their helpful comments.
Sid Sen, Ariel Rabkin, David Shue, and Xiaozhou Li
provided useful comments on this work; Sanjeev Ku-
mar, Harry Li, Kaushik Veeraraghavan, Jack Ferris, and
Nathan Bronson helped us obtain the workload charac-
teristics of Facebook’s TAO system; Sapan Bhatia and
Andy Bavier helped us run experiments on the VICCI
testbed; and Gary Sandine and Andree Jacobson helped
with the PRObE Kodiak testbed.

This work was supported by funding from National
Science Foundation Awards CSR-0953197 (CAREER),
CCF-0964474, MRI-1040123 (VICCI), CNS-1042537
and 1042543 (PRObE), and the Intel Science and Tech-
nology Center for Cloud Computing.

326 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI "13)

USENIX Association

References

[1] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch,
and C. Karamanolis. Sinfonia: A new paradigm for
building scalable distributed systems. ACM TOCS,
27(3), 20009.

[2] M. Ahamad, G. Neiger, P. Kohli, J. Burns, and
P. Hutto. Causal memory: Definitions, implementa-
tion, and programming. Distributed Computing, 9
(1), 1995.

[3] P. Alsberg and J. Day. A principle for resilient
sharing of distributed resources. In Conf. Software
Engineering, Oct. 1976.

[4] Amazon. Simple storage service. http://aws.

amazon.com/s3/, 2012.

[5] D.G. Andersen, J. Franklin, M. Kaminsky, A. Phan-
ishayee, L. Tan, and V. Vasudevan. FAWN: A fast
array of wimpy nodes. In SOSP, Oct. 2009.

[6] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A.
Patterson, D. S. Roselli, and R. Y. Wang. Serverless
network file systems. ACM TOCS, 14(1), 1996.

[71 B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale
key-value store. In SIGMETRICS, 2012.

[8] H. Attiya and J. L. Welch. Sequential consistency
versus linearizability. ACM TOCS, 12(2), 1994.

[9] J.Baker, C. Bond, J. C. Corbett, J. Furman, A. Khor-
lin, J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and
V. Yushprakh. Megastore: Providing scalable,

highly available storage for interactive services. In
CIDR, Jan. 2011.

[10] N. Belaramani, M. Dahlin, L. Gao, A. Nayate,
A. Venkataramani, P. Yalagandula, and J. Zheng.
PRACTT replication. In NSDI, May 2006.

[11] P. A. Bernstein and N. Goodman. Concurrency
control in distributed database systems. ACM Com-
puter Surveys, 13(2), June 1981.

[12] K. P. Birman and R. V. Renesse. Reliable Dis-
tributed Computing with the ISIS Toolkit. IEEE
Comp. Soc. Press, 1994.

[13] W. Bolosky, D. Bradshaw, R. Haagens, N. Kusters,
and P. Li. Paxos replicated state machines as the
basis of a high-performance data store. In NSDI,
2011.

[14] N. G. Bronson, J. Casper, H. Chafi, and K. Oluko-
tun. A practical concurrent binary search tree. In
PPoPP, Jan. 2010.

[15] S. Bykov, A. Geller, G. Kliot, J. R. Larus,
R. Pandya, and J. Thelin. Orleans: cloud com-
puting for everyone. In SOCC, 2011.

[16] B. Calder, J. Wang, A. Ogus, N. Nilakantan,
A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav,
J. Wu, H. Simitci, et al. Windows Azure Storage: a
highly available cloud storage service with strong
consistency. In SOSP, 2011.

[17] Cassandra. http://cassandra.apache.org/,
2012.

[18] A. Chan and R. Gray. Implementing distributed
read-only transactions. IEEE Trans. Info. Theory,
11(2), 1985.

[19] F. Chang,J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and
R. E. Gruber. Bigtable: A distributed storage sys-
tem for structured data. ACM TOCS, 26(2), 2008.

[20] D. R. Cheriton and D. Skeen. Understanding the
limitations of causally and totally ordered commu-
nication. In SOSP, Dec. 1993.

[21] B. E. Cooper, R. Ramakrishnan, U. Srivastava,
A. Silberstein, P. Bohannon, H.-A. Jacobsen,
N. Puz, D. Weaver, and R. Yerneni. PNUTS: Ya-
hoo!’s hosted data serving platform. In VLDB, Aug.
2008.

[22] J. C. Corbett, J. Dean, M. Epstein, A. Fikes,
C. Frost, J. Furman, S. Ghemawat, A. Gubareyv,
C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak,
E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura,
D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, and D. Wood-
ford. Spanner: Google’s globally-distributed
database. In OSDI, Oct 2012.

[23] CouchDB.
2012.

http://couchdb.apache.org/,

[24] J. Cowling and B. Liskov. Granola: low-overhead
distributed transaction coordination. In USENIX
ATC, Jun 2012.

[25] P. Dixon. Shopzilla site redesign: We get what we
measure. Velocity Conference Talk, 2009.

[26] eBay. Personal communication, 2012.
[27] Facebook. Personal communication, 2011.

[28] J. Ferris. The TAO graph database. CMU PDL
Talk, April 2012.

[29] B. Fitzpatrick. Memcached: a distributed mem-
ory object caching system. http://memcached.
org/, 2011.

[30] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
Google file system. In SOSP, Oct. 2003.

USENIX Association

10th USENIX Symposium on Networked Systems Design and Implementation (NSDI "13) 327

(31]

(32]
(33]

[34]

[35]

[36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

L. Glendenning, I. Beschastnikh, A. Krishnamurthy,
and T. Anderson. Scalable consistency in Scatter.
In SOSP, Oct. 2011.

HBase. http://hbase.apache.org/, 2012.

M. P. Herlihy and J. M. Wing. Linearizability: A
correctness condition for concurrent objects. ACM
TOPLAS, 12(3), 1990.

D. Karger, E. Lehman, F. Leighton, M. Levine,
D. Lewin, and R. Panigrahy. Consistent hashing
and random trees: Distributed caching protocols
for relieving hot spots on the World Wide Web. In
STOC, May 1997.

T. Kraska, G. Pang, M. J. Franklin, and S. Mad-
den. MDCC: Multi-data center consistency. CoRR,
abs/1203.6049, 2012.

R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat.
Providing high availability using lazy replication.
ACM TOCS, 10(4), 1992.

A. Lakshman and P. Malik. Cassandra — a decen-
tralized structured storage system. In LADIS, Oct.
2009.

L. Lamport. Time, clocks, and the ordering of
events in a distributed system. Comm. ACM, 21(7),
1978.

L. Lamport. The part-time parliament. ACM TOCS,
16(2), 1998.

C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguica,
and R. Rodrigues. Making geo-replicated systems
fast as possible, consistent when necessary. In
OSDI, Oct 2012.

G. Linden. Make data useful. Stanford CS345 Talk,
2006.

R. J. Lipton and J. S. Sandberg. PRAM: A scal-
able shared memory. Technical Report TR-180-88,
Princeton Univ., Dept. Comp. Sci., 1988.

W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Don’t settle for eventual: Scalable causal
consistency for wide-area storage with COPS. In
SOSP, Oct. 2011.

K. Petersen, M. Spreitzer, D. Terry, M. Theimer,
and A. Demers. Flexible update propagation for
weakly consistent replication. In SOSP, Oct. 1997.

L. Peterson, A. Bavier, and S. Bhatia. VICCI: A
programmable cloud-computing research testbed.
Technical Report TR-912-11, Princeton Univ., Dept.
Comp. Sci., 2011.

D. R. Ports, A. T. Clements, 1. Zhang, S. Madden,
and B. Liskov. Transactional consistency and auto-

[47]
(48]
[49]

(50]

(51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]
[59]

matic management in an application data cache. In
OSDI, Oct. 2010.

PRODE. http://www.nmc-probe.org/, 2013.
Redis. http://redis.io/, 2012.

D. P. Reed. Naming and Synchronization in a De-
centralized Computer Systems. PhD thesis, Mass.
Inst. of Tech., 1978.

E. Schurman and J. Brutlag. The user and business
impact of server delays, additional bytes, and http
chunking in web search. Velocity Conference Talk,
2009.

D. Skeen. A formal model of crash recovery in a
distributed system. IEEE Trans. Info. Theory, 9(3),
May 1983.

Y. Sovran, R. Power, M. K. Aguilera, and J. Li.
Transactional storage for geo-replicated systems.
In SOSP, Oct. 2011.

TAO. A read-optimized globally distributed store
for social graph data. Under Submission, 2012.

J. Terrace and M. J. Freedman. Object storage on
CRAQ: High-throughput chain replication for read-
mostly workloads. In USENIX ATC, June 2009.

R. H. Thomas. A majority consensus approach to
concurrency control for multiple copy databases.
ACM Trans. Database Sys., 4(2), 1979.

A. Thomson, T. Diamond, S.-C. Weng, K. Ren,
P. Shao, and D. J. Abadi. Calvin: fast distributed
transactions for partitioned database systems. In
SIGMOD, May 2012.

R. van Renesse and F. B. Schneider. Chain replica-
tion for supporting high throughput and availability.
In OSDI, Dec. 2004.

VICCI. http://vicci.org/, 2012.

B. White, J. Lepreau, L. Stoller, R. Ricci, S. Gu-
ruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An integrated experimental environ-
ment for distributed systems and networks. In
OSDI, Dec. 2002.

328 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI 13)

USENIX Association

