
USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 343

Rhea: automatic filtering for unstructured cloud storage

Christos Gkantsidis, Dimitrios Vytiniotis, Orion Hodson
Dushyanth Narayanan, Florin Dinu∗, Antony Rowstron

Microsoft Research, Cambridge, UK

Abstract
Unstructured storage and data processing using plat-

forms such as MapReduce are increasingly popular for
their simplicity, scalability, and flexibility. Using elastic
cloud storage and computation makes them even more at-
tractive. However cloud providers such as Amazon and
Windows Azure separate their storage and compute re-
sources even within the same data center. Transferring
data from storage to compute thus uses core data center
network bandwidth, which is scarce and oversubscribed.
As the data is unstructured, the infrastructure cannot au-
tomatically apply selection, projection, or other filter-
ing predicates at the storage layer. The problem is even
worse if customers want to use compute resources on one
provider but use data stored with other provider(s). The
bottleneck is now the WAN link which impacts perfor-
mance but also incurs egress bandwidth charges.

This paper presents Rhea, a system to automatically
generate and run storage-side data filters for unstructured
and semi-structured data. It uses static analysis of ap-
plication code to generate filters that are safe, stateless,
side effect free, best effort, and transparent to both stor-
age and compute layers. Filters never remove data that
is used by the computation. Our evaluation shows that
Rhea filters achieve a reduction in data transfer of 2x–
20,000x, which reduces job run times by up to 5x and
dollar costs for cross-cloud computations by up to 13x.

1 Introduction
The last decade has seen a huge increase in the use

of “noSQL” approaches to data analytics. Whereas in
the past the default data store was a relational one (e.g.
SQL), today it is possible and often desirable to store
the data as unstructured files (e.g. text-based logs)
and to process them using general-purpose languages
(Java, C#). The combination of unstructured storage and
general-purpose programming languages increases flexi-
bility: different programs can interpret the same data in

∗Work done while on internship from Rice University

different ways, and changes in format can be handled by
changing the code rather than restructuring the data.

This flexibility comes at a cost. The structure of the
data is now implicit in the program code. Most analytics
jobs use a subset of the input data, i.e. only some of the
data items are relevant and only some of the fields within
those are relevant. Since these selection and projection
operations are embedded in the application code, they
cannot be applied by the storage layer; rather all the data
must be read into the application code.

This is not an issue for dedicated data processing in-
frastructures where a single cluster provides both stor-
age and computation, and a framework such as MapRe-
duce, Hadoop, or Dryad co-locates computation with
data. However it is a problem when running such frame-
works in an elastic cloud. Cloud providers such as Ama-
zon and Windows Azure provide both scalable unstruc-
tured storage and elastic compute resources but these are
physically disjoint. There are many good reasons for this
including security, performance isolation, and the need to
independently scale and provision the storage and elastic
compute infrastructures. Both Amazon’s S3 [1] and Win-
dows Azure Storage [4, 39] follow this model of phys-
ically separate compute and storage servers within the
same data center. This means that bytes transferred from
storage to compute use core data center network band-
width, which is often scarce and oversubscribed [14] (see
also Section 4.1.1).

Our aim is to retain the flexibility of unstructured stor-
age and the elasticity of cloud storage and computation,
yet reduce the bandwidth costs of transferring redundant
or irrelevant data from storage to computation. Specif-
ically, we wish to transparently run applications written
for frameworks such as Hadoop in the cloud, but extract
the implicit structure and use it to reduce the amount
of data read over the data center network. Reducing
bandwidth will improve provider utilization, by allow-
ing more jobs to be run on the same servers, and improve
performance for customers, as their jobs will run faster.

344 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

Our approach is to use static analysis on application
code to automatically generate application-specific filters
that remove data that is irrelevant to the computation.
The generated filters are then run (typically, but not nec-
essarily) on storage servers in order to reduce bandwidth.
Filters need to be safe and transparent to the application
code. They need to be conservative, i.e., the output of
the computation must be the same whether using filters
or not, and hence only data that provably cannot affect
the computation can be suppressed. Since filters are us-
ing spare computational resources on the storage servers,
they also need to be best-effort, i.e. they can be disabled
at any time without affecting the application.

Our Rhea system automatically generates and exe-
cutes storage-side filters for unstructured text data. Rhea
extracts both row filters which select out irrelevant rows
(lines) in the input, as well as column filters which
project out irrelevant columns (substrings) in the surviv-
ing rows.1 Both row and column filters are safe, trans-
parent, conservative, and best-effort. Rhea analyzes the
Java bytecode of programs written for Hadoop MapRe-
duce, producing job-specific executable filters.

Section 2 makes the case for implicit, storage-side fil-
tering and describes 9 analytic jobs that we use to moti-
vate and evaluate Rhea. Section 3 describes the design
and implementation of Rhea and its filter generation al-
gorithms. Section 4 shows that storage-to-compute band-
width is scarce in real cloud platforms; that Rhea filters
achieve substantial reduction in the storage-to-compute
data transfer and that this leads to performance improve-
ments in a cloud environment. Rhea reduces storage-to-
compute traffic by a factor of 2–20,000, job run times
by a factor of up to 5, and dollar costs for cross-cloud
computations by a factor of up to 13. Section 5 discusses
related work, and Section 6 concludes.

2 Background and Motivation
In this section we first describe the design rationale

for Rhea: the network bottlenecks that motivate storage-
side filtering, and the case for automatically generated
(implicit) filters. We finally describe the example jobs
that we use to evaluate Rhea.

2.1 Storage-side filtering
The case for storage-side filtering is based on two ob-

servations. First, compute cycles on storage servers are
cheap relative to core network bandwidth. Of course,
since this is not an explicitly provisioned resource, use
of such cycles should be opportunistic and best-effort.
Second, storage-to-compute bandwidth is a scarce re-
source that can be a performance bottleneck. Our mea-

1 For convenience we use the term “row” to refer to the input unit of
a Map process, and “column” to refer to the output of the tokenization
performed on the row input according to some user-specified logic.

surements of read bandwidth for Amazon EC2/S3 and
Windows Azure confirm this (Section 4.1.1) and are con-
sistent with earlier measurements [11, 12].

If data must be transferred across data centers or avail-
ability zones, then this will not only use WAN bandwidth
and impact performance, but also incur egress bandwidth
charges for the user. This can happen if data stored in dif-
ferent geographical locations need to be combined, e.g.,
web logs from East and West Coast servers. Some jobs
may need to combine public and private data, e.g. a pub-
lic data set stored in Amazon S3 [31] with a private one
stored on-premises, or a data set stored in Amazon S3
with one stored in Windows Azure Storage.

Our aim is to reduce network load, job run times, and
egress bandwidth charges through filtering for many dif-
ferent scenarios. When the storage is in the cloud, the
cloud provider (e.g. Amazon S3) could natively support
execution of Rhea filters on or near the storage servers.
In the case where the computation uses a compute clus-
ter provided by the same provider (e.g. Amazon EC2 in
the case of Amazon S3), the provider could even extract
and deploy filters transparently to the customer. For on-
premises (“private cloud”) storage, filters could be de-
ployed by the customer on the storage servers or near
them, e.g. on the same rack. If the provider does not
support filtering at the storage servers, filtering can still
be used to reduce WAN data transfers by running the fil-
ters in a compute instance located in the same data cen-
ter as the storage. In the latter case our evaluation shows
that the savings in egress bandwidth charges outweigh
the dollar cost of a filtering VM instance. Additionally,
the isolation properties of Rhea filters make it possible
for multiple users to safely share a single filtering VM
and thus reduce this cost.

2.2 Implicit filtering
Rhea creates filters implicitly and transparently using

static analysis of the programs. An alternative would be
to have the programmer do this explicitly. For exam-
ple a language like SQL makes the filtering predicates
and columns accessed within each row explicit. E.g.,
the “WHERE” clause in a SQL statement identifies the
filtering predicate and the “SELECT” statement for col-
umn selectivity. Several storage systems support explicit
column selectivity for MapReduce jobs, e.g. “slice pred-
icates” in Cassandra [3], “input format classes” in Ze-
bra [41], explicit filters in Pig/Latin [13], and RC-files in
Hive [34]. In such situations input data pre-filtering can
be performed using standard techniques from database
query optimization.

While extremely useful for this kind of query opti-
mization and reasoning, explicit approaches often pro-
vide less flexibility, as the application is tied to a specific
interface to the storage (SQL, Cassandra, etc). They are

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 345

also less well-suited for free-format or semi-structured
text files, which have to be parsed in an application-
specific manner. This flexibility is one of the reasons that
platforms such as SCOPE [5] allow a mixture of SQL-
like and actual C# code. Eventually all code (including
the SQL part) is compiled down to .NET and executed.

Our aim in Rhea is to handle the general case where
programmers can embed application-specific column
parsing logic or arbitrary code in the mapper, without im-
posing any additional programmer burden such as hand-
annotating the code with filtering predicates. Instead,
Rhea infers filters automatically using static analysis of
the application byte code. Since Rhea only examines the
application code, it is applicable even when the format
of the data is not known a-priori, or the data does not
strictly conform to an input format (for instance tabu-
lar input data with occasionally occurring comment lines
starting with a special character).

2.3 Example analytics jobs
Our static analysis handles arbitrary Java byte code:

we have used over 160 Hadoop mappers from various
Hadoop libraries and other public and private sources
to test our tool and validate the generated filters (Sec-
tion 3.4). Of these, we present nine jobs for which data
were also available and use them to drive our evalua-
tion (Section 4). Here we describe these nine jobs. Note
that we do not include commonly-used benchmarks such
as Sort and WordCount, which are used to stress-test
MapReduce infrastructures. Neither of these has any se-
lectivity, i.e., the mapper examines all the input data, and
thus Rhea would not generate any filters for them. How-
ever, we do not believe such benchmarks are representa-
tive of real-world jobs, which often do have selectivity.
GeoLocation This publicly available Hadoop exam-
ple [24] groups Wikipedia articles by their geographical
location. The input data is based on a publicly avail-
able data set [23]. The input format is text, with each
line corresponding to a row and tab characters separat-
ing columns within the row. Each row contains a type
column which determines how the rest of the row is in-
terpreted; the example job only considers one of the two
row types, and hence rows of the other type can be safely
suppressed from the input.
Event log processing The next two jobs are based on
processing event logs from a large compute/storage plat-
form consisting of tens of thousands of servers. Users is-
sue tasks to the system, which spawn processes on multi-
ple servers. Resource usage information measured on all
these servers is written to two event logs: a process log
with one row per executed process, and an activity log
that records fine-grained resource consumption informa-
tion. We use two typical jobs that process this data. The
first, FindUserUsage, identifies the top-k users by total

Input
job

Modified job

Filter
generator

Storage cluster

Filtering proxy

GET
(objectID) Data

Filter
Filter

Hadoop cluster

GET
(objectID, filterSpec)

Filtered
 data

Figure 1: System architecture

process execution time. The second, ComputeIoVolumes,
is a join: it filters out failed tasks by reading the process
log and then computes storage I/O statistics for the suc-
cessful tasks from the activity log.
IT log reporting The next job is based on enterprise IT
logs across thousands of shared infrastructure machines
on an enterprise network. The sample job (IT Reporting)
queries these logs to find the aggregate CPU usage for a
specific machine, grouped by the type of user generating
the CPU load.
Web logs and ranking The last five jobs are from a
benchmark developed by Pavlo et al. [30] to compare
unstructured (MapReduce) and structured (DBMS) ap-
proaches to data analysis. The jobs all use syntheti-
cally generated data sets consisting of a set of HTML
documents that link to each other, a Rankings table that
maps each unique URL to its computed PageRank, and a
UserVisits table that logs user visits to each unique URL
as well as context information such as time-stamp, coun-
try code, ad revenue, and search context.

The first two jobs are variants of a SelectionTask (find
all URLs with page rank higher than X). The amount
of input data that is relevant to this task depends on the
threshold X . Thus we use two variants with thresholds
X1% and X10%, where approximately 1% of the URLs
have page rank higher than X1%, and 10% of the URLs
have page rank higher than X10%. The next two jobs are
based on an AggregationTask. They find total revenue
grouped by unique source IP, and total revenue grouped
by source network, respectively. Finally, the JoinTask
finds the average PageRank of the pages visited by the
source IP that generated the most revenue within a par-
ticular date range.

3 Design and Implementation
The current Rhea prototype is designed for Hadoop

MapReduce jobs. It generates executable Java filters
from the mapper class(es) for each job. It is important
to note that although Rhea filters are executable, run-
ning a filter is different from running arbitrary applica-

346 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

tion code, for example running the entire mapper task on
the storage server. Filters are guaranteed to be safe and
side-effect free and thus can be run with minimal sand-
boxing, with multiple filters from different jobs or cus-
tomers co-existing in the same address space. They are
transparent and best-effort, and hence can be disabled
at any point to save resources without affecting the ap-
plication. They are stateless and do not consume large
amounts of memory to hold output, as is done by many
mappers. Finally, they are guaranteed never to output
more data than input. This is not true of mappers where
the output data can be larger than the input data [6].

Figure 1 shows the architecture of Rhea, which con-
sists of two components: a filter generator and a filter-
ing proxy. The filter generator creates the filters and up-
loads them to the filtering proxy, and also adds a trans-
parent, application-independent, client-side shim to the
user’s Hadoop job to create a Rhea-aware version of the
job. The Rhea-aware version of the job intercepts cloud
storage requests, and redirects them to the filtering proxy.
The redirected requests include a description of the filter
to be instantiated and a serialized cloud storage REST
request to access the job’s data. The serialized request
is signed with the user’s cloud storage provider creden-
tials when it is generated on the Hadoop nodes so the fil-
tering proxy holds no confidential user state. When the
filtering proxy receives the redirected request, it instanti-
ates the required filter, issues the signed storage request,
and returns filtered data to the caller. Thus Rhea filter-
ing is transparent to the user code, to the elastic compute
infrastructure, and to the storage layer, and requires no
sensitive user state. The proxy works with Amazon’s S3
Storage and Windows Azure Storage, and also has a local
file system back end for development and test use.

The filter generator takes the Java byte code of a
Hadoop job, and generates a row filter and a column fil-
ter for each mapper class found in the program. These
are encoded as methods on an extension of the corre-
sponding mapper class. The extended classes are shipped
to the filtering proxy as Java jar files and dynamically
loaded into its address space. The filter generator, and
the static analysis underlying it, are implemented using
SAWJA [18], a tool which provides a high-level stack-
less representation of Java byte code. In the rest of this
section we describe the static analysis used for row and
column filter generation.

3.1 Row Filters
A row filter in Rhea is a method that takes a single

record as input and returns false if that record does not
affect the result of the MapReduce computation, and true

otherwise. It can have false positives, i.e., return true for
records that do not affect the output, but it can not have
false negatives. The byte code of the filter is generated

from that of the mapper. Intuitively, it is a stripped-down
or “skeleton” version of the mapper, retaining only those
instructions and execution paths that determine whether
or not a given invocation will produce an output. Instruc-
tions that are used to compute the value of the output but
do not affect the control flow are not present in the filter.
As such, the row filter is completely independent of the
format of the input data and only depends on the predi-
cates that the mapper is using on the input.

Listing 1 shows a typical example: the mapper for
the GeoLocation job (Section 2.3). It tokenizes the in-
put value (line 7), extracts the first three tokens, (line 9–
11), and then checks if the second token equals the static
field GEO_RSS_URI (line 13). If it does, more process-
ing follows (line 14–26) and some value is output on
outputCollector; otherwise, no output is generated.

1 ... // class and field declarations

2 public void map(LongWritable key , Text value ,

3 OutputCollector <Text , Text > outputCollector ,

4 Reporter reporter) throws IOException {

5

6 String dataRow = value.toString ();

7 StringTokenizer dataTokenizer =

8 new StringTokenizer(dataRow , "\t");

9 String artName = dataTokenizer.nextToken ();

10 String pointTyp = dataTokenizer.nextToken ();

11 String geoPoint = dataTokenizer.nextToken ();

12

13 if (GEO_RSS_URI.equals(pointTyp)) {

14 StringTokenizer st =

15 new StringTokenizer(geoPoint , "�");

16 String strLat = st.nextToken ();

17 String strLong = st.nextToken ();

18 double lat = Double.parseDouble(strLat);

19 double lang = Double.parseDouble(strLong);

20 long roundedLat = Math.round(lat);

21 long roundedLong = Math.round(lang);

22 String locationKey = ...

23 String locationName = ...

24 locationName = ...

25 geoLocationKey.set(locationKey);

26 geoLocationName.set(locationName);

27 outputCollector.collect(geoLocationKey ,

28 geoLocationName);

29 } }

Listing 1: GeoLocation map job

Listing 2 shows the filter generated by Rhea for this
mapper. It also tokenizes the input (line 8) and performs
the comparison on the second token (line 12) (bcvar8
here corresponds to pointTyp in map). This test deter-
mines whether map would have produced output, and
hence filter returns the corresponding Boolean value.

Comparison of map and filter reveals two interest-
ing details. First, while map extracted three tokens from
the input, filter only extracted two. The third token
does not determine whether or not output is produced,
although it does affect the value of the output. The static

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 347

1 public boolean filter (LongWritable bcvar1 ,

2 Text bcvar2 ,

3 OutputCollector bcvar3 ,

Reporter bcvar4) {

4

5 boolean cond = false;

6 String bcvar5 = bcvar2.toString ();

7 String irvar0 = "\t";

8 StringTokenizer bcvar6 =

9 new StringTokenizer(bcvar5 ,irvar0);

10 String bcvar7 = bcvar6.nextToken ();

11 String bcvar8 = bcvar6.nextToken ();

12 boolean irvar0_1=

13 GEO_RSS_URI.equals(bcvar8);

14

15 cond = ((irvar0_1 ?1:0) != 0);

16 if (!cond) return false;

17 return true;

18 }

Listing 2: Row filter generated for GeoLocation

analysis detects this and omits the extraction of the third
token. Second, map does substantial processing (line 14–
26) before producing the output. All these instructions
are omitted from the filter: they affect the output value
but not the output condition.

Row filter generation uses a variant of dependency
analysis commonly found in program slicing [17, 26,
36]. Our analysis is based on the following steps:

1. It first identifies “output labels”, i.e. program
points at which the mapper produces output, such as calls
to the Hadoop API including OutputCollector.collect

(line 28 of Listing 1). The generated filter must return
true for any input that causes the mapper to reach such
an output label (line 17 of Listing 2). This basic defini-
tion of output label is later extended to handle the use of
state in the mapper (Section 3.1.1).

2. The next step is to collect all control flow paths (in-
cluding loops) of the mapper that reach an output label.
Listing 1 contains a single control path that reaches an
output label through line 13 of Listing 1.

3. Next, Rhea performs a label-flow analysis (as a
standard forward analysis [29]) to compute a “flow
map”: for each program instruction, and for each vari-
able referenced in that instruction, it computes all other
labels that could affect the value of that variable.

4. For every path identified in Step 2, we keep only the
instructions that, according to the flow map from Step 3,
can affect any control flow decisions (line 6–13 of List-
ing 1, which correspond to line 6–16 of Listing 2). The
result is a new set of paths which contains potentially
fewer instructions per path – only the necessary ones for
control flow to reach the path’s output instruction.

5. Finally, we generate code for the disjunction of the
paths computed in Step 4, emitting return true state-
ments after the last conditional along each path. Techni-

cally, prior to this step we perform several optimizations,
for instance we merge paths when both the True and the
False case of a conditional statement can lead to output.
We also never emit code for a loop if the continuation of
a loop may reach an output instruction: in this case we
simply return true when we reach the loop header, in
order to avoid performing a potentially expensive com-
putation if there is possibility of output after the loop.

3.1.1 Stateful mappers

This basic approach described above guarantees that
the filter returns true for any input row for which the
original mapper would produce output, but neglects the
fact that map will be invoked on multiple rows, where each
invocation may affect some state in the mapper that could
affect the control flow in a subsequent invocation.

In theory this situation should not happen – in an ideal
world, mappers should be stateless, to allow the MapRe-
duce infrastructure to partition and re-order the mapper
inputs without changing the result of the computation.
However, in practice programmers do make use of state
(such as frequency counters and temporary data struc-
tures) for efficiency or monitoring reasons, and typically
via fields of the mapper class.

Consider for instance a mapper which increments a
counter for each input row and produces output only on
every n-th row. If we generate a filter that returns true for
every n-th row and run the mapper on the filtered data set
we will alarmingly have produced different output!

A simplistic solution to the problem would be to emit
(trivial) filters that always return true for any map which
depends on or modifies shared state. In practice, how-
ever, a surprising number of mappers access state and
we would still like to generate non-trivial filters for these.
Rhea does this by extending the definition of “output la-
bel” to include not only calls to the Hadoop API output
methods but also instructions that could potentially af-
fect shared state, such as method calls that involve mu-
table fields, field assignments and static methods, and
also accesses of fields that are set in some part of the
map method, and any methods of classes that could have
some global observable effect, such as java.lang.System

or Hadoop API methods. This ensures that the filter ap-
proximates the paths that could generate output in the
mapper with a set of paths that (i) do not in any way
depend on modifiable cross-invocation state; and (ii) do
not contain any instructions that could themselves affect
such shared state.

This simple approach is conservative but sound when
there is use of state. More interestingly, this approach
works well (i.e. generates non-trivial filters) with com-
mon uses of state. For example, in Listing 1, line 25
references the global field geoLocationKey. However, this
happens in the same control flow block where the actual

348 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

1 public String select (LongWritable bcvar1 ,

2 Text bcvar2 ,

3 OutputCollector cvar3 , Reporter bcvar4) {

4 String bcvar5 = bcvar2.toString ();

5 String irvar0 = "\t";

6 StringTokenizer bcvar6

7 = StringTokenizer(bcvar5 ,irvar0);

8 int i = 0;

9 String filler = computeFiller(irvar0);

10 StringBuilder out = new StringBuilder ();

11 String curr , aux;

12 while (bcvar6.hasMoreTokens ()) {

13 curr = bcvar6.nextToken ();

14 if (i == 2 || i == 1 || i == 0) {

15 aux = curr;

16 } else {

17 aux = filler;

18 };

19 if (bcvar6.hasMoreTokens ()) {

20 out.append(aux). append(irvar0);

21 }

22 else {

23 out.append(aux);

24 }

25 i++;

26 }

27 return out.toString (); }

Listing 3: Column selector generated for GeoLocation

output instruction is located (line 28). Consequently, the
generated filter is as precise as it could possibly be.

3.2 Column selection
So far we have described row filtering, where each in-

put record is either suppressed entirely or passed unmod-
ified to the computation. However, it is also valuable to
suppress individual columns within rows. For example,
in a top-K query, all rows must be examined to generate
the output, but only a subset of the columns are relevant.

The Rhea filter generator analyzes the mapper func-
tion to produce a column selector method that transforms
the input line into an output line with irrelevant column
data suppressed. Column filtering may be combined with
row filtering by using row filtering first and column se-
lection on the remaining rows.

The static analysis for column selection is quite dif-
ferent from that used for row filtering. In Hadoop, map-
pers split each row (record) into columns (fields) in an
application-specific manner. This is very flexible: it al-
lows for different rows in the same file to have different
numbers of columns. Mappers can also split the row into
columns in different ways, e.g., using string splitting, or
a tokenization library, or a regular expression matcher.
This flexibility makes the problem of correctly removing
irrelevant substrings challenging. Our approach is to de-
tect and exploit common patterns of tokenization that we
have encountered in many mappers. Our implementation
supports tokenization based on Java’s StringTokenizer

NOTREF STRING(v) SPLIT(t,sep)

TOK(t,sep,0) TOK(t,sep,1) ...

v=value.toString() t=v.split(sep)

t.nextToken() t.nextToken()

t = new StringTokenizer(v,sep)

Figure 2: Transition system for column selector analysis

class and the String.split() API, but is easily extensi-
ble to other APIs.

For the GeoLocation map function in Listing 1, Rhea
generates the column selector shown in Listing 3. The
mapper only examines the first three tokens of the input
(line 9–11 of Listing 1). The column selector captures
this by retaining only the first three tokens. The output
string is reassembled from the tokens after replacing all
irrelevant tokens with a filler value, which is dynamically
computed based on the separator used for tokenization.

Column filters always retain the token separators to
ensure that the modified data is correctly parsed by the
mapper. Dynamically computing the filler value allows
us to deal with complex tokenization, e.g., using regular
expressions. As a simple example, consider a comma-
separated input line "eve,usa,25". If the mapper splits
the string at each comma, this can be transformed to
"eve,,25". However, if using a regular expression where
multiple consecutive commas count as a single separa-
tor, "eve,,25" would be incorrect but "eve,?,25" would
be correct. The computeFiller function correctly gener-
ates the filler according to the type of separator being
used at run time.

The analysis assigns to each program point (label) in
the mapper a state from a finite state machine which
captures the current tokenization of the input. Figure 2
shows a simplified state machine that captures the use
of the StringTokenizer class for tokenization. Essentially
the input string can be in its initial state (NOTREF); it can
be converted to a String (STRING); or this string can either
have been split using String.Split (SPLIT) or converted
to a StringTokenizer currently pointing to the nth token
(TOK(_,_,n)).

The actual state machine used is slightly more com-
plex. There is also an error state (not shown) that cap-
tures unexpected state transitions. The TOK state can also
capture a non-deterministic state of the StringTokenizer:
i.e., we can represent that at least n tokens have been ex-
tracted (but the exact upper bound is not known). The set
of states is extended to form a lattice, which SAWJA’s
static analysis framework can use to map every program
point to one of the states.

Assuming that no error states have been reached, we
identify all program points that extract an input token that
is then used elsewhere in the mapper. The tokenizer state
at each of these points tells us which position(s) in the

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 349

input string this token could correspond to. The union of
all these positions is the set of relevant token positions,
i.e. columns. The filter generator then emits code for the
column selector that tokenizes the input string, retains
relevant columns, and replaces the rest with the filler.

Since our typical use cases involve unstructured data
represented as Text values, we have focused on common
string tokenization input patterns. Other use models do
exist – for instance substring range selection – for which
a different static analysis involving numerical constraints
might be required [28]. Though entirely possible to de-
sign such analysis, we have focused on a few commonly
used models. Our static analysis is able to detect when
our parsing model is not directly applicable to the map-
per implementation, in which case we conservatively ac-
cept the whole input and we are only in a position to get
optimizations from row filtering.

Unlike row filtering, the presence of state in the map-
pers cannot compromise the soundness of the generated
column filters, since column filters that conservatively re-
tain all dereferenced tokens of the input, irrespectively of
whether these tokens will be used in the control flow or
to produce an output value, and whether different control
flow paths assume different numbers of columns present
in the input row.

3.3 Filter properties
Rhea’s row and filter columns guarantee correctness

in the sense that the output of the mapper is always the
same for both filtered and unfiltered inputs. In addition
we guarantee the following properties:

Filters are fully transparent Either row or column fil-
tering can be done on a row-by-row basis, and filtered
and unfiltered data can be interleaved arbitrarily. This al-
lows filtering to be best-effort, i.e. it can be enabled/dis-
abled on a fine-grained basis depending on available re-
sources. It also allows filters to be chained, i.e. inserted
anywhere in the data flow regardless of existing filters
without compromising correctness.

Isolation and safety Filters cannot affect other code run-
ning in the same address space or the external environ-
ment. The generated filter code never includes I/O calls,
system calls, dynamic class loads, or library invocations
that affect global state outside the class containing the
filter method.

Termination guarantees Column filters are guaranteed
to terminate as they are produced only from a short col-
umn usage specification that we extract from the mapper
using static analysis. Row filters may execute an arbi-
trary number of instructions and contain loops. Currently
we dynamically disable row filters that consume exces-
sive CPU resources. We could also statically guarantee
termination by considering loops to be “output labels”

that cause an early return of true, or use techniques to
prove termination even in the presence of loops [8, 15].

As explained previously, our guarantees for column
filters come with no assumptions whatsoever. Our row
filter guarantees are with respect to our “prescribed” no-
tion of state (system calls, mutable fields of the class,
static fields, dynamic class loading). A mathematical
proof of correctness would have to include a formaliza-
tion of the semantics of JVM, and the MapReduce pro-
gramming model. In this work we focus on the design
and evaluation of our proposal and so we leave the for-
mal verification as future work.

3.4 Applicability of static analysis
We collected the bytecode and source of 160 mappers

from a variety of projects available on the internet to
evaluate the applicability of our analysis. We ran these
mappers through our tools and manually inspected the
outputs to verify correctness. Approximately 50% of the
mappers resulted in non-trivial row filters; the rest are
always-true, due to the nature of the job or the use of
state early on in the control flow. A common case is the
use of state to measure and report the progress of input
processing. In this case, we have to conservatively ac-
cept all input, even though reporting does not affect the
output of the job. 26% of the mappers were amenable to
our column tokenization models (the rest used the whole
input, which often arises in libraries that operate on pre-
processed data, or use a different parsing mechanism).

In our experiments the tasks of (i) identifying the map-
pers in the job, (ii) performing the static analysis on the
mappers, (iii) generating filter source code, (iv) compil-
ing the filter, and (v) generating the Rhea-aware Hadoop
job, take a worst case time 4.8 seconds for a single map-
per job on an Intel Xeon X5650 workstation. The static
analysis part takes no more than 3 seconds.

In the next section we present the benefits of filtering
for several jobs for which we had input data and were
able to run more extensive experiments.

4 Evaluation
We ran two groups of experiments to evaluate the per-

formance of Rhea. One group of experiments evaluates
the performance within a single cloud data center, and
the other aims to evaluate Rhea when using data stored
in a remote data center.

4.1 Experimental setup
We ran the experiments, unless otherwise stated, on

Windows Azure. A challenge for running the experi-
ments within the data center is that we could not modify
the Windows Azure storage to support the local execu-
tion of the filters we generated. To overcome this, for the
experiments run in the single cloud scenarios, we used
the filters generated to pre-filter the input data and then

350 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

stored it in Windows Azure storage. The bandwidth be-
tween the storage and the compute is the bottleneck re-
source, and this allows us to demonstrate the benefits of
using Rhea. We micro-benchmark the filtering engine to
demonstrate that it can sustain this throughput.

We use two metrics when measuring the performance
of Rhea, selectivity and run time. Selectivity is the pri-
mary metric and captures how effective the Rhea filters
are at reducing the data that needs to be transferred be-
tween the storage and compute. This is the primary met-
ric of interest to a cloud provider, as this reduces the
amount of data that is transferred across the core network
between the storage clusters and compute. The second
metric is run time, which is defined as the time to ini-
tialize and execute a Hadoop job on an existing cluster
of compute VMs. Reducing run time is important in it-
self, but also because cloud computing VMs are charged
per unit time, even if the VMs spend most of their time
blocked on the network. Hence any reduction in exe-
cution time is important to the customer. The jobs that
we run operated on a maximum input data set size of
100GB and all jobs ran in 15 minutes or less. Therefore,
with per-hour VM charging, Rhea would provide little
financial benefit when running a single job. However,
if cloud providers move to finer grained pricing models
or even per-job pricing models this will also have benefit;
alternatively the customer could run more jobs within the
same number of VM-hours and hence achieve cost sav-
ings per job. Unless otherwise stated, all graphs in this
section show means of five identical runs, with error bars
showing standard deviations.

To enable us to configure the experiments we mea-
sured the available storage-to-compute bandwidth for
Windows Azure compute and scalable storage infrastruc-
ture, and for Amazon’s infrastructure.

4.1.1 Storage-to-compute LAN bandwidth

The first set of experiments measured the storage-to-
compute bandwidth for the Windows Azure data cen-
ter by running a Hadoop MapReduce job with an empty
mapper and no reducer. Running this shows the maxi-
mum rate at which input data can be ingested when there
are no computational overheads at all. Each experiment
read at least 60 GB to amortize any Hadoop start-up over-
heads. We also ran the experiment on Amazon’s cloud
infrastructure to see if there were significant differences
in the storage-to-compute bandwidth across providers.

In the experiment we varied the number of instances
used, between 4 and 16. We ran with extra large in-
stances on both Amazon and Windows Azure, but also
compared the performance with using small instances
on Windows Azure. We found that bandwidth increases
with the number of mappers per instance up to 16 map-
pers per instance, so we used 16 mappers per instance.

0

100

200

300

400

500

600

700

0 5 10 15 20

Pe
r-

in
st

an
ce

 b
an

dw
id

th
 (M

bp
s)

Number of compute instances

Azure-EU-North/ExtraLarge

Amazon-US/ExtraLarge

Azure-EU-North/Small

Figure 3: Storage-to-compute bandwidth in Windows
Azure and Amazon cloud infrastructures. Labels show
the provider, geographical location, and instance size
used in each experiment.

Figure 3 shows the measured storage-to-compute
transfer rate per compute instance. For Amazon the max-
imum per-instance ingress bandwidth is 230 Mbps, and
the total is almost constant independent of the number of
instances. For Windows Azure we observe that the peak
ingress bandwidth is 631 Mbps when using 4 extra large
instances. Contrary to the Amazon results, as the number
of instances is increased the observed throughput per in-
stance drops. Further, we observe that the small instance
size on Windows Azure has significantly less bandwidth
compared to the extra large instance.

Even in this best case (extra-large instances, no com-
putational load, and a tuned number of mappers), the rate
at which each compute instance can read data from stor-
age is well below a single network adapter’s bandwidth
of 1 Gbps. More importantly it is lower than the rate
at which most Hadoop computations can process data,
making it the bottleneck. Hence, we would expect that
reducing the amount of data transferred from storage to
compute will not only provide network benefits but also,
as we will show, run time performance improvements.

Based on these experiments, we run the experiments
using 4 extra large compute instances on Azure-EU-
North data center, each configured to run with 16 map-
pers per instance. This maximizes the bandwidth to the
job, which is the worst case for Rhea. As the bandwidth
becomes more constrained, through running on the Ama-
zon infrastructure, by using smaller instances, or a larger
number of instances the benefits of filtering will increase.

4.1.2 Job configuration
In all the experiments we use the 9 Hadoop jobs de-

scribed in Section 2.3. Figure 4 shows the baseline re-
sults for input data size for each of the jobs and the run
time when run in the Azure-EU-North data center with 4

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 351

0
100
200
300
400
500
600
700
800
900

0

20

40

60

80

100

120

Ru
nt

im
e

(s
)

In
pu

t d
at

a
si

ze
 (G

B)
Input data size Runtime

Figure 4: Input data sizes and job run times for the 9
example jobs when running on 4 extra large instances on
Windows Azure without using Rhea.

0

0.2

0.4

0.6

0.8

1

1.2

Se
le
ct
iv
ity

Row Column Row+column

Figure 5: Selectivity for the row, column and combined
filters for the 9 example jobs.

extra large compute instances without using Rhea. The
input data size for the jobs varies from 90 MB–100 GB
and the run times from 1–15 min. All but one job, Ge-
oLocation, have an input data size of over 35 GB. To
compare Rhea’s effectiveness across this range of job
sizes and run times, we show Rhea’s data transfer sizes
(Figure 5) and run times (Figure 6) normalized with re-
spect to the results shown in Figure 4.

4.2 In cloud
The first set of experiments are run in a single cloud

scenario: the data and compute are co-located in the
same data center. The first results explore the selectiv-
ity of the filters produced by Rhea.
Selectivity For each of the nine jobs we take the input
data and apply the row filter, the column filter, and the
combined row and column filters and measure the selec-
tivity. Selectivity is defined as the ratio of filtered data
size to unfiltered data size; e.g. a selectivity of 1 means

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

ize
d

ru
nt

im
e

Figure 6: Job run time when using the Rhea filters nor-
malized to the baseline execution time for the 9 example
jobs when running on 4 extra large instances on Windows
Azure.

that no data reduction happened. Figure 5 shows the se-
lectivity for row filters, for column filters, and the overall
selectivity of row and column filters combined.

Figure 5 shows several interesting properties of Rhea.
First, when using both row and column filtering across
all jobs we observe a substantial reduction in the amount
of input data transferred from the storage to the compute.
In the worst case only 50% of the data was transferred.
The majority of filters transferred only 25% of the data,
and the most selective one only 0.005%, representing a
reduction of 20,000 times the original data size. There-
fore, in general the approach provides significant gains.

We also see that for five jobs the column selectivity
is 1.0. In these cases no column filter was generated
by Rhea. In three cases, the row selectivity is 1.0. In
these cases, row filters were generated but did not sup-
press any rows. On examination, we found that the filters
were essentially a check for a validly formed line of in-
put (a common check in many mappers). Since our test
inputs happened to consist only of valid lines, none of
the lines were suppressed at run time. Note that a filter
with poor selectivity can easily be disabled at run time
without modifying or even restarting the computation.

Runtime Next we look at the impact of filtering on the
execution time of jobs running in Windows Azure.

Figure 6 shows the run time for the nine jobs when us-
ing the Rhea filters normalized to the time taken to the
baseline. For half the jobs we observe a speed up of over
a factor of two. For four of the remaining jobs we ob-
serve that the time taken is 75% or lower compared to the
baseline. The outlier in the GeoLocation example which,
despite the data selectivity being high, has an identical
run time. This is because the data set is small and the run
time setup overheads dominate.

352 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

0
1
2
3
4
5
6
7
8
9

10
Pr

oc
es

si
ng

 R
at

e
(G

bp
s p

er
 c

or
e)

Java Filtering Engine Native Filtering Engine Native with SSE4

Figure 7: Input data rates achieved by filtering for row
and column filters in Java and declarative column filters
alone in two native filtering engines. Observe that two of
the jobs contain two mappers each, for which we mea-
sure filtering performance independently.

Filtering engine These experiments run with pre-filtered
data as we can not modify the Windows Azure storage
layer. Separately, we micro-benchmarked the through-
put of the filtering engine. Our goal is to understand if
filtering can become a bottleneck for the job and hence
slow down job run times. Although filtering still reduces
overall network bandwidth usage, we would disable such
filters to prevent individual jobs from slowing down.

Consider a modest storage server with 2 cores and a
1 Gbps network adapter. Assuming a server transmitting
at full line rate, the filters should process data at an input
rate of 1 Gbps or higher, to guarantee that filtering will
not degrade job performance. In practice, with a large
number of compute and storage servers, core network
bandwidth is the bottleneck and the server is unlikely to
achieve full line rate. The black bars in Figure 7 show the
filtering throughput per core measured in isolation, with
both input and output data stored in memory, and both
row and column filters enabled for all jobs. All the fil-
ters run faster than 500 Mbps per core (on an Intel Xeon
X5650 processor), showing that even with conservative
assumptions filtering will not degrade job performance.

We have also experimented with declarative rather
than executable column filters, which allows us to use
a fast native filtering engine (no JVM). Recall that the
static analysis for column filtering generates a descrip-
tion of the tokenization process (e.g. separator character,
regular expression) and a list of, e.g., integers that iden-
tify the columns that are dereferenced by the mapper. In-
stead of converting this to Java code, we encode it as a
symbolic filter which is interpreted by a fast generic en-
gine written in C. This engine is capable of processing
inputs 2.5-9x faster than the Java filtering engine (me-
dian 3.7x) (Figure 7). We have further optimized the C
engine using the SSE4 instruction set. The performance
increased to 5-17x faster than the Java filtering engine
(median 8.6). In addition to performance, the native en-
gine is small and self-contained, and easily isolated, but

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

ize
d

ru
nt

im
e

Figure 8: Job run times when using the Rhea filters nor-
malized to the baseline execution time for the 9 example
jobs fetching data across the WAN

0

0.2

0.4

0.6

0.8

1

N
or

m
al

ize
d

$
co

st

Bandwidth Compute Overall

Figure 9: Dollar costs when using the Rhea filters nor-
malized to the baseline cost for the 9 example jobs fetch-
ing data across the WAN

it does not perform row filtering. For row filtering cur-
rently we still use the slower Java filtering engine: row
filters can perform arbitrary computations and we cur-
rently have no mechanism for converting them from Java
to a declarative representation.

The performance numbers reported in Figure 7 are per
processor core. It is straightforward to run in parallel
multiple instances of the same filter, or even different
filters. The system performance of filtering increases
linearly with the number of cores, assuming of course
enough I/O capacity for reading input data and network
capacity for transmitting filtered data.

4.3 Cross cloud with online filtering
There are several scenarios where data must be read

across the WAN. Data could be stored on-premise and
occasionally accessed by a computation run on an elas-
tic cloud infrastructure for cost or scalability reasons.

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 353

Alternatively, data could be in cloud storage but com-
putation run on-premise: for computations that do not
need elastic scalability and with a heavy duty cycle,
on-premises computation is cheaper than renting cloud
VMs. A third scenario is when the data are split across
multiple providers or data centers. For example, a job
might join a public data set available on one provider
with a private data set stored on a different provider. The
computation must run on one of the providers and access
the data on the other one over the WAN.

WAN bandwidth is even scarcer than LAN bandwidth,
and using cloud storage incurs egress charges. Thus us-
ing Rhea reduces both LAN and WAN traffic if the data
are split across data centers. Since, we have already eval-
uated the LAN scenario, we will now evaluate the effects
of filtering WAN traffic with Rhea in isolation. To do this
we run the same nine jobs with the only difference being
that the computations are run in the Azure-US-West data
center and the storage is in the Azure-EU-North data cen-
ter2. Rhea filters are deployed in a single large compute
instance running as a filtering proxy in the Azure-EU-
North data center’s compute cluster.
Run time Figure 8 shows the run time when Rhea filter-
ing is used, normalized to the baseline run time with no
filtering. In general the results are similar to the LAN
case. In all cases the CPU utilization reported on the
filtering proxy was low (under 20% always). Thus the
proxy is never the bottleneck. In most cases the WAN
bandwidth is the bottleneck and the reduction in run time
is due to the filter selectivity. However, for very selective
filters (IT Reporting), the bottleneck is the data transfer
from the storage layer to the filtering proxy over the LAN
rather than the transfer from the proxy to the WAN. In
this case the run time reduction reflects the ratio of the
WAN egress bandwidth, to the LAN storage-to-compute
bandwidth achieved by the filtering proxy.
Dollar costs In the WAN case, dollar costs reduce both
for compute instances and also for egress bandwidth.
While Rhea uses more compute instances (by adding a
filtering instance) it significantly reduces egress band-
width usage. Figure 9 shows the bandwidth, compute,
and overall dollar costs of Rhea, each normalized to the
corresponding value when not using Rhea. We use the
standard Windows Azure charges of US$0.96 per hour
for an extra-large instance and US$0.12 per GB of egress
bandwidth. Surprisingly the compute costs also go down
when using Rhea, even though it uses 5 instances per job
rather than 4. This is because overall run times are re-
duced (again assuming per-second rather than per-hour
billing, since most of our jobs take well under an hour

2The input data sets for FindUserUsage and ComputeIOVolumes
are too large to run in a reasonable time in this configuration. Hence
for these two jobs we use a subset of the data, i.e. 1 hour’s event logs
rather than 1 day’s.

to run). Thus compute costs are reduced in line with
run time reductions and egress bandwidth charges in line
with data reduction. In general, we expect the effect
of egress bandwidth to dominate since computation is
cheap relative to egress bandwidth: one hour of compute
costs the same as only 8 GB of data egress. Of course, if
filtering were offered at the storage servers then it would
simply use spare computing cycles there and there would
be no need to pay for a filtering VM instance.

5 Related work
There is a large body of work optimizing the perfor-

mance of MapReduce, by better scheduling of jobs [21]
and by handling of stragglers and failures [2, 40]. We are
orthogonal to this work, aiming to minimize bandwidth
between storage and compute.

Pyxis is a system for automatically partitioning
database applications [7]. It uses profiling to identify op-
portunities for splitting a database application between
server and application nodes, so that data transfers are
minimized (like Rhea), but also control transfers are
minimized. Unlike Rhea, Pyxis uses state-aware pro-
gram partitioning. The evaluation has been done of
Java applications running against MySQL. Compared to
Rhea, the concerns are different: database applications
might be more interactive (with more control transfers)
than MapReduce data analytics programs; moreover in
our setting we consider partitioning to be just an op-
timization that can opportunistically be enabled or dis-
abled on the storage, even during the execution of a job
and hence we do not modify the original job and make
sure that the extracted filters are stateless. On the other
hand, the optimization problem that determines the parti-
tioning can take into account the available CPU budget at
the database nodes, a desirable feature for Rhea as well.

MANIMAL is an analyzer for MapReduce jobs [25].
It uses static analysis techniques similar to Rhea’s to gen-
erate an “index-generation program” which is run off-line
to produce an indexed and column-projected version of
the data. Index-generation programs must be run to com-
pletion on the entire data set to show any benefit, and
must be re-run whenever additional data is appended.
The entire data set must be read by Hadoop compute
nodes and then the index written back to storage. This is
not suitable for our scenario where there is limited band-
width between storage and compute. By contrast, Rhea
filters are on-line and have no additional overheads when
fresh data are appended. Furthermore, MANIMAL uses
logical formulas to encode the “execution descriptors”
that perform row filtering by selecting appropriately in-
dexed versions of the input data. Rhea filters can encode
arbitrary Boolean functions over input rows.

Hadoop2SQL [22] allows the efficient execution of
Hadoop code on a SQL database. The high-level goal

354 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

is to transform a Hadoop program into a SQL query or,
if the entire program cannot be transformed, parts of the
program. This is achieved by using static analysis. The
underlying assumption is that by pushing the Hadoop
query into the SQL database it will be more efficient.
In contrast, the goal of Rhea is to still enable Hadoop
programs to run on a cluster against any store that can
currently be used with Hadoop.

Using static analysis techniques to unravel properties
of user-defined functions and exploit opportunities for
optimizations is an area of active research. In the SUDO
system [42], a simple static analysis of user-defined func-
tions determines whether they preserve the input data
partition properties. This information is used to opti-
mize the shuffling stage of a distributed SCOPE job. In
the context of the Stratosphere project [19], code analy-
sis determines algebraic properties of user-defined func-
tions and an optimizer exploits them to rewrite and fur-
ther optimize the query operator graph. The NEMO
system [16] also treats UDFs as open-boxes and tries
to identify opportunities for applying more traditional
“whole-program” optimizations, such as function and
type specialization, code motion, and more. This could
potentially be used to “split” mappers rather than “ex-
tract” filters, i.e. modify the mapper to avoid repeating
the computation of the filter. However this is very diffi-
cult to do automatically, and indeed with NEMO manual
modification is required to create such a split. Further,
it means that filters can no longer be dynamically and
transparently disabled since they are now an indispens-
able part of the application.

In the storage field the closest work is on Active
Disks [20, 32]. Here compute resources are provided di-
rectly in the hard disk and a program is partitioned to
run on the server and on the disks. A programmer is ex-
pected to manually partition the program, and the opera-
tions performed on the disk transform the data read from
it. Rhea pushes computation into the storage layer but it
does not require any explicit input from the programmer.

Inferring the schema of unstructured or semi-structure
data is an interesting problem, especially for mining web
pages [9, 10, 27]. Due to the difficulty of constructing
hand-coded wrappers, previous work focused on auto-
mated ways to create those wrappers, often with the use
of examples [27]. In Rhea, the equivalent hand-coded
wrappers are actually embedded in the code of the map-
pers, and our challenge is to extract them in order to gen-
erate the filters. Moreover, Rhea deals with very flexible
schemas (e.g. different rows may have different struc-
ture); our goal is not to interpret the data, but to extract
enough information to construct the filters.

Rhea reduces the amount of data transferred by filter-
ing the input data. Another approach to reduce the bytes
transferred is with compression [33, 35]. We have found

that compression complements filtering to further reduce
the amount of bytes transferred in our data sets. Com-
pression though requires changes to the user code, and
increases the processing overhead at the storage nodes.

Regarding the static analysis part of this work, there is
a huge volume of work on dependency analysis for slic-
ing from the early 80’s [36], to elaborate inter-procedural
slicing [17]. More recently, Wiedermann et al. [37, 38]
studied the program of extracting queries from impera-
tive programs that work on structured data that adhere
to a database schema. The techniques used are similar
as ours here – an abstract interpretation framework keeps
track of the used structure and the paths of the imperative
program that perform output or update the state. A key
difference is that Rhea targets unstructured text inputs,
so a separate analysis is required to identify the parts of
the input string that are used in a program. Moreover our
tool extracts programs in a language as expressive as the
original mapper – as opposed to a specialized query lan-
guage. This allows us to be very flexible in the amount of
computation that we can embed into the filter and push
close to the data.

6 Conclusions
We have described Rhea, a system that automatically

generates executable storage-side filters for unstructured
data processing in the cloud. The filters encode the im-
plicit data selectivity, in terms of row and column, for
map functions in Hadoop jobs. They are created by per-
forming static analysis on Java byte code.

We have demonstrated that Rhea filtering yields sig-
nificant savings in the data transferred between storage
and compute for a variety of realistic Hadoop jobs. Re-
duced bandwidth usage leads to faster job run times and
lower dollar costs when data is transferred cross-cloud.
The filters have several desirable properties: they are
transparent, safe, lightweight, and best-effort. They are
guaranteed to have no false negatives: all data used by
a map job will be passed through the filter. Filtering is
strictly an optimization. At any point in time the filter
can be stopped and the remaining data returned unfiltered
transparently to Hadoop.

We are currently working on generalizing Rhea to sup-
port other format such as binary formats, XML, and com-
pressed text, as well as data processing tools and run-
times other than Hadoop and Java.

Acknowledgments
We thank the reviewers, and our shepherd Wenke Lee,
who provided valuable feedback and advice. Thanks
to the Microsoft Hadoop product team for valuable dis-
cussions and resources, and in particular Tim Mallalieu,
Mike Flasko, Steve Maine, Alexander Stojanovic, and
Dave Vronay.

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 355

References
[1] Amazon Simple Storage Service (Amazon S3). http://aws.

amazon.com/s3/. Accessed: 08/09/2011.

[2] G. Ananthanarayanan et al. “Reining in the Outliers in Map-
Reduce Clusters using Mantri”. Operating Systems Design and
Implementation (OSDI). USENIX, 2010.

[3] Apache Cassandra. http://cassandra.apache.org/. Ac-
cessed: 03/10/2011.

[4] B. Calder et al. “Windows Azure Storage: a highly available
cloud storage service with strong consistency”. Proc. of 23rd
Symp. on Operating Systems Principles (SOSP). ACM, 2011.

[5] R. Chaiken et al. “SCOPE: Easy and Effcient Parallel Process-
ing of Massive Datasets”. VLDB. 2008.

[6] Y. Chen et al. “The Case for Evaluating MapReduce Perfor-
mance Using Workload Suites”. MASCOTS. IEEE Computer
Society, 2011.

[7] A. Cheung et al. “Automatic partitioning of database applica-
tions”. Proc. VLDB Endow. 5.11 (2012).

[8] B. Cook, A. Podelski, and A. Rybalchenko. “Termination
proofs for systems code”. Proc. of the SIGPLAN conf. on
Programming Language Design and Implementation (PLDI).
ACM, 2006.

[9] V. Crescenzi and G. Mecca. “Automatic Information Extraction
from Large Websites”. J. ACM 51.5 (2004).

[10] V. Crescenzi, G. Mecca, and P. Merialdo. “RoadRunner: To-
wards Automatic Data Extraction from Large Web Sites”. Proc.
of 27th International Conference on Very Large Data Bases
(VLDB). Morgan Kaufmann Publishers Inc., 2001.

[11] T. von Eicken. Network performance within Amazon EC2 and
to Amazon S3. http://blog.rightscale.com/2007/10/
28/network-performance-within-amazon-ec2-and-

to-amazon-s3/. Accessed: 08/09/2011. 2007.

[12] S. L. Garfinkel. An Evaluation of Amazon’s Grid Computing
Services: EC2, S3 and SQS. Tech. rep. Harvard University,
2007.

[13] A. F. Gates et al. “Building a high-level dataflow system on top
of Map-Reduce: the Pig experience”. Proc. VLDB Endow. 2.2
(2009).

[14] A. G. Greenberg et al. “VL2: a scalable and flexible data center
network”. SIGCOMM. Ed. by P. Rodriguez et al. ACM, 2009.

[15] S. Gulwani, K. K. Mehra, and T. Chilimbi. “SPEED: precise
and efficient static estimation of program computational com-
plexity”. Proc. of 36th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages (POPL). ACM, 2009.

[16] Z. Guo et al. “Nemo: Whole Program Optimization for Dis-
tributed Data-Parallel Computation.” Proc. of the 10th Sympo-
sium on Operating Systems Design and Implementation (OSDI).
USENIX Association, 2012.

[17] S. Horwitz, T. Reps, and D. Binkley. “Interprocedural slicing
using dependence graphs”. SIGPLAN Not. 39 (4 2004).

[18] L. Hubert et al. “Sawja: Static Analysis Workshop for Java”.
Formal Verification of Object-Oriented Software. Ed. by B.
Beckert and C. Marché. Springer Berlin / Heidelberg, 2011.

[19] F. Hueske et al. “Opening the black boxes in data flow optimiza-
tion”. Proc. VLDB Endow. 5.11 (2012).

[20] L. Huston et al. “Diamond: A Storage Architecture for Early
Discard in Interactive Search”. FAST. USENIX, 2004.

[21] M. Isard et al. “Quincy: Fair Scheduling for Distributed Com-
puting Clusters”. Proc. of 22nd ACM Symposium on Operating
Systems Principles (SOSP). 2009.

[22] M.-Y. Iu and W. Zwaenepoel. “HadoopToSQL: A MapReduce
query optimizer”. EuroSys’10. 2010.

[23] S. Iyer. Geo Location Data From DB-Pedia. http : / /

downloads.dbpedia.org/3.3/en/geo_en.csv.bz2.
Accessed: 22/09/2011.

[24] S. Iyer. Map Reduce Program to group articles in Wikipedia by
their GEO location. http://code.google.com/p/hadoop-
map-reduce-examples/wiki/Wikipedia_GeoLocation.
Accessed: 08/09/2011. 2009.

[25] E. Jahani, M. J. Cafarella, and C. Ré. “Automatic Optimization
for MapReduce Programs”. PVLDB 4.6 (2011).

[26] R. Jhala and R. Majumdar. “Path slicing”. Proc. of the 2005
ACM SIGPLAN conf. on Programming Language Design and
Implementation (PLDI). ACM, 2005.

[27] N. Kushmerick, D. S. Weld, and R. B. Doorenbos. “Wrapper In-
duction for Information Extraction”. IJCAI (1). Morgan Kauf-
mann, 1997.

[28] A. Miné. “The octagon abstract domain”. Higher Order Symbol.
Comput. 19.1 (2006).

[29] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program
Analysis. Springer-Verlag New York, Inc., 1999.

[30] A. Pavlo et al. “A comparison of approaches to large-scale data
analysis”. Proc. of 35th SIGMOD intl conf on Management of
data. ACM, 2009.

[31] Public Data Sets on AWS. http : / / aws . amazon . com /
publicdatasets/. Accessed: 03/05/2012.

[32] E. Riedel et al. “Active Disks for Large-Scale Data Processing”.
Computer 34 (6 2001).

[33] snappy: A fast compressor/decompressor. http : / / code .
google.com/p/snappy/. Accessed: 03/05/2012.

[34] A. Thusoo et al. “Hive - a petabyte scale data warehouse using
Hadoop”. Proceedings of the 26th International Conference on
Data Engineering, ICDE 2010, March 1-6, 2010, Long Beach,
California, USA. IEEE, 2010.

[35] B. D. Vo and G. S. Manku. “RadixZip: linear time compression
of token streams”. Proc of 33rd intl. conf. on Very Large Data
Bases (VLDB). VLDB Endowment, 2007.

[36] M. Weiser. “Program slicing”. Proc. of 5th intl. conf. on Soft-
ware Engineering (ICSE). IEEE Press, 1981.

[37] B. Wiedermann and W. R. Cook. “Extracting queries by
static analysis of transparent persistence”. Proc. of 34th ACM
SIGPLAN-SIGACT symposium on Principles of programming
languages (POPL). ACM, 2007.

[38] B. Wiedermann, A. Ibrahim, and W. R. Cook. “Interprocedu-
ral query extraction for transparent persistence”. Proc. of 23rd
ACM SIGPLAN conference on Object-oriented programming
systems languages and applications (OOPSLA). ACM, 2008.

[39] Windows Azure Storage. http : / / www . microsoft .

com / windowsazure / features / storage/. Accessed:
08/09/2011.

[40] M. Zaharia et al. “Improving MapReduce Performance in Het-
erogeneous Environments”. Operating Systems Design and Im-
plementation (OSDI). USENIX, 2008.

[41] Zebra Reference Guide. http://pig.apache.org/docs/
r0.7.0/zebra_reference.html. Accessed: 22/09/2011.
2011.

[42] J. Zhang et al. “Optimizing data shuffling in data-parallel com-
putation by understanding user-defined functions”. Proc. of 9th
USENIX conference on Networked Systems Design and Imple-
mentation. USENIX Association, 2012.

