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Abstract

Networks are complex and prone to bugs. Existing tools
that check network configuration files and the data-plane
state operate offline at timescales of seconds to hours,
and cannot detect or prevent bugs as they arise.

Is it possible to check network-wide invariants in real
time, as the network state evolves? The key challenge
here is to achieve extremely low latency during the
checks so that network performance is not affected. In
this paper, we present a design, VeriFlow, which achieves
this goal. VeriFlow is a layer between a software-
defined networking controller and network devices that
checks for network-wide invariant violations dynami-
cally as each forwarding rule is inserted, modified or
deleted. VeriFlow supports analysis over multiple header
fields, and an API for checking custom invariants. Based
on a prototype implementation integrated with the NOX
OpenFlow controller, and driven by a Mininet OpenFlow
network and Route Views trace data, we find that Veri-
Flow can perform rigorous checking within hundreds of
microseconds per rule insertion or deletion.

1 Introduction

Packet forwarding in modern networks is a complex pro-
cess, involving codependent functions running on hun-
dreds or thousands of devices, such as routers, switches,
and firewalls from different vendors. As a result, a sub-
stantial amount of effort is required to ensure networks’
correctness, security and fault tolerance. However, faults
in the network state arise commonly in practice, in-
cluding loops, suboptimal routing, black holes and ac-
cess control violations that make services unavailable or
prone to attacks (e.g., DDoS attacks). Software-Defined
Networking (SDN) promises to ease the development of
network applications through logically-centralized net-
work programmability via an open interface to the data
plane, but bugs are likely to remain problematic since the

complexity of software will increase. Moreover, SDN al-
lows multiple applications or even multiple users to pro-
gram the same physical network simultaneously, poten-
tially resulting in conflicting rules that alter the intended
behavior of one or more applications [25].

One solution is to rigorously check network software
or configuration for bugs prior to deployment. Symbolic
execution [12] can catch bugs through exploration of all
possible code paths, but is usually not tractable for large
software. Analysis of configuration files [13, 28] is use-
ful, but cannot find bugs in router software, and must be
designed for specific configuration languages and control
protocols. Moreover, using these approaches, an opera-
tor who wants to ensure the network’s correctness must
have access to the software and configuration, which may
be inconvenient in an SDN network where controllers
can be operated by other parties [25]. Another approach
is to statically analyze snapshots of the network-wide
data-plane state [9, 10, 17, 19, 27]. However, these pre-
vious approaches operate offline, and thus only find bugs
after they happen.

This paper studies the question, Is it possible to check
network-wide correctness in real time as the network
evolves? If we can check each change to forwarding be-
havior before it takes effect, we can raise alarms imme-
diately, and even prevent bugs by blocking changes that
violate important invariants. For example, we could pro-
hibit changes that violate access control policies or cause
forwarding loops.

However, existing techniques for checking networks
are inadequate for this purpose as they operate on
timescales of seconds to hours [10, 17, 19]. 1 Delay-
ing updates for processing can harm consistency of net-
work state, and increase reaction time of protocols with
real-time requirements such as routing and fast failover;
and processing a continuous stream of updates in a large

1The average run time of reachability tests in [17] is 13 seconds,
and it takes a few hundred seconds to perform reachability checks in
Anteater [19].
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network could introduce scaling challenges. Hence, we
need some way to perform verification at very high
speeds, i.e., within milliseconds. Moreover, checking
network-wide properties requires obtaining a view of
network-wide state.

We present a design, VeriFlow, which demonstrates
that the goal of real-time verification of network-wide
invariants is achievable. VeriFlow leverages software-
defined networking (SDN) to obtain a picture of the net-
work as it evolves by sitting as a layer between the SDN
controller and the forwarding devices, and checks va-
lidity of invariants as each rule is inserted, modified or
deleted. However, SDN alone does not make the prob-
lem easy. In order to ensure real-time response, Veri-
Flow introduces novel incremental algorithms to search
for potential violation of key network invariants — for
example, availability of a path to the destination, absence
of forwarding loops, enforcement of access control poli-
cies, or isolation between virtual networks.

Our prototype implementation supports both Open-
Flow [21] version 1.1.0 and IP forwarding rules, with the
exception that the current implementation does not sup-
port actions that modify packet headers. We microbench-
marked VeriFlow using a stream of updates from a simu-
lated IP network, constructed with Rocketfuel [7] topol-
ogy data and real BGP traces [8]. We also evaluated its
overhead relative to the NOX controller [14] in an emu-
lated OpenFlow network using Mininet [3]. We find that
VeriFlow is able to verify network-wide invariants within
hundreds of microseconds as new rules are introduced
into the network. VeriFlow’s verification phase has little
impact on network performance and inflates TCP con-
nection setup latency by a manageable amount, around
15.5% on average.

We give an overview of data plane verification and
SDN (§ 2) before presenting VeriFlow’s design (§ 3), im-
plementation (§ 4), and evaluation (§ 5). We then discuss
future (§ 6) and related work (§ 7), and conclude (§ 8).

2 Overview of Approach

VeriFlow adopts the approach of data plane verifica-
tion. As argued in [19], verifying network correctness
in the data plane offers several advantages over verifying
higher-level code such as configuration files. First, it is
closely tied to the network’s actual behavior, so that it
can catch bugs that other tools miss. For example, con-
figuration analysis [13, 28] cannot find bugs that occur
in router software. Second, since data-plane state has
relatively simple formats and semantics that are com-
mon across many higher-layer protocols and implemen-
tations, it simplifies rigorous analysis of a network.

Early data plane verification algorithms were devel-
oped in [27], and systems include FlowChecker [9],

Anteater [19], and Header Space Analysis [17]. The lat-
ter two systems were applied to operational networks and
uncovered multiple real-world bugs, validating the data
plane analysis approach. However, as noted previously,
these are offline rather than real-time systems.

VeriFlow performs real-time data plane verification in
the context of software defined networks (SDNs). An
SDN comprises, at a high level, (1) a standardized and
open interface to read and write the data plane of net-
work devices such as switches and routers; (2) a con-
troller, a logically centralized device that can run custom
code and is responsible for transmitting commands (for-
warding rules) to network devices.

SDNs are a good match for data plane verification.
First, a standardized data plane interface such as Open-
Flow [6] simplifies unified analysis across all network
devices. Second, SDNs ease real-time data plane ver-
ification since the stream of updates to the network is
observable at the controller.

SDN thus simplifies VeriFlow’s design. Moreover, we
believe SDNs can benefit significantly from VeriFlow’s
data plane verification layer: the network operator can
verify that the network’s forwarding behavior is correct,
without needing to inspect (or trust) relatively complex
controller code, which may be developed by parties out-
side the network operator’s control.

3 Design of VeriFlow

Checking network-wide invariants in the presence of
complex forwarding elements can be a hard problem. For
example, packet filters alone make reachability checks
NP-Complete [19]. Aiming to perform these checks in
real-time is therefore challenging. Our design tackles
this problem as follows. First, we monitor all the network
update events in a live network as they are generated by
network control applications, the devices, or the network
operator. Second, we confine our verification activities
to only those parts of the network whose actions may be
influenced by a new update. Third, rather than check-
ing invariants with a general-purpose tool such as a SAT
or BDD solver as in [10, 19] (which are generally too
slow), we use a custom algorithm. We now discuss each
of these design decisions in detail.

VeriFlow’s first job is to track every forwarding-state
change event. For example, in an SDN such as Open-
Flow [21], a centralized controller issues forwarding
rules to the network devices to handle flows initiated by
users. VeriFlow must intercept all these rules and ver-
ify them before they reach the network. To achieve this
goal, VeriFlow is implemented as a shim layer between
the controller and the network, and monitors all commu-
nication in either direction.
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For every rule insertion/deletion message, VeriFlow
must verify the effect of the rule on the network at very
high speed. VeriFlow cannot leverage techniques used by
past work [9,17,19], because these operate at timescales
of seconds to hours. Unlike previous solutions, we do
not want to check the entire network on each change.
We solve this problem in three steps. First, using the
new rule and any overlapping existing rules, we slice the
network into a set of equivalence classes (ECs) of pack-
ets (§ 3.1). Each EC is a set of packets that experience
the same forwarding actions throughout the network. In-
tuitively, each change to the network will typically only
affect a very small number of ECs (see § 5.1). There-
fore, we find the set of ECs whose operation could be al-
tered by a rule, and verify network invariants only within
those classes. Second, VeriFlow builds individual for-
warding graphs for every modified EC, representing the
network’s forwarding behavior (§ 3.2). Third, VeriFlow
traverses these graphs (or runs custom user-defined code)
to determine the status of one or more invariants (§ 3.3).
The following subsections describe these steps in detail.
Figure 1 shows the placement and operations of VeriFlow
in an SDN.

Figure 1: VeriFlow sits between the SDN applications
and devices to intercept and check every rule entering
the network.

3.1 Slicing the network into equivalence
classes

One way to verify network properties is to prepare a
model of the entire network using its current data-plane
state, and run queries on this model [9, 19]. However,
checking the entire network’s state every time a new flow
rule is inserted is wasteful, and fails to provide real-time
response. Instead, we note that most forwarding rule
changes affect only a small subset of all possible pack-

ets. For example, inserting a longest-prefix-match rule
for the destination IP field will only affect forwarding
for packets destined to that prefix. In order to confine
our verification activities to only the affected set of pack-
ets, we slice the network into a set of equivalence classes
(ECs) based on the new rule and the existing rules that
overlap with the new rule. An equivalence class is de-
fined as follows.

Definition (Equivalence Class): An equivalence class
(EC) is a set P of packets such that for any p1, p2 ∈ P and
any network device R, the forwarding action is identical
for p1 and p2 at R.

Separating the entire packet space into individual ECs
allows VeriFlow to pinpoint the affected set of packets if
a problem is discovered while verifying a newly inserted
forwarding rule.

Let us look at an example. Consider an OpenFlow
switch with two rules matching packets with destination
IP address prefixes 11.1.0.0/16 and 12.1.0.0/16, respec-
tively. If a new rule matching destination IP address pre-
fix 11.0.0.0/8 is added, it may affect packets belonging
to the 11.1.0.0/16 range depending on the rules’ priority
values [6] (the longer prefix may not have higher prior-
ity). However, the new rule will not affect packets out-
side the range 11.0.0.0/8, such as 12.1.0.0/16. Therefore,
VeriFlow will only consider the new rule (11.0.0.0/8) and
the existing overlapping rule (11.1.0.0/16) while analyz-
ing network properties. These two overlapping rules pro-
duce three ECs (represented using the lower and upper
bound range values of the destination IP address field):
11.0.0.0 to 11.0.255.255, 11.1.0.0 to 11.1.255.255, and
11.2.255.255 to 11.255.255.255.

VeriFlow needs an efficient data structure to quickly
store new network rules, find overlapping rules, and
compute the affected ECs. For this we utilize a multi-
dimensional prefix tree (trie) inspired by traditional
packet classification algorithms [26].

A trie is an ordered tree data structure that stores an
associative array. In our case, the trie associates the set
of packets matched by a forwarding rule with the for-
warding rule itself. Each level in the trie corresponds
to a specific bit in a forwarding rule (equivalently, a bit
in the packet header). Each node in our trie has three
branches, corresponding to three possible values that the
rule can match: 0, 1, and * (wildcard). The trie can be
seen as a composition of several sub-tries or dimensions,
each corresponding to a packet header field. We main-
tain a sub-trie in our multi-dimensional trie for each of
the mandatory match and packet header fields supported
by OpenFlow 1.1.0.2 (Note that an optimization in our
implementation uses a condensed set of fields in the trie;

2(DL SRC, DL DST, NW SRC, NW DST, IN PORT, DL VLAN,
DL VLAN PCP, DL TYPE, NW TOS, NW PROTO, TP SRC,
TP DST, MPLS LABEL and MPLS TC).
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see § 4.2.) For example, the sub-trie representing the
IPv4 destination corresponds to 32 levels in the trie. One
of the sub-tries (DL SRC in our design) appears at the
top, the next field’s sub-tries are attached to the leaves
of the first, and so on (Figure 2). A path from the trie’s
root to a leaf of one of the bottommost sub-tries thus rep-
resents the set of packets that a rule matches. Each leaf
stores the rules that match that set of packets, and the
devices at which they are located (Figure 2).

Figure 2: VeriFlow’s core algorithmic process.

When a new forwarding rule is generated by the ap-
plication, we perform a lookup in our trie, by traversing
it dimension by dimension to find all the rules that inter-
sect the new rule. At each dimension, we narrow down
the search area by only traversing those branches that fall
within the range of the new rule using the field value
of that particular dimension. The lookup procedure re-
sults in the selection of a set of leaves of the bottommost
dimension, each with a set of forwarding rules. These
rules collectively define a set of packets (in particular,
their corresponding forwarding rules) that could be af-
fected by the incoming forwarding rule. This set may
span multiple ECs. We next compute the individual ECs
as illustrated in Figure 2. For each field, we find a set
of disjoint ranges (lower and upper bound) such that no
rule splits one of the ranges. An EC is then defined by
a particular choice of one of the ranges for each of the
fields. This is not necessarily a minimal set of ECs; for
example, ECs 2 and 4 in Figure 2 could have been com-
bined into a single EC. However, this method performs
well in practice.

3.2 Modeling forwarding state with for-
warding graphs

For each EC computed in the previous step, VeriFlow
generates a forwarding graph. Each such graph is a
representation of how packets within an EC will be for-

warded through the network. In the graph, a node repre-
sents an EC at a particular network device, and a directed
edge represents a forwarding decision for a particular
(EC, device) pair. Specifically, an edge X → Y indicates
that according to the forwarding table at node X , packets
within this EC are forwarded to Y . To build the graph
for each EC, we traverse our trie a second time to find
the devices and rules that match packets from that EC.
The second traversal is needed to find all those rules that
were not necessary to compute the affected ECs in the
first traversal, yet can still influence their forwarding be-
havior. For example, for a new rule with 10.0.0.0/8 spec-
ified as the destination prefix, an existing 0.0.0.0/0 rule
will not contribute to the generation of the affected ECs,
but may influence their forwarding behavior depending
on its priority. Given the range values of different fields
of an EC, looking up matching rules from the trie struc-
ture can be performed very quickly. Here, VeriFlow only
has to traverse those branches of the trie having rules that
can match packets of that particular EC.

3.3 Running queries

Above, we described how VeriFlow models the behav-
ior of the network using forwarding graphs, building for-
warding graphs only for those equivalence classes (ECs)
whose behavior may have changed. Next, we answer
queries (check invariants) using this model.

VeriFlow maintains a list of invariants to be checked.
When ECs have been modified, VeriFlow checks each
(invariant, modified EC) pair. An invariant is specified
as a verification function that takes as input the forward-
ing graph for a specific EC, performs arbitrary computa-
tion, and can trigger resulting actions. VeriFlow exposes
an API (Application Programming Interface), the imple-
mentation of which is described in § 4.3, so that new in-
variants can be written and plugged in.

Up to a certain level of detail, the forwarding graph is
an exact representation of the forwarding behavior of the
network. Therefore, invariant modules can check a large
diversity of conditions concerning network behavior. For
example:

• Basic reachability: The verification function tra-
verses the directed edges in the forwarding graph
(using depth-first search in our implementation) to
determine whether packets will be delivered to the
destination address specified in the rule.

• Loop-freeness: The verification function traverses
the given EC’s forwarding graph to check that it
does not contain a loop.

• Consistency: Given two (pre-specified) routers
R1,R2 that are intended to have identical forward-
ing operations, the verification function traverses
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the forwarding graph starting at R1 and R2 to test
whether the fate of packets is the same in both cases.
(Any difference may indicate a bug.)

Further examples include detecting “black holes”
where packets are dropped, ensuring isolation of mul-
tiple VLANs, verifying access control policies, checking
whether a new rule conflicts with an existing rule, check-
ing whether an EC changes its next hop due to the in-
sertion/deletion of a rule, ensuring that packets always
traverse a firewall, and so on.

There are two key limitations on what invariants can
be feasibly implemented. First, VeriFlow’s forwarding
graph construct must include the necessary information.
Our current implementation of VeriFlow does not, for
example, incorporate information on buffer sizes that
would be necessary for certain performance invariants.
(There is not, however, any fundamental reason that Veri-
Flow could not be augmented with such metadata.) Sec-
ond, the invariant check must be implementable in the in-
cremental manner described above where only the mod-
ified ECs are considered at each step.

If a verification function finds a violated invariant, it
can choose to trigger further actions within VeriFlow.
Two obvious actions are dropping the rule that was being
inserted into the network, or installing the rule but gener-
ating an alarm for the operator. For example, the operator
could choose to drop rules that cause a security violation
(such as packets leaking onto a protected VLAN), but
only generate an alarm for a black hole. Since verifi-
cation functions are arbitrary code, they may take other
actions as well, such as maintaining statistics (e.g., rate
of forwarding behavior change) or writing logs.

3.4 Dealing with high verification time

VeriFlow achieves real-time response by confining its
verification activities within those parts of the network
that are affected when a new forwarding rule is installed.
In general, the effectiveness of this approach will be de-
termined by numerous factors, such as the complexity of
verification functions, the size of the network, the num-
ber of rules in the network, the number of unique ECs
covered by a new rule, the number of header fields used
to match packets by a new rule, and so on.

However, perhaps the most important factor summa-
rizing verification time is the number of ECs modified.
As our later experiments will show, VeriFlow’s verifica-
tion time is roughly linear in this number. In other words,
VeriFlow has difficulty verifying invariants in real-time
when large swaths of the network’s forwarding behavior
are altered in one operation.

When such disruptive events occur, VeriFlow may
need to let new rules be installed in the network with-

out waiting for verification, and run the verification pro-
cess in parallel. We lose the ability to block problematic
rules before they enter the network, but we note several
mitigating facts. First, the most prominent example of
a disruptive event affecting many ECs is a link failure,
in which case VeriFlow anyway cannot block the modi-
fication from entering the network. Second, upon (even-
tually) detecting a problem, VeriFlow can still raise an
alarm and remove the problematic rule(s) from the net-
work. Third, the fact that the number of affected ECs is
large may itself be worthy of an immediate alarm even
before invariants are checked for each EC. Finally, our
experiments with realistic forwarding rule update traces
(§ 5) show that disruptive events (i.e., events affecting
large number of ECs) are rare: in the vast majority of
cases (around 99%), the number of affected ECs is small
(less than 10).

4 Implementation

We describe three key aspects of our implementation:
our shim layer to intercept network events (§ 4.1), an op-
timization to accelerate verification (§ 4.2), and our API
for custom invariants (§ 4.3).

4.1 Making deployment transparent

In order to ease the deployment of VeriFlow in net-
works with OpenFlow-enabled devices, and to use Veri-
Flow with unmodified OpenFlow applications, we need
a mechanism to make VeriFlow transparent so that these
existing OpenFlow entities may remain unaware of the
presence of VeriFlow. We built two versions of VeriFlow.
One is a proxy process [25] that sits between the con-
troller and the network, and is therefore independent of
the particular controller. The second version is integrated
with the NOX OpenFlow controller [14] to improve per-
formance; our performance evaluation is of this version.
We expect one could similarly integrate VeriFlow with
other controllers, such as Floodlight [2], Beacon [1] and
Maestro [11], without significant trouble.

We built our implementation within NOX version
0.9.1 (full beta single-thread version). We integrated
VeriFlow within NOX, enabling it to run as a transpar-
ent rule verifier sitting between the OpenFlow applica-
tions implemented using NOX’s API, and the switches
and routers in the network. SDN applications running
on NOX use the NOX API to manipulate the forwarding
state of the network, resulting in OFPT FLOW MOD
(flow table modification) and other OpenFlow messages
generated by NOX. We modified NOX to intercept these
messages, and redirect them to our VeriFlow module.
This ensures that all messages are intercepted by Veri-
Flow before they are dispatched to the network. Veri-
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Flow then processes and checks the forwarding rules
contained in these messages for correctness, and can
block problematic flow rules.

To integrate the VeriFlow module, we extend two
parts of NOX. First, within the core of NOX, the
send openflow command() interface is responsible for
adding (relaying) flow rules from OpenFlow applica-
tions to the switches. At the lower layers of NOX,
handle flow removed() handles events that remove rules
from switches, due to rule timeouts or commands sent
by applications. Our implementation intercepts all mes-
sages sent to these two function calls, and redirects them
to VeriFlow. To reduce memory usage and improve run-
ning time, we pass these messages via shallow copy.

There are five types of flow table modification
messages that can be generated by OpenFlow ap-
plications: OFPFC ADD, OFPFC MODIFY STRICT,
OFPFC DELETE STRICT, OFPFC MODIFY and OF-
PFC DELETE. These rules differ in terms of whether
they add, modify or delete a rule from the flow table. The
strict versions match all the fields bit by bit, whereas the
non-strict versions allow wildcards. Our implementation
handles all these message types appropriately.

4.2 Optimizing the verification process

We use an optimization technique that exploits the way
certain match and packet header fields are handled in the
OpenFlow 1.1.0 specification. 10 out of 14 fields in this
specification do not support arbitrary wildcards.3 One
can only specify an exact value or the special ANY (wild-
card) value in these fields. We do not use separate di-
mensions in our trie to represent these fields, because
we do not need to find multiple overlapping ranges for
them. Therefore, we only maintain the trie structure for
the other four fields (DL SRC, DL DST, NW SRC and
NW DST). Due to this change, we generate the set of af-
fected equivalence classes (ECs) in three steps. First, we
use the trie structure to look for network-wide overlap-
ping rules, and find the set of affected packets determined
by the four fields that are represented by the trie. Each in-
dividual packet set we get from this step is actually a set
of ECs that can be distinguished by the other 10 fields.
Second, for each of these packet sets, we extract all the
rules that can match packets of that particular class from
the location/device of the newly inserted rule. We lin-
early go through all these rules to find non-overlapping
range values for the rest of the fields that are not main-
tained in the trie structure. Thus, each packet set found in
the first step breaks into multiple finer packet sets span-
ning all the 14 mandatory OpenFlow match and packet
header fields. Note that in this step we only consider

3IN PORT, DL VLAN, DL VLAN PCP, DL TYPE, NW TOS,
NW PROTO, TP SRC, TP DST, MPLS LABEL and MPLS TC.

the rules present at the device of the newly inserted rule.
Therefore, in the final step, as we traverse the forward-
ing graphs, we may encounter finer rules at other devices
that will generate new packet sets with finer granularity.
We handle them by maintaining sets of excluded packets
as described in the next paragraph.

Each forwarding graph that we generate using our trie
structure represents the forwarding state of a group of
packet sets that can be distinguished using the 10 fields
that do not support arbitrary wildcards. Therefore, while
traversing the forwarding graphs, we only work on those
rules that overlap with the newly inserted rule on these 10
fields. As we move from node to node while traversing
these graphs, we keep track of the ECs that have been
served by finer rules and are no longer present in the
primary packet set that was generated in the first place.
For example, in a device, a subset of a packet set may
be served by a finer rule having higher priority than a
coarser rule that serves the rest of that packet set. We
handle this by maintaining a set of excluded packets for
each forwarding action. Therefore, whenever we reach a
node that answers a query (e.g., found a loop or reached
a destination), the primary packet set minus the set of ex-
cluded packets gives the set of packets that experiences
the result of the query.

4.3 API to write general queries

We expose a set of functions that can be used to write
general queries in C++. Below is a list of these functions
along with the required parameters.

GetAffectedEquivalenceClasses: Given a new rule, this
function computes the set of affected ECs, and returns
them. It also returns a set of sub-tries from the last di-
mension of our trie structure. Each sub-trie holds the
rules that can match packets belonging to one of the af-
fected ECs. This information can be used to build the
forwarding graphs of those ECs. This function takes the
following parameters.
- Rule: A newly inserted rule.
- Returns: Affected ECs.
- Returns: Sub-tries representing the last dimension, and
holding rules that can match packets of the affected ECs.

GetForwardingGraph: This function generates and re-
turns the forwarding graph for a particular EC. It takes
the following parameters.
- EquivalenceClass: An EC whose forwarding graph will
be computed.
- TrieSet: Sub-tries representing the last dimension, and
holding rules that match the EC supplied as the first ar-
gument.
- Returns: Corresponding forwarding graph.

ProcessCurrentHop: This function allows the user to
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traverse a forwarding graph in a custom manner. Given
a location and EC, it returns the corresponding next hop.
It handles the generation of multiple finer packet sets by
computing excluded packet sets that need to be main-
tained because of our optimization strategy (§ 4.2). Due
to this optimization, this function returns a set of (next
hop, excluded packet set) tuples — effectively, an an-
notated directed edge in the forwarding graph. With re-
peated calls to this function across nodes in the forward-
ing graphs, custom invariant-checking modules can tra-
verse the forwarding graph and perform arbitrary compu-
tation on its structure. This function takes the following
parameters.
- ForwardingGraph: The forwarding graph of an EC.
- Location: The current location of the EC.
- Returns: (Next hop, excluded packet set) tuples.

Let us look at an example that shows how this API
can be used in practice. A network operator may want to
ensure that packets belonging to a certain set always pass
through a firewall device. This invariant can be violated
during addition/deletion of rules, or during link up/down
events. To check this invariant, the network operator can
extend VeriFlow using the above API to incorporate a
custom query algorithm that generates an alarm when the
packet set under scrutiny bypasses the firewall device.
In fact, the network operator can implement any query
that can be answered using the information present in the
forwarding graphs.

5 Evaluation

In this section, we present a performance evaluation of
our VeriFlow implementation. As VeriFlow intercepts
every rule insertion message whenever it is issued by an
SDN controller, it is crucial to complete the verification
process in real time so that network performance is not
affected, and to ensure scalability of the controller. We
evaluated the overhead of VeriFlow’s operations with the
help of two experiments. In the first experiment (§ 5.1),
our goal is to microbenchmark different phases of Veri-
Flow’s operations and observe their contribution to the
overall running time. The goal of the second experiment
(§ 5.2) is to assess the impact of VeriFlow on TCP con-
nection setup latency and throughput as perceived by end
users of an SDN.

In all of our experiments, we used our basic reachabil-
ity algorithms to test for loops and black holes for every
flow modification message that was sent to the network.
All of our experiments were performed on a Dell Opti-
plex 9010 machine with an Intel Core i7 3770 CPU with
4 physical cores and 8 threads at 3.4 GHz, and 32 GB of
RAM, running 64 bit Ubuntu Linux 11.10.

5.1 Per-update processing time

In this experiment, we simulated a network consisting
of 172 routers following a Rocketfuel [7] topology (AS
1755), and replayed BGP (Border Gateway Protocol)
RIB (Routing Information Base) and update traces col-
lected from the Route Views Project [8]. We built an
OSPF (Open Shortest Path First) simulator to compute
the IGP (Interior Gateway Protocol) path cost between
every pair of routers in the network. A BGP RIB snap-
shot consisting of 5 million entries was used to initialize
the routers’ FIB (Forwarding Information Base) tables.
Only the FIBs of the border routers were initialized in
this phase. We randomly mapped Route Views peers to
border routers in our network, and then replayed RIB and
update traces so that they originate according to this map-
ping. We replayed a BGP update trace containing 90,000
updates to trigger dynamic changes in the network. Upon
receiving an update from the neighboring AS, each bor-
der router sends the update to all the other routers in the
network. Using standard BGP polices, each router up-
dates its RIB using the information present in the update,
and updates its FIB based on BGP AS path length and
IGP path cost. We fed all the FIB changes into VeriFlow
to measure the time VeriFlow takes to complete its indi-
vidual steps described in § 3. We recorded the run time to
process each change individually. Note that in this first
set of experiments, only the destination IP address is used
to forward packets. Therefore, only this one field con-
tributes to the generation of equivalence classes (ECs).
We initialize the other fields with ANY (wildcards).

The results from this experiment are shown in Fig-
ure 3(a). VeriFlow is able to verify most of the updates
within 1 millisecond (ms), with mean verification time
of 0.38ms. Moreover, of this time, the query phase takes
only 0.01ms on an average, demonstrating the value of
reducing the query problem to a simple graph traversal
for each EC. Therefore, VeriFlow would be able to run
multiple queries of interest to the network operator (e.g.,
black hole detection, isolation of multiple VLANs, etc.)
within a millisecond time budget.

We found that the number of ECs that are affected by a
new rule strongly influences verification time. The scat-
ter plot of Figure 3(b) shows one data point for each ob-
served number of modified ECs (showing the mean ver-
ification time across all rules, which modified that num-
ber of ECs). The largest number of ECs affected by a
single rule was 574; the largest verification latency was
159.2ms due to an update affecting 511 ECs. However,
in this experiment, we found that for most updates the
number of affected ECs is small. 94.5% of the updates
only affected a single EC, and 99.1% affected less than
10 ECs. Therefore, only a small fraction of rules (0.9%)
affected large numbers of ECs. This can be observed by
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Figure 3: Per-update processing times: (a) Microbenchmark results, using the Route Views trace. Total verification
time of VeriFlow remained below 1ms for 97.8% of the updates. (b) Scatter plot showing the influence of number of
equivalence classes on verification time. (c) Results from multi-field packet filter experiment using the Route Views
trace. As more fields are used in forwarding rules, the running time of VeriFlow increases. The average verification
latency is not significantly influenced as we increase the number of filters present in the network. (d) Results from the
conflict detection test. VeriFlow is fast enough to compute all the conflicting rules within hundreds of microseconds
for 99% of the updates.

looking at the long tail of Figure 3(a).

In the above experiment, we assumed that the network
topology remains unchanged, i.e., there are no link or
node failures. In case of a link failure or node failure
(which can be thought of as failure of multiple links con-
nected to the failed node), the packets that were using
that link or node will experience changes in their for-
warding behavior. When this happens, VeriFlow’s job
is to verify the fate of those affected packets. In order
to evaluate VeriFlow’s performance in this scenario, we
used the above topology and traces to run a new experi-
ment. In this experiment, we fed both the BGP RIB trace
and update trace to the network. Then we removed each
of the packet-carrying links (381 in total) of the network
one by one (restoring a removed link before removing
the next), and computed the number of affected ECs and
the running time of VeriFlow to verify the behavior of
those classes. We found that most of the link removals
affected a large number of ECs. 254 out of 381 links af-
fected more that 1,000 ECs. The mean verification time

to verify a link failure event was 1.15 seconds, with a
maximum of 4.05 seconds. We can deal with such cases
by processing the forwarding graphs of different ECs in
parallel on multi-core processors. This is possible be-
cause the forwarding graphs do not depend on each other,
or on any shared data structure. However, as link or node
failures cannot be avoided once they happen, this may
not be a serious issue for network operators.

In order to evaluate VeriFlow’s performance in the
presence of more fields, we changed the input data set to
add packet filters that will selectively drop packets after
matching them against multiple fields. We randomly se-
lected a subset of the existing RIB rules currently present
in the network, and inserted packet filter rules by spec-
ifying values in some of the other fields that were not
present in the original trace. We ran this experiment
with two sets of fields. In the first set we used TP SRC
and TP DST in addition to NW DST (3 fields in total),
which was already present in the trace. For each ran-
domly selected RIB rule, we set random values to those
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two fields (TP SRC and TP DST), and set its priority
higher than the original rule. The remaining 11 fields
are set to ANY. While replaying the updates, all the 14
fields except NW DST are set to ANY.

In the second set we used NW SRC, IN PORT,
DL VLAN, TP SRC and TP DST in addition to
NW DST (6 fields in total). For each randomly selected
RIB rule, we set random values to IN PORT, DL VLAN,
TP SRC and TP DST, a random /16 value in NW SRC,
and set the priority higher than the original rule. The
remaining 8 fields are set to ANY. While replaying the
updates, all the 14 fields except NW SRC and NW DST
are set to ANY. In the updates, the NW SRC is set to a
random /12 value and the NW DST is the original value
present in the trace. We ran this experiment multiple
times varying the percentage of RIB rules that are used
to generate random filter rules with higher priority.

Figure 3(c) shows the results of this experiment. Ver-
ification time is heavily affected by the number of fields
used to classify packets. This happens because as we use
more fields to classify packets at finer granularities, more
unique ECs are generated, and hence more forwarding
graphs need to be verified. We also note from Figure 3(c)
that VeriFlow’s overall performance is not affected much
by the number of filters that we install into the network.

In all our experiments thus far, we kept a fixed order of
packet header fields in our trie structure. We started with
DL SRC (DS), followed by DL DST (DD), NW SRC
(NS) and NW DST (ND). In order to evaluate the per-
formance of VeriFlow with different field orderings, we
re-ran the above packet filter experiment with reordered
fields. In all the runs we used random values for the
NW SRC field and used the NW DST values present in
the Route Views traces. All the other fields were set to
ANY. We installed random packet filter rules for 10% of
the BGP RIB entries. As our dataset only specified val-
ues for the NW SRC and NW DST fields, there were a
total of 12 different orderings of the aforementioned 4
fields. Table 1 shows the results from this experiment.

Table 1: Effect of different field orderings on total run-
ning time of VeriFlow.

Order Time (ms) Order Time (ms)

DS-DD-NS-ND 1.001 DS-DD-ND-NS 0.090
DS-NS-DD-ND 1.057 DS-ND-DD-NS 0.096
NS-DS-DD-ND 1.144 ND-DS-DD-NS 0.101
NS-DS-ND-DD 1.213 ND-DS-NS-DD 0.103
NS-ND-DS-DD 1.254 ND-NS-DS-DD 0.15
DS-NS-ND-DD 1.116 DS-ND-NS-DD 0.098

From Table 1, we can see that changing the field or-
der in the trie structure greatly influences the running
time of VeriFlow. Putting the NW DST field ahead of
NW SRC reduced the running time by an order of mag-

nitude (from around 1ms to around 0.1ms). This hap-
pens because a particular field order may produce fewer
unique ECs compared to other field orderings for the
same rule. However, it is difficult to come up with a sin-
gle field order that works best in all scenarios, because
it is highly dependent on the type of rules present in a
particular network. Changing the field order in the trie
structure dynamically and efficiently as the network state
evolves would be an interesting area for future work.

Checking non-reachability invariants: Most of our
discussion thus far focused on checking invariants as-
sociated with the inter-reachability of network devices.
To evaluate the generality of our tool, we implemented
two more invariants using our API that were not directly
related to reachability: conflict detection (whether the
newly inserted rule violates isolation of flow tables be-
tween network slices, accomplished by checking the out-
put of the EC search phase), and k-monitoring (ensuring
that all paths in the network traverse one of several de-
ployed monitoring points, done by augmenting the for-
warding graph traversal process). We found that the over-
head of these checks was minimal. For the conflict de-
tection query, we ran the above filtering experiment using
the 6-field set with 10% and 20% newly inserted random
rules. However, this time instead of checking the reacha-
bility of the affected ECs as each update is replayed, we
only computed the set of rules that overlap/conflict with
the newly inserted rule. The results from this experiment
are shown in Figure 3(d).

From this figure, we can see that conflicting rule
checking can be done quickly, taking only 0.305ms on
average. (The step in the CDF is due to the fact that
some withdrawal rules did not overlap with any existing
rule.)

For the k-monitoring query experiment, we used a
snapshot of the Stanford backbone network data-plane
state that was used in [17]. This network consists of 16
routers, where 14 of these are internal routers and the
other 2 are gateway routers used to access the outside
network. The snapshot contains 7,213 FIB table entries
in total. In this experiment, we used VeriFlow to test
whether all the ECs currently present in the network pass
through one of the two gateway routers of the network.
We observed that at each location the average latency
to perform this check for all the ECs is around 68.06ms
with a maximum of 75.39ms.

5.2 Effect on network performance

In order to evaluate the effect of VeriFlow’s operations
on user-perceived TCP connection setup latency and the
network throughput, we emulated an OpenFlow network
consisting of 172 switches following the aforementioned
Rocketfuel topology using Mininet [3]. Mininet creates
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Figure 4: Effect on network performance: (a) TCP connection setup throughput, and (b) Throughput of flow modifi-
cation (Flow Mod) messages, with and without VeriFlow. For different loads, VeriFlow imposes minimal overhead.
(c) Effect of the number of packet header fields on VeriFlow’s verification speed. As we increase the number of fields,
overhead of VeriFlow increases gradually.

a software-defined network (SDN) with multiple nodes
on a single machine. We connected one host to ev-
ery switch in this emulated network. We ran the NOX
OpenFlow controller along with an application that pro-
vides the functionality of a learning switch. It allows
a host to reach any other host in the network by in-
stalling flow rules in the switches using flow modification
(Flow Mod) messages. We implemented a simple TCP
server program and a simple TCP client program to drive
the experiment. The server program accepts TCP con-
nections from clients and closes the connection immedi-
ately. The client program consists of two threads. The
primary thread continuously sends connect requests to a
random server using a non-blocking socket. To vary the
intensity of the workload, our TCP client program gener-
ates connections periodically with a parameterized sleep
interval (S). The primary thread at each client sleeps for
a random interval between 0 to S seconds (at microsec-
ond granularity) before initiating the connection request,
and iterating. The secondary thread at each client uses
the select function to look for connections that are ready
for transmission or experienced an error. A user supplied
polling interval (P) is used to control the rate at which the
select call will return. We set P inversely proportional to
the S value to avoid busy waiting and to allow the other
processes (e.g., Open vSwitch [5]) to get a good share of
the CPU. We ran the server program at each of the 172
hosts, and configured the client programs at all the hosts
to continually connect to the server of random hosts (ex-
cluding itself) over a particular duration (at least 10 min-
utes). In the switch application, we set the rule eviction
idle timeout to 1 second and hard timeout to 5 seconds.

We ran this experiment first with NOX alone, and then
with NOX and VeriFlow. We used the same seed in all
the random number generators to ensure similar loads in
both the runs. We also varied the S value to monitor the
performance of VeriFlow under a range of network loads.

Figure 4(a) shows the number of TCP connections
that were successfully completed per second for differ-

ent workloads both with and without VeriFlow. From
this figure, we can see that in all the cases VeriFlow im-
poses negligible overhead on the TCP connection setup
throughput in our emulated OpenFlow network. The
largest reduction in throughput that we observed in our
experiments was only 0.74%.

Figure 4(b) shows the number of flow modification
(Flow Mod) messages that were processed and sent to
the network per second for different workloads both with
and without VeriFlow. From this figure, again we can
see that in all the cases VeriFlow imposes minimal over-
head on the flow modification message throughput. The
largest reduction in throughput that we observed in our
experiments was only 12.8%. This reduction in through-
put is caused by the additional processing time required
to verify the flow modification messages before they are
sent to the network.

In order to assess the impact of VeriFlow on end-to-
end TCP connection setup latency, we ran this exper-
iment with S set to 30 seconds. We found that in the
presence of VeriFlow, the average TCP connection setup
latency increases by 15.5% (45.58ms without VeriFlow
versus 52.63ms with VeriFlow). As setting up a TCP
connection between two hosts in our emulated 172 host
OpenFlow network requires installing flow rules into
more than one switch, the verification performed by Veri-
Flow after receiving each flow rule from the controller
inflates the end-to-end connection setup latency to some
extent.

Lastly, we ran this experiment after modifying Veri-
Flow to work with different numbers of OpenFlow
packet header fields. Clearly, if we restrict the number of
fields during the verification process, there will be less
work for VeriFlow, resulting in faster verification time.
In this experiment, we gradually increased the number
of OpenFlow packet header fields that were used during
the verification process (from 1 to 14). VeriFlow sim-
ply ignored the excluded fields, and it reduced the num-
ber of dimensions in our trie structure. We set S to 10
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seconds and ran each run for 10 minutes. During the
runs, we measured the verification latency experienced
by each flow modification message generated by NOX,
and computed their average at each run.

Figure 4(c) shows the results from this experiment.
Here, we see that with the increase in the number of
packet header fields, the verification overhead of Veri-
Flow increases gradually but always remains low enough
to ensure real-time response. The 5 fields that con-
tributed most in the verification overhead are DL SRC,
DL DST, NW SRC, NW DST and DL TYPE. This hap-
pened because these 5 fields had different values at dif-
ferent flow rules, and contributed most in the generation
of multiple ECs. The other fields were mostly wildcards,
and did not generate additional ECs.

Comparison with related work: Finally, we com-
pared performance of our technique with two pieces of
related work: the Hassel tool presented in [17] (provided
to us by the authors), and a BDD-based analysis tool
that we implemented from scratch following the strat-
egy presented in [10] (the original code was not avail-
able to us). The authors of [17] provided two copies of
their tool, one in Python and one in C, and we evalu-
ated using the better-performing C version. While we
note these works solve different problems from our work
(e.g., HSA performs static verification, and does it be-
tween port pairs), we present these results to put Veri-
Flow’s performance in context. First, we ran Hassel over
the snapshot of the Stanford backbone network data-
plane state that was used in [17]. We found that Has-
sel’s average time to check reachability between a pair
of ports (effectively exploring all ECs for that source-
destination pair) was 578.62ms, with a maximum of 6.24
seconds. In comparison, VeriFlow took only 68.06ms on
average (with a maximum of 75.39ms) to test the reach-
ability of all the ECs currently present at a single node
in the network. Next, in the BDD-based approach, we
used the NuSMV [4] model checker to build a BDD us-
ing a new rule and the overlapping existing rules, and
used CTL (Computation Tree Logic) to run reachability
queries [10]. Here, we used the Rocketfuel topology and
Route Views traces that we used in our earlier experi-
ments. We found that this approach is quite slow and
does not provide real-time response while inserting and
checking new forwarding rules. Checking an update took
335.71ms on an average with a maximum of 67.16 sec-
onds.

6 Discussion and Future Work

Deciding when to check: VeriFlow may not know
when an invariant violation is a true problem rather than
an intermediate state during which the violation is con-

sidered acceptable by the operator. For example, in an
SDN, applications can install rules into a set of switches
to build an end-to-end path from a source host to a des-
tination host. However, as VeriFlow is unaware of appli-
cation semantics, it may not be able to determine these
rule set boundaries. This may cause VeriFlow to report
the presence of temporary black holes while process-
ing a set of rules one by one. One possible solution is
for the SDN application to tell VeriFlow when to check.
Moreover, VeriFlow may be used with consistent update
mechanisms [20,24], where there are well-defined stages
during which the network state is consistent and can be
checked.

Handling packet transformations: We can extend our
design to handle rules that perform packet transforma-
tion such as Network Address Translation. A transfor-
mation rule has two parts – the match part determines
the set of packets that will undergo the transformation,
and the transformation part represents the set of pack-
ets into which the matched packets will get transformed.
We can handle this case by generating additional equiva-
lence classes and their corresponding forwarding graphs,
to address the changes in packet header due to the trans-
formations. In the worst case, if we have transformations
at every hop (e.g., in an MPLS network), then we may
need to traverse our trie structure multiple times to build
an end-to-end path of a particular packet set. We leave a
full design and implementation to future work.

Multiple controllers: VeriFlow assumes it has a com-
plete view of the network to be checked. In a multi-
controller scenario, obtaining this view in real time
would be difficult. Checking network-wide invariants in
real time with multiple controllers is a challenging prob-
lem for the future.

7 Related Work

Recent work on debugging general networks and SDNs
focuses on detecting network anomalies [10, 19], check-
ing OpenFlow applications [12], ensuring data-plane
consistency [20, 24], and allowing multiple applications
to run side-by-side in a non-conflicting manner [22, 23,
25]. However, unlike VeriFlow, none of the existing so-
lutions provides real-time verification of network-wide
invariants as the network experiences dynamic changes.

Checking OpenFlow applications: Several tools have
been proposed to find bugs in OpenFlow applications and
to allow multiple applications run on the same physical
network in a non-conflicting manner. NICE [12] per-
forms symbolic execution of OpenFlow applications and
applies model checking to explore the state space of an
entire OpenFlow network. Unlike VeriFlow, NICE is a
proactive approach that tries to figure out invalid system
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states by using a simplified OpenFlow switch model. It
is not designed to check network properties in real time.
FlowVisor [25] allows multiple OpenFlow applications
to run side-by-side on the same physical infrastructure
without affecting each others’ actions or performance.
Unlike VeriFlow, FlowVisor does not verify the rules that
applications send to the switches, and does not look for
violations of key network invariants.

In [22], the authors presented two algorithms to de-
tect conflicting rules in a virtualized OpenFlow network.
In another work [23], Porras et al. extended the NOX
OpenFlow controller with a live rule conflict detection
engine called FortNOX. Unlike VeriFlow, both of these
works only detect conflicting rules, and do not verify the
forwarding behavior of the affected packets. Therefore,
VeriFlow is capable of providing more useful informa-
tion compared to these previous works.

Ensuring data-plane consistency: Static analysis tech-
niques using data-plane information suffer from the chal-
lenge of working on a consistent view of the network’s
forwarding state. Although this issue is less severe in
SDNs due to their centralized controlling mechanism, in-
consistencies in data-plane information may cause tran-
sient faults in the network that go undetected during the
analysis phase. Reitblatt et al. [24] proposed a technique
that uses an idea similar to the one proposed in [15].
By tagging each rule by a version number, this tech-
nique ensures that switches forward packets using a con-
sistent view of the network. This same problem has
been addressed in [20] using a different approach. While
these works aim to tackle transient inconsistencies in an
SDN, VeriFlow tries to detect both transient and long-
term anomalies as the network state evolves. Therefore,
using these above mechanisms along with VeriFlow will
ensure that whenever VeriFlow allows a set of rules to
reach the switches, they will forward packets without any
transient and long-term anomalies.

Checking network invariants: The router configura-
tion checker (rcc) [13] checks configuration files to de-
tect faults that may cause undesired behavior in the net-
work. However, rcc cannot detect faults that only man-
ifest themselves in the data plane (e.g., bugs in router
software and inconsistencies between the control plane
and the data plane; see [19] for examples).

Anteater [19] uses data-plane information of a net-
work, and checks for violations of key network invari-
ants (absence of routing loops and black holes). Anteater
converts the data-plane information into boolean ex-
pressions, translates network invariants into instances of
boolean satisfiability (SAT) problems, and checks the
resultant SAT formulas using a SAT solver. Although
Anteater can detect violations of network invariants, it
is static in nature, and does not scale well to dynamic
changes in the network (taking up to hundreds of seconds

to check a single invariant). Header Space Analysis [17]
is a system with goals similar to Anteater, and is also not
real time.

Concurrent with our work, NetPlumber [16] is a tool
based on Header Space Analysis (HSA) that is capable
of checking network policies in real time. NetPlumber
uses HSA in an incremental manner to ensure real-time
response. Unlike VeriFlow, which allows users to write
their own custom query procedures, NetPlumber pro-
vides a policy language for network operators to specify
network policies that need to be checked.

ConfigChecker [10] and FlowChecker [9] convert net-
work rules (configuration and forwarding rules respec-
tively) into boolean expressions in order to check net-
work invariants. They use Binary Decision Diagram
(BDD) to model the network state, and run queries us-
ing Computation Tree Logic (CTL). VeriFlow uses graph
search techniques to verify network-wide invariants, and
handles dynamic changes in real time. Moreover, unlike
previous solutions, VeriFlow can prevent problems from
hitting the forwarding plane, whereas FlowChecker find
problems after they occur and (potentially) cause dam-
age. ConfigChecker, like rcc, cannot detect problems that
only affect the data plane.

An early version of VeriFlow was presented in [18] but
only supported checking for a single header field with
a basic reachability invariant, had comparatively high
overhead, and had a limited evaluation.

8 Conclusion

In this paper, we presented VeriFlow, a network debug-
ging tool to find faulty rules issued by SDN applica-
tions, and optionally prevent them from reaching the net-
work and causing anomalous network behavior. Veri-
Flow leverages a set of efficient algorithms to check rule
modification events in real time before they are sent to
the live network. To the best of our knowledge, VeriFlow
is the first tool that can verify network-wide invariants in
a live network in real time. With the help of experiments
using a real world network topology, real world traces,
and an emulated OpenFlow network, we found that Veri-
Flow is capable of processing forwarding table updates
in real time.
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