PACMan: Coordinated Memory Caching for Parallel Jobs

Ganesh Ananthanarayanan ', Ali Ghodsi "4, Andrew Wang *, Dhruba Borthakur ?,
Srikanth Kandula 3, Scott Shenker *, Ion Stoica *

! University of California, Berkeley * Facebook 3 Microsoft Research * KTH/Sweden
{ganesha,alig,awang,shenker,istoica}@cs.berkeley.edu, dhruba@facebook.com,

srikanth@microsoft.com

Abstract- Data-intensive analytics on large clusters is
important for modern Internet services. As machines in
these clusters have large memories, in-memory caching
of inputs is an effective way to speed up these analytics
jobs. The key challenge, however, is that these jobs run
multiple tasks in parallel and a job is sped up only when
inputs of all such parallel tasks are cached. Indeed, a single
task whose input is not cached can slow down the entire
job. To meet this “all-or-nothing” property, we have built
PACMan, a caching service that coordinates access to the
distributed caches. This coordination is essential to im-
prove job completion times and cluster efficiency. To this
end, we have implemented two cache replacement poli-
cies on top of PACMan’s coordinated infrastructure fb-
LIFE that minimizes average completion time by evicting
large incomplete inputs, and LFU-F that maximizes clus-
ter efficiency by evicting less frequently accessed inputs.
Evaluations on production workloads from Facebook and
Microsoft Bing show that PACMan reduces average com-
pletion time of jobs by 53% and 51% (small interactive
jobs improve by 77%), and improves efficiency of the clus-
ter by 47% and 54%, respectively.

1 Introduction

Cluster computing has become a major platform, pow-
ering both large Internet services and a growing num-
ber of scientific applications. Data-intensive frameworks
(e.g., MapReduce [13] and Dryad [20]) allow users to per-
form data mining and sophisticated analytics, automati-
cally scaling up to thousands of machines.

Machines in these clusters have large memory capaci-
ties, which are often underutilized; the median and 95™
percentile memory utilizations in the Facebook cluster
are 19% and 42%, respectively. In light of this trend, we
investigate the use of memory locality to speed-up data-
intensive jobs by caching their input data.

Data-intensive jobs, typically, have a phase where they
process the input data (e.g., map in MapReduce [13], ex-

tract in Dryad [20]). This phase simply reads the raw in-
put and writes out parsed output to be consumed dur-
ing further computations. Naturally, this phase is IO-
intensive. Workloads from Facebook and Microsoft Bing
datacenters, consisting of thousands of servers, show that
this IO-intensive phase constitutes 79% of a jobs dura-
tion and consumes 69% of its resources. Our proposal is
to speed up these IO-intensive phases by caching their in-
put data in memory. Data is cached after the first access
thereby speeding up subsequent accesses.

Using memory caching to improve performance has a
long history in computer systems, e.g., [5, 14, 16, 18]. We
argue, however, that the parallel nature of data-intensive
jobs differentiates them from previous systems. Frame-
works split jobs in to multiple tasks that are run in par-
allel. There are often enough idle compute slots for small
jobs, consisting of few tasks, to run all their tasks in par-
allel. Such tasks start at roughly the same time and run in
a single wave. In contrast, large jobs, consisting of many
tasks, seldom find enough compute slots to run all their
tasks at the same time. Thus, only a subset of their tasks
run in parallel.' As and when tasks finish and vacate slots,
new tasks get scheduled on them. We define the number
of parallel tasks as the wave-width of the job.

The wave-based execution implies that small single-
waved jobs have an all-or-nothing property — unless all
the tasks get memory locality, there is no improvement
in completion time. They run all their tasks in one wave
and their completion time is proportional to the duration
of the longest task. Large jobs, on the other hand, improve
their completion time with every wave-width of their in-
put being cached. Note that the exact set of tasks that run
in a wave is not of concern, we only care about the wave-
width, i.e., how many of them run simultaneously.

Our position is that coordinated management of the
distributed caches is required to ensure that enough tasks
of a parallel job have memory locality to improve their

'We use the terms “small” and “large” jobs to to refer to their input
size and/or numbers of tasks.

completion time. Coordination provides a global view
that can be used to decide what to evict from the cache, as
well as where to place tasks so that they get memory lo-
cality. To this end, we have developed PACMan - Parallel
All-or-nothing Cache MANager - an in-memory caching
system for parallel jobs. On top of PACMan’s coordination
infrastructure, appropriate placement and eviction poli-
cies can be implemented to speed-up parallel jobs.

One such coordinated eviction policy we built, LIFE,
aims to minimize the average completion time of jobs. In a
nutshell, LIFE calculates the wave-width of every job and
favors input files of jobs with small waves, i.e., lower wave-
widths. It replaces cached blocks of the incomplete file
with the largest wave-width. The design of LIFE is driven
by two observations. First, a small wave requires caching
less data than a large wave to get the same decrease in
completion time. This is because the amount of cache re-
quired by a job is proportional to its wave-width. Second,
we need to retain the entire input of a wave to decrease the
completion time. Hence the heuristic of replacing blocks
from incomplete files.

Note that maximizing cache hit-ratio - the metric of
choice of traditional replacement policies — does not nec-
essarily minimize average completion time, as it ignores
the wave-width constraint of parallel jobs. For instance,
consider a simple workload consisting of 10 equal-sized
single-waved jobs. A policy that caches only the inputs of
five jobs will provide a better average completion time,
than a policy that caches 9o% of the inputs of each job,
which will not provide any completion time improvement
over the case in which no inputs are cached. However, the
first policy will achieve only 50% hit-ratio, compared to
90% hit-ratio for the second policy.

In addition to LIFE, we implemented a second eviction
policy, LFU-F, which aims to maximize the efficiency of
the cluster. Cluster efficiency is defined as finishing the
jobs by using the least amount of resources. LFU-F fa-
vors popular files and evicts blocks from the least accessed
files. Efficiency improves every time data is accessed from
cache. So files that are accessed more frequently con-
tribute more to cluster efficiency than files that will be ac-
cessed fewer number of times.

A subtle aspect is that the all-or-nothing property is
important even for cluster efficiency. This is because tasks
of subsequent phases often overlap with the IO-intensive
phase. For example, in MapReduce jobs, reduce tasks be-
gin after a certain fraction of map tasks finish. The reduce
tasks start reading the output of completed map tasks.
Hence a delay in the completion of a few map tasks, when
their data is not cached, results in all the reduce tasks wait-
ing. These waiting reduce tasks waste computation slots
effectively hurting efficiency.

We have integrated PACMan with Hadoop HDES [2].
PACMan is evaluated by running workloads from data-

1 1 1 5
S, : S; l S }5
S, i s,m ! S;mE | =
time time time
S1 | | i S1 | i g
S, I LS, B JE
Sy S; e | &
1 1| 5
S, I S, 1
time’ tlmé

Figure 1: Example of a single-wave (2 tasks, simultaneously)
and multi-wave job (12 tasks, 4 at a time). S;’s are slots. Mem-
ory local tasks are dark blocks. Completion time (dotted line)
reduces when a wave-width of input is cached.

centers at Facebook and Bing on an EC2 cluster. We show
that overall job completion times reduce by up to 53%
with LIFE and cluster efficiency improves by up to 54%
with LFU-F. Notably, completion times of small jobs re-
duce by 77% with LIFE. LIFE and LFU-F outperform
traditional schemes like LRU, LFU, and even MIN [11],
which is provably optimal for hit-ratios.

2 Cache Replacement for Parallel Jobs

In this section, we first explain how the concept of wave-
width is important for parallel jobs, and argue that max-
imizing cache hit-ratio neither minimizes the average
completion time of parallel jobs nor maximizes efficiency
of a cluster executing parallel jobs. From first principles,
we then derive the ideas behind LIFE and LFU-F cache
replacement schemes.

2.1 All-or-Nothing Property

Achieving memory locality for a task will shorten its com-
pletion time. But this need not speed up the job. Jobs
speed up when an entire wave-width of input is cached
(Figure 1). The wave-width of a job is defined as the num-
ber of simultaneously executing tasks. Therefore, jobs that
consist of a single wave need 100% memory locality to
reduce their completion time. We refer to this as the all-
or-nothing property. Jobs consisting of many waves im-
prove as we incrementally cache inputs in multiples of
their wave-width. In Figure 1, the single-waved job runs
both its tasks simultaneously and will speed up only if the
inputs of both tasks are cached. The multi-waved job, on
the other hand, consists of 12 tasks and can run 4 of them
at a time. Its completion time improves in steps when any

—_
o
o

= Wave-wise —Equal Spread -- Random

[o]
o

(2]
o
. \
K
<A
o
Kl
L

................

Completion Time
N B
o o
S
4
\
\
\
(]
[}

Reduction (%) in

o
e

(Cache[a]B]C]D]]

“Whole Jobs”

10 20 30 40 50

Memory local Tasks

Figure 2: Reduction in completion time of a job with 50 tasks
running on 10 slots. The job speeds up, in steps, when its
number of memory local tasks crosses multiples of the wave-
width (i.e., 10), regardless of how they are scheduled.

Q
©]
=

Read |Compute

A1

Read |Compute

Reduce

(time) (time)
Figure 3: All-or-nothing property matters for efficiency. In
this example of a job with 3 map tasks and 2 reduce tasks, even
if one map task is delayed (due to lack of memory locality),
reduce tasks idle and hurt efficiency.

4, 8 and 12 tasks run memory locally.

We confirmed the hypothesis of wave-widths by exe-
cuting a sample job on a cluster with 10 slots (see Fig-
ure 2). The job operated on 3GB of input and consisted
of 50 tasks each working on 60MB of data. Our exper-
iment varied the number of memory-local tasks of the
job and measured the reduction in completion time. The
baseline was the job running with no caching. Mem-
ory local tasks were spread uniformly among the waves
(“Equal Spread”). We observed the job speeding up when
its number of memory-local tasks crossed 10, 20 and
so forth, i.e., multiples of its wave-width, thereby verify-
ing the hypothesis. Further, we tried two other schedul-
ing strategies. “Wave-wise” scheduled the non-memory-
local tasks before memory local tasks, i.e., memory local
tasks ran simultaneously, and “Random” scheduled the
memory local tasks in an arbitrary order. We see that the
speed-up in steps of wave-width holds in both cases, al-
beit with slightly reduced gains for “Random”. Surpris-
ingly, the wave-width property holds even when memory
local tasks are randomly scheduled because a task is al-
lotted a slot only when slots become vacant, not a priori.
This automatically balances memory local tasks and non-
memory-local tasks across the compute slots.

That achieving memory locality will lower resource us-
age is obvious - tasks whose inputs are available in mem-
ory run faster and occupy the cluster for fewer hours. A
subtler point is that the all-or-nothing constraint can also

[Future: A, C, B, D |

A

[Jobs: 41, B}, 92 {C, D} |

[Cache|A|F|c|G|] (cache[A[B]F[G]]

N TN TN

IJB, (JD| IJZC,IJZD‘
2 s A RGIPIR

-~ - N—/

Figure 4: Cache hit-ratio does not necessarily improve job
completion. We consider a cache that has to replace two out
of its four blocks. MIN evicts blocks to be accessed farthest in
future. “Whole jobs” preserves complete inputs of jobs.

be important for cluster efficiency. This is because some of
the schedulers in parallel frameworks (e.g., Hadoop and
MPI) allow tasks of subsequent stages to begin even be-
fore all tasks in the earlier stages finish. Such “pipelin-
ing” can hide away some data transfer latency, for exam-
ple, when reduce tasks start running even before the last
task in the map stage completes [3]. However, this means
that a delay in the completion of some map tasks, perhaps
due to lack of memory locality, results in all the reduce
tasks waiting. These waiting reduce tasks waste compu-
tation slots and adversely affect efficiency. Figure 3 illus-
trates this overlap with an example job of three map tasks
and two reduce tasks.

In summary, meeting the all-or-nothing constraint im-
proves completion time and efficiency of parallel jobs.

2.2 Sticky Policy

Traditional cache replacement schemes that maximize
cache hit-ratio do not consider the wave-width constraint
of all-or-nothing parallel jobs. Consider the situation de-
picted in Figure 4 of a 4-entry cache storing blocks A, B, C
and D.Job J,’s two tasks will access blocks A and B, while
job J,’s two tasks will access C and D. Both jobs consist
of just a single wave and hence their job completion time
improves only if their entire input is cached.

Now, pretend a third job J; with inputs F and G is
scheduled before J, and J,, requiring the eviction of two
blocks currently in the cache. Given the oracular knowl-
edge that the future block access pattern will be A, C, B,
then D, MIN [11] will evict the blocks accessed farthest
in the future: B and D. Then, when J, and J, execute,
they both experience a cache miss on one of their tasks.
These cache misses bound their completion times, mean-
ing that MIN cache replacement resulted in no reduction

in completion time for either J, or J,. Consider an alter-
nate replacement scheme that chooses to evict the input
set of J, (C and D). This results in a reduction in com-
pletion time for], (since its entire input set of A and B is
cached). J,’s completion time is unaffected. Note that the
cache hit-ratio remains the same as for MIN (50%).

Further, maximizing hit-ratio does not maximize ef-
ficiency of the cluster. In the same example as in Fig-
ure 4, let us add a reduce task to each job. Both J, and J,
have two map tasks and one reduce task. Let the reduce
task start after 5% of the map tasks have completed (as in
Hadoop [3]). We now compare the resource consumption
of the two jobs with MIN and “whole jobs” which evicts
inputs of J,. With MIN, the total resource consumption is
2(1+u) m+2(0.95) m, where m is the duration of a non-
memory-local task and u reflects the speed-up when its
input is cached; we have omitted the computation of the
reduce task. The policy of “whole jobs”, on the other hand,
expends 2 (1+) m+(0.954 +0.05) m resources. As long
as memory locality produces a speed-up, i.e., 4 < 1, MIN
consumes more resources.

The above example, in addition to illustrating that
cache hit-ratios are insufficient for both speeding up jobs
and improving cluster efficiency, also highlights the im-
portance of retaining complete sets of inputs. Improv-
ing completion time requires retaining complete wave-
widths of inputs, while improving efficiency requires re-
taining complete inputs of jobs. Note that retaining the
complete inputs of jobs automatically meets the wave-
width constraint to reduce completion times. Therefore,
instead of evicting the blocks accessed farthest in the fu-
ture, replacement schemes for parallel jobs should recog-
nize the commonality between inputs of the same job and
evict at the granularity of a job’s input.

This intuition gives rise to the sticky policy. The sticky
policy preferentially evicts blocks of incomplete files. If there
is an incomplete file in cache, it sticks to its blocks for evic-
tion until the file is completely removed from cache. The
sticky policy is crucial as it disturbs the fewest completely
cached inputs and evicts the incomplete files which are
not beneficial for jobs.?

Given the sticky policy to achieve the all-or-nothing re-
quirement, we now address the question of which inputs
to retain in cache such that we minimize average comple-
tion time of jobs and maximize cluster efficiency.

2.3 Average Completion Time - LIFE

We show that in a cluster with multiple jobs, favoring
jobs with the smallest wave-widths minimizes the aver-

>When there are strict barriers between phases, the sticky policy
does not improve efficiency. Nonetheless, such barriers are akin to
“application-level stickiness” and hence stickiness at the caching layer
beneath, expectedly, does not add value.

(1-1) (IHwy) (1- u_)ﬁ{wz)

~ , [pd
PR — Pt
S] > |
i (time) = "1 |time)
H [-
< { — N =
= — o
(time) ﬁme)

Figure 5: Gains in completion time due to caching decreases
as wave-width increases. Solid and dotted lines show comple-
tion times without and with caching (for two jobs with input
of I but wave-widths of 2 and 4). Memory local tasks are dark
blocks, sped up by a factor of .

age completion time of jobs. Assume that all jobs in the
cluster are single-waved. Every job j has a wave-width of
w and an input size of I. Let us assume the input of a job is
equally distributed among its tasks. Each task’s input size
is (%) and its duration is proportional to its input size.
As before, memory locality reduces its duration by a fac-
tor of y. The factor y is dictated by the difference between
memory and disk bandwidths, but limited by additional
overheads such as deserialization and decompression of
the data after reading it.

To speed up a single-waved job, we need I units
of cache space. On spending I units of cache space,
tasks would complete in p (%) time. Therefore the sav-
ing in completion time would be (1-u)(Z). Count-
ing this savings for every access of the file, it becomes
f(i-p) (%), where f is the frequency of access of the
file. Therefore, the ratio of the job’s benefit to its cost is
f(1=u)(£). In other words, it is directly proportional
to the frequency and inversely proportional to the wave-
width. The smaller the wave-width, the larger the savings
in completion time per unit of cache spent. This is illus-
trated in Figure 5 comparing two jobs with the same in-
put size (and of the same frequency), but wave-widths of
2 and 4. Clearly, it is better to use I units of cache space to
store the input of the job with a wave-width of two. This is
because its work per task is higher and so the savings are
proportionately more. Note that even if the two inputs are
unequal (say, I, and I,, and I, > I,), caching the input of
the job with lower wave-width (I,) is preferred despite its
larger input size. Therefore, in a cluster with multiple jobs,
average completion time is best reduced by favoring the jobs
with smallest wave-widths (LIFE).

This can be easily extended to a multi-waved jobs. Let
the job have n waves, ¢ of which have their inputs cached.
This uses cw (ﬁ) of cache space. The benefit in comple-

tion time is f (1—p)c (ﬁ) The ratio of the job’s bene-
fit to its cost is f (1—) (£), hence best reduced by still
picking the jobs that have the smallest wave-widths.

Facebook | Microsoft Bing
Dates Oct2010 | May-Dec” 2009
Framework Hadoop Dryad
File System HDFS [2] Cosmos
Script Hive [4] Scope [24]
Jobs 375K 200K
Input Data 150PB 310PB
Cluster Size 3,500 Thousands
Memory per machine 48GB N/A

* One week in each month

Table 1: Details of Hadoop and Dryad datasets analyzed from
Facebook and Microsoft Bing clusters, respectively.

2.4 Cluster Efficiency - LFU-F

In this section, we derive that retaining frequently ac-
cessed files maximizes efficiency of the cluster. We use
the same model for the cluster and its jobs as before. The
cluster consists of single-waved jobs, and each job j has
wave-width w and input size I. Duration of tasks are pro-
portional to their input sizes, (%), and achieving memory
locality reduces its duration by a factor of y.

When the input of this job is cached, we use I units
of cache. In return, the savings in efficiency is (1—u)I.
The savings is obtained by summing the reduction in
completion time across all the tasks in the wave, i.e., w-
(1—-u) (%) Every memory local task contributes to im-
provement in efficiency. Further, the savings of (1 —) I'is
obtained on every access of the file, thereby making its ag-
gregate value f (1 —) I where f is the frequency of access
of the file. Hence, the ratio of the benefit to every unit of
cache space spent on this job is f (1 —), or a function of
only the frequency of access of the file. Therefore, cluster
efficiency is best improved by retaining the most frequently
accessed files (LFU-F).

This naturally extends to multi-waved jobs. As jobs
in data-intensive clusters typically read entire files, fre-
quency of access of inputs across the different waves of a
job is the same. Hence cluster efficiency is best improved
by still favoring the frequently accessed files.

To summarize, we have shown that, (i) the all-or-
nothing property is crucial for improving completion
time of jobs as well as efficiency, (ii) average completion
time is minimized by retaining inputs of jobs with low
wave-widths, and (iii) cluster efficiency is maximized by
retaining the frequently used inputs. We next show some
relevant characteristics from production workloads, be-
fore moving on to explain the details of PACMan.

3 Workloads in Production Clusters

In this section, we analyze traces from two production
clusters, each consisting of thousands of machines — Face-
book’s Hadoop cluster and Microsoft Bing’s Dryad cluster.

108 108
é 105 y = (BE+07)x19 2108 y = (9E+06)x16
2 104 > 3104
e © 103
g 103 5 10
£ 102 £ 102
Z 10 210
1+ 1
1 10 102 10% 104 10° 1 10 102 103 10* 105 108
Number of Tasks Input Size (GB)
(2) Number of tasks (b) Input Size

Figure 6: Power-law distribution of jobs (Facebook) in the
number of tasks and input sizes. Power-law exponents are 1.9
and 1.6 when fitted with least squares regression.

< 100 a

80
— /'/ #Facebook

60 ®Bin
40 9

20
0

Fraction of Jobs (%

0 8 16 24 32 40 48 56 64
Memory per machine (GB)

Figure 7: Fraction of active jobs whose data fits in the aggre-
gate cluster memory, as the memory per machine varies.

Together, they account over half a million jobs processing
more than 400PB of data. Table 1 lists the relevant details
of the traces and the clusters.

All three clusters co-locate storage and computation.
The distributed file systems in these clusters store data in
units of blocks. Every task of a job operates on one or more
blocks of data. For each of the jobs we obtain task-level
information: start and end times, size of the blocks the
task reads (local or remote) and writes, the machine the
task runs on, and the locations of its inputs.

Our objective behind analyzing these traces is to high-
light characteristics - heavy tail distribution of input sizes
of jobs, and correlation between file size and popularity -
that are relevant for LIFE and LFU-F.

3.1 Heavy-tailed Input Sizes of Jobs

Datacenter jobs exhibit a heavy-tailed distribution of in-
put sizes. Workloads consist of many small jobs and rela-
tively few large jobs. In fact, 10% of overall data read is ac-
counted by a disproportionate 96% and 90% of the small-
est jobs in the Facebook and Bing workloads. As Figure 6
shows, job sizes — input sizes and number of tasks - in-
deed follow a power-law distribution, as the log-log plot
shows a linear relationship.

The skew in job input sizes is so pronounced that alarge
fraction of active jobs can simultaneously fit their entire
data in memory.> We perform a simple simulation that
looks at jobs in the order of their arrival time. The simu-

3By active jobs we mean jobs that have at least one task running.

10000
1000
100

m Median

99th perc

-
o

Wave-width
(log-scale)

01 02 03 04 05 06 07 08 09 1
Normalized File Size

Figure 8: Wave-width, i.e., number of simultaneous tasks, of
jobs as a function of sizes of files accessed. File sizes are nor-
malized to the largest file; the largest file has size 1.

100 -

80 -

60 &Facebook
40 -)_ mBing

20
0

CDF

0 2 4 6 8 10 12 14 16
Access Count

18 20

Figure 9: Skewed popularity of data. CDF of the access counts
of the input blocks stored in the cluster.

lator assumes the memory and computation slots across
all the machines in the cluster to be aggregated. It loads a
job’s entire input into memory when it starts and deletes it
when the job completes. If the available memory is insuf-
ficient for a job’s entire input, none of it is loaded. Fig-
ure 7 plots the results of the simulation. For the work-
loads from Facebook and Bing, we see that 96% and 89%
of the active jobs respectively can have their data entirely
fit in memory, given an allowance of 32GB memory per
server for caching. This bodes well for satisfying the all-
or-nothing constraint of jobs, crucial for the efficacy of
LIFE and LFU-F.

In addition to being easier to fit a small job’s input
in memory, its wave-width is smaller. In our workloads,
wave-widths roughly correlate with the input file size of
the job. Figure 8 plots the wave-width of jobs binned
by the size of their input files. Small jobs, accessing the
smaller files, have lower wave-widths. This is because, typ-
ically, small jobs do not have sufficient number of tasks to
utilize the slots allocated by the scheduler. This correla-
tion helps to explore an approximation for LIFE to use
file sizes instead of estimating wave-widths (§4.2).

3.2 Large Files are Popular

Now, we look at popularity skew in data access patterns.
As noted in prior work, the popularity of input data is
skewed in data-intensive clusters [15]. A small fraction of
the data is highly popular, while the rest is accessed less
frequently. Figure 9 shows that the top 12% of popular
data is accessed 10x more than the bottom third in the

€ 14

3 12

O 10 m Facebook
g .

2 8 Bing

S 6

< 4

S 2

S o0

[

z 0.1 02 03 04 05 06 07 08 09 1

Normalized File Size

Figure 10: Access count of files as a function of their sizes,
normalized to the largest file; largest file has size 1. Large files,
accessed by production jobs, have higher access count.

Bing cluster. The Facebook cluster demonstrates a simi-
lar skew. The top 5% of the blocks are seven times more
popular than the bottom three-quarters.

Interestingly, large files have higher access counts (see
Figure 10). Often they are accessed by production jobs to
generate periodic (hourly) summaries, e.g., financial and
performance metrics, from various large logs over con-
solidated time intervals in the past. These intervals could
be as large as weeks and months, directly leading to many
of the logs in that interval being repeatedly accessed. The
popularity of large files, whose jobs consume most re-
sources, strengthens the idea from §2.4 that favoring fre-
quently accessed files is best for cluster efficiency.

We also observe repeatability in the data accesses.
Single-accessed files are spread across only 11% and 6% of
jobs in the Facebook and Bing workloads. Even in these
jobs, not all the data they access is singly-accessed. Hence,
we have sufficient repeatability to improve job perfor-
mance by caching their inputs.

4 PACMan: System Design

We first present PACMan’s architecture that enables the
implementation of the sticky policy, and then discuss the
details involved in realizing LIFE and LFU-F.

4.1 Coordination Architecture

PACMan globally coordinates access to its caches. Global
coordination ensures that a job’s different input blocks,
distributed across machines, are viewed in unison to sat-
isfy the all-or-nothing constraint. To that end, the two re-
quirements from PACMan are, (a) support queries for the
set of machines where a block is cached, and (b) mediate
cache replacement globally across the machines.
PACMan’s architecture consists of a central coordina-
tor and a set of clients located at the storage nodes of the
cluster (see Figure 11). Blocks are added to the PACMan
clients. PACMan clients update the coordinator when the
state of their cache changes (i.e., when a block is added or
removed). The coordinator uses these updates to main-
tain a mapping between every cached block and the ma-

PACMan
Coordinator

PACMan
Client

PACMan
Client

PACMan
Client

,____________\
L

DFS Slave DFS Slave DFS Slave
R
DFS Master

Figure 11: PACMan architecture. The central coordinator
manages the distributed clients. Thick arrows represent data
flow while thin arrows denote meta-data flow.

chines that cache it. As part of the map, it also stores the
file that a block belongs to and the wave-width of jobs
when accessing that file (§4.2). This global map is lever-
aged by LIFE and LFU-F in implementing the sticky pol-
icy to look for incomplete files. Frameworks work with
the coordinator to achieve memory locality for tasks.

The client’s main role is to serve cached blocks, as well
as cache new blocks. We choose to cache blocks at the
destination, i.e., the machine where the task executes as
opposed to the source, i.e., the machine where the input
is stored. This allows an uncapped number of replicas in
cache, which in turn increases the chances of achieving
memory locality especially when there are hotspots due
to popularity skew [15]. Memory local tasks contact the
local PACMan client to check if its input data is present. If
not, they fetch it from the distributed file system (DFS). If
the task reads data from the DFS, it puts it in cache of the
local PACMan client and the client updates the coordina-
tor about the newly cached block. Data flow is designed
to be local in PACMan as remote memory access could be
constrained by the network.

Fault Tolerance: The coordinator’s failure does not ham-
per the job’s execution as data can always be read from
disk. However, we include a secondary coordinator that
functions as a cold standby. Since the secondary coordi-
nator has no cache view when it starts, clients periodically
send updates to the coordinator informing it of the state
of their cache. The secondary coordinator uses these up-
dates to construct the global cache view. Clients do not
update their cache when the coordinator is down.

Scalability: Nothing precludes distributing the central
coordinator across different machines to avoid having it
be a bottleneck. We have, however, found that the scala-
bility of our system suffices for our workloads (see §5.6).

4.2 Wave-width

Wave-width is important for LIFE as it aims to retain
inputs of jobs with lower wave-widths. However, both
defining and calculating wave-widths is non-trivial be-
cause tasks do not strictly follow wave boundaries. Tasks
get scheduled as and when previous tasks finish and slots
become available. This makes modeling the tasks that run
in a wave complicated. Slots also open up for schedul-
ing when the scheduler allots extra slots to a job during
periods of low utilization in the cluster. Therefore, wave-
widths are not static during a jobs execution. They are
decided based on slot availabilities, fairness restrictions
and scheduler policies. Unlike MIN, which is concerned
only with the order in which requests arrive, our setting
requires knowing the exact time of the request, which in
turn requires estimating the speed-up due to memory lo-
cality for each task. All these factors are highly variable
and hard to model accurately.

Given such a fluid model, we propose the following
approximation. We make periodic measurements of the
number of concurrent tasks of a job. When a job com-
pletes, we get a set of values, ((w,t(w))), such that o <
t(w) < 1. For every value of wave-width, w, t (w) shows
the fraction of time spent by the job with that wave-width.
We take measurements every 1s in practice.

Note that while " £ (w) = 1, Y, w is not necessarily equal
to the number of tasks in the job. This is because wave
boundaries are not strict and tasks overlap between mea-
surements. This led us to drop the idea of using the mea-
surements of ((w,t(w))) to divide blocks of a file into
different waves. Also, such an explicit division requires
the scheduler to collectively schedule the tasks operat-
ing on a wave. Therefore, despite the potential benefits,
to sidestep the above problems, we assign a single value
for the wave-width of a file. We define the wave-width of
a file as a weighted average across the different observed
wave-widths, Y w-t(w). The wave-width is included in
the mapping maintained by the coordinator.

A noteworthy approximation to wave-widths is to sim-
ply consider small and large jobs instead, based on their
input sizes. As Figure 8 showed, there is a correlation be-
tween input sizes of jobs and their wave-widths. There-
fore, such an approximation mostly maintains the relative
ordering between small and large waves despite approxi-
mating them to small and large job input sizes. We eval-
uate this approximation in §5.3.

4.3 LIFE and LFU-F within PACMan

We now describe how LIFE and LFU-F are implemented
inside PACMan’s coordinated architecture.

The coordinated infrastructure’s global view is funda-
mental to implementing the sticky policy. Since LIFE and

procedure FiLEToEvicT_LIFE(Client c)
cFiles = fileSet.filter(c) > Consider only s files
f = cFiles.olderThan(window).oldest() > Aging
if f == null then > No old files to age out
f = cFiles.getLargestIncompleteFile()
if f == null then > Only complete files left
f = cFiles.getLargestCompleteFile()
return f.name > File to evict
procedure FiLeEToEvicT_LFU-F(Client ¢)
cFiles = fileSet.filter(c) > Consider only cs files
f = cFiles.olderThan(window).oldest() > Aging
if f == null then > No old files to age out
f = cFiles.getLeastAccessedIncompleteFile()
if f == null then > Only complete files left
f = cFiles.getLeastAccessedCompleteFile()
return f.name > File to evict

procedure App(Client c, String name, Block bId)
File f = fileSet.getByName(name)
if f == null then
f = new File(name)
fileSet.add(f)

f.addLocation(c, bld) > Update properties

Pseudocode 1: Implementation of LIFE and LFU-F -
from the perspective of the PACMan coordinator.

LFU-F are global cache replacement policies, they are im-
plemented at the coordinator. Pseudocode 1 describes the
steps in implementing LIFE and LFU-F. In the following
description, we use the terms file and input interchange-
ably. If all blocks of a file are cached, we call it a com-
plete file; otherwise it is an incomplete file. When a client
runs out of cache memory it asks the coordinator for a file
whose blocks it can evict, by calling FiLEToEvict() (LIFE
or LFU-F).

To make this decision, LIFE first checks whether the
client’s machine caches the blocks of any incomplete file.
If there are many such incomplete files, LIFE picks the one
with the largest wave-width and returns it to the client.
There are two points worth noting. First, by picking an
incomplete file, LIFE ensures that the number of fully
cached files does not decrease. Second, by picking the
largest incomplete file, LIFE increases the opportunity for
more small files to remain in cache. If the client does not
store the blocks of any incomplete file, LIFE looks at the
list of complete files whose blocks are cached by the client.
Among these files, it picks the one with the largest wave-
width. This increases the probability of multiple small files
being cached in future.

LFU-F rids the cache of less frequently used files. It as-
sumes that the future accesses of a file is predicted by its
current frequency of access. To evict a block, it first checks
if there are incomplete files and picks the least accessed

among them. If there are no incomplete files, it picks the
complete file with the smallest access count.

To avoid cache pollution with files that are never
evicted, we also implement a window based aging mecha-
nism. Before checking for incomplete and complete files,
both LIFE and LFU-F check whether the client stores any
blocks of a file that has not been referred to for at least
window time period. Among these files, it picks the one
that has been accessed the least number of times. This
makes it flush out the aged and less popular blocks. In
practice, we set the window to be large (e.g., hours), and
it has had limited impact on most workloads.

PACMan operates in conjunction with the DFS. How-
ever, in practice, they are insulated from the job identifiers
that access them. Therefore, we approximate the policy of
maximizing the number of whole job inputs to maximiz-
ing the number of whole files that are present in cache, an
approximation that works well (§5.3).

Finally, upon caching a block, a client contacts the co-
ordinator by calling App(). This allows the coordinator to
maintain a global view of the cache, including the access
count for every file for implementing LFU-F. Similarly,
when a block is evicted, the client calls REMOVE() to up-
date the coordinator’s global view. We have omitted the
pseudocode for this for brevity.

Pluggable policies: PACMan’s architecture is agnostic
to replacement algorithms. Its global cache view can sup-
port any replacement policy that needs coordination.

5 Evaluation

We built PACMan and modified HDES [2] to leverage
PACMan’s caching service. The prototype is evaluated on a
100-node cluster on Amazon EC2 [1] using workloads de-
rived from the Facebook and Bing traces (§3). To compare
at a larger scale against a wider set of idealized caching
techniques, we use a trace-driven simulator that performs
a detailed replay of task logs. We first describe our evalu-
ation setup before presenting our results.

5.1 Setup

Workload: Our workloads are derived from the Face-
book and Bing traces described in §3, representative of
Hadoop and Dryad systems. The key goals during this
derivation was to preserve the original workload’s char-
acteristics, specifically the heavy-tailed nature of job in-
put sizes (§3.1), skewed popularity of files (§3.2), and load
proportional to the original clusters.

We meet these goals as follows. We replay jobs with the
same inter-arrival times and input files as in the original
workload. However, we scale down the file sizes propor-
tionately to reflect the smaller size of our cluster and, con-
sequently, reduced aggregate memory. Thereby, we en-

Bin Tasks % of Jobs % of Resources
Facebook | Bing | Facebook | Bing

1 1-10 85% 43% 8% 6%
2 11-50 4% 8% 1% 5%
3 51-150 8% 24% 3% 16%
4 151-500 2% 23% 12% 18%
5 > 500 1% 2% 76% 55%

Table 2: Job size distributions. The jobs are binned by their
sizes in the scaled-down Facebook and Bing workloads.

sure that there is sufficient memory for the same fraction
of jobs’ input as in the original workload. Overall, this
helps us mimic the load experienced by the original clus-
ters as well as the access patterns of files. We confirmed
by simulation (described shortly) that performance im-
provements with the scaled down version matched that
of the full-sized cluster.

Cluster: We deploy our prototype on 100 Amazon EC2
nodes, each of them “double-extra-large” machines [1]
with 34.2GB of memory, 13 cores and 850GB of storage.
PACMan is allotted 20GB of cache per machine; we eval-
uate PACMan’s sensitivity to cache space in §5.5.
Trace-driven Simulator: We use a trace-driven simulator
to evaluate PACMan at larger scales and longer durations.
The simulator performed a detailed and faithful replay of
the task-level traces of Hadoop jobs from Facebook and
Dryad jobs from Bing. It preserved the read/write sizes of
tasks, replica locations of input data as well as job char-
acteristics of failures, stragglers and recomputations [7].
The simulator also mimicked fairness restrictions on the
number of permissible concurrent slots, a key factor for
the number of waves in the job.

We use the simulator to test PACMan’s performance at
the scale of the original datacenters, as well as to mimic
ideal cache replacement schemes like MIN.

Metrics: We evaluate PACMan on two metrics that it opti-
mizes — average completion time of jobs and efficiency of
the cluster. The baseline for our deployment is Hadoop-
0.20.2. The trace-driven simulator compared with cur-
rently deployed versions of Hadoop and Dryad.

Job Bins: To separate the effect of PACMan’s memory lo-
cality on different jobs, we binned them by the number of
map tasks they contained in the scaled-down workload.
Table 2 shows the distribution of jobs by count and re-
sources. The Facebook workload is dominated by small
jobs - 85% of them have < 10 tasks. The Bing workload,
on the other hand, has the corresponding fraction to be
smaller but still sizable at 43%. When viewed by the re-
sources consumed, we obtain a different picture. Large
jobs (bin-5), that are only 1% and 2% of all jobs, consume
adisproportionate 76% and 55% of all resources. The skew
between small and large jobs is higher in the Facebook
workload than in the Bing workload.

The following is a summary of our results.

S 5000
3 m Hadoop
2 4000

w LIFE 329%
§3 3000

£ 35%
o £ 2000 e —
S 1000 =
2 ol _oon mttn WL

1-10 11-50 50-150 150-500 >500
Bin (#Tasks)
(a) Facebook Workload
c 5000
K<) m Hadoop
5 4000 LIFE
£ @ 3000 37%
S o
© £ 2000 -
SE 51% 60%
© 1000 |
o 77% 52% .
z 0 . . ; ;
1-10 11-50 50-150 150-500 >500
Bin (#Tasks)
(b) Bing Workload

Figure 12: Average completion times with LIFE, for Face-
book and Bing workloads. Relative improvements compared
to Hadoop are marked for each bin.

o Average completion times improve by 53% with
LIFE; small jobs improve by 77%. Cluster efficiency
improves by 54% with LFU-F (§5.2).

o Without the sticky policy of evicting from incom-
plete files, average completion time is 2x more and
cluster efficiency is 1.3x worse (§5.3).

o LIFE and LFU-F are better than MIN in improving
job completion time and cluster efficiency, despite a
lower cache hit-ratio (§5.4).

We evaluate our replacement schemes before describ-
ing the impact of systemic factors (§5.5 and §5.6).

5.2 PACMan’s Improvements

LIFE improves the average completion time of jobs by
53% and 51% in the two workloads. As Figure 12 shows
small jobs (bin-1 and bin-2) benefit considerably. Jobs in
bin-1 see their average completion time reduce by 77%
with the gains continuing to hold in bin-2. As a direct
consequence of the sticky policy, 74% of jobs in the Face-
book workload and 48% of jobs in the Bing workload
meet the all-or-nothing constraint, i.e.,all their tasks be-
ing memory local. Large jobs benefit too (bin-5) seeing an
improvement of 32% and 37% in the two workloads. This
highlights LIFE’s automatic adaptability. While it favors
small jobs, the benefits automatically spill over to large
jobs when there is spare cache space.

& g 100 m Average D Median m 95th percentile
£ 8
SF 60
S5 40 -
3=
23 20
£ 0 -
o
o 1-10 11-50 50-150 150-500 >500
Bin (#Tasks)
(a) Facebook Workload
100 : -
80 m Average [1Median m 95th percentile
60 -
40 -
20 A
0 -
1-10 11-50 50-150 150-500 >500
(b) Bing Workload

Figure 13: Distribution of gains for Facebook and Bing work-
loads. We present the improvement in average, median and
95th percentile completion times.

Figure 13 elaborates on the distribution - median and

h percentile completion times — of LIFE’s gains. The
encouraging aspect is the tight distribution in bin-1 with
LIFE where the median and 95" percentile values dif-
fer by at most 6% and 5%, respectively. Interestingly, the
Facebook results in bin-2 and the Bing results in bin-3 are
spread tighter compared to the other workload.

LFU-F improves cluster efficiency by 47% with the
Facebook workload and 54% with the Bing workload. In
large clusters, this translates to significant room for exe-
cuting more computation. Figure 14 shows how this gain
in efficiency is derived from different job bins. Large jobs
have a higher contribution to improvement in efficiency
than the small jobs. This is explained by the observation
in §3.2 that large files are more frequently accessed.

An interesting question is the effect LIFE and LFU-F
have on the metric that is not their target. With LIFE in
deployment, cluster efficiency improves by 41% and 43%
in the Facebook and Bing workloads. These are compa-
rable to LFU-F because of the power-law distribution of
job sizes. Since small jobs require only a little cache space,
even after favoring their inputs, there is space remain-
ing for the large (frequently accessed) files. However, the
power-law distribution results in LFU-F’s poor perfor-
mance on average completion time. Average completion
time of jobs improves by only 15% and 31% with LFU-F.
Favoring the large frequently accessed files leaves insuf-
ficient space for small jobs, whose improvement has the
highest impact on average completion time.

Overall, we see that memory local tasks run 10.8x
faster than those that read data from disk.

10

100

c m Facebook
& 80 ,
[T m Bing
52 6
3G 40
o i
B -jHH

0 4

11-50 50-150 150 500 >500

Bin (#Tasks)

Figure 14: Improvement in cluster efficiency with LFU-F
compared to Hadoop. Large jobs contribute more to improv-
ing efficiency due to their higher frequency of access.

Testbed Scale LIFE LFU-F
Facebook | Bing || Facebook | Bing
EC2 100 53% 51% 47% 54%
Simulator 1000’s* 55% 46% 43% 50%

* Original cluster size

Table 3: Summary of results. We listimprovement in comple-
tion time with LIFE and cluster efficiency with LFU-F.

Simulation: We use the trace-driven simulator to assess
PACMan’s performance on a larger scale of thousands of
machines (same size as in the original clusters). The sim-
ulator uses 20GB of memory per machine for PACMan’s
cache. LIFE improves the average completion times of
jobs by 58% and 48% for the Facebook and Bing work-
loads. LFU-F’s results too are comparable to our EC2 de-
ployment with cluster efficiency improving by 45% and
51% in the two workloads. This increases our confidence
in the large-scale performance of PACMan as well as
our methodology for scaling down the workload. Table 3
shows a comparative summary of the results.

5.3 LIFE and LFU-F

In this section, we study different aspects of LIFE and
LFU-F. The aspects under focus are the sticky policy, ap-
proximation of wave-widths to file size, and using whole
file inputs instead of whole job inputs.

Sticky Policy: An important aspect of LIFE and LFU-
F is its sticky policy that prefers to evict blocks
from already incomplete files. We test its value with
two schemes, LIFE[No-Sticky] and LFU-F[No-Sticky].
LIFE[No-Sticky] and LFU-F[No-Sticky] are simple mod-
ifications to LIFE and LFU-F to not factor the incomplete-
ness while evicting. LIFE[No-Sticky] evicts the file with
the largest wave-width in the cache, LFU-F[No-Sticky]
just evicts blocks from the least frequently accessed file.
Ties are broken arbitrarily.

Figure 15 compares LIFE[No-Sticky] with LIFE. Large
jobs are hurt most. The performance of LIFE[No-Sticky]
is 2x worse than LIFE in bin-4 and 3x worse in bin-s. In-
terestingly, jobs in bin-1 are less affected. While LIFE and

100 —~
1 i w LIFE §§1°° u LIFE
g e = LIFE [No-Sticky] 8 g 80 = LIFE [No-Sticky]
<E 60 - <E 60 -
5 a0 €5 40
£3 £%
-g g— 20 - _g g‘ 20 -
28 o- 238 o
1 2 3 4 5 1 2 3 4 5

Bin (#Tasks) Bin (#Tasks)

(a) Facebook (b) Bing

Figure 15: Sticky policy. LIFE [No-Sticky] evicts the largest
file in cache, and hence is worse off than LIFE.

-
o
o
-
o
o

B LIFE ®LIFE™ mLIFE ®=LIFE™

S O
o O ©
'

Reduction in Average
Completion Time (%)
N
o
1

Reduction in Average
Completion Time (%)

N A O ®
© © ©o o o
! 1 1 1

o

1 2 3 4 5 1 2 3 4 5
Bin (#Tasks) Bin (#Tasks)

(a) LIFE~ vs. LIFE - Facebook (b) LIFE~ vs. LIFE - Bing

Figure 16: Approximating LIFE to use file sizes instead of
wave-widths. Accurately estimating wave-widths proves im-
portant for large jobs.

LIFE[No-Sticky] differ in the way they evict blocks of the
large files, there are enough large files to avoid disturbing
the inputs of small jobs.

LFU-F[No-Sticky]’s improvement in efficiency is 32%
and 39% for the two workloads, sharply reduced values
in contrast to LFU-F’s 47% and 54% with the Facebook
and Bing workloads. These results strongly underline the
value of coordinated replacement in PACMan by looking
at global view of the cache.

Wave-width vs. File Sizes: As alluded to in §4.2, we ex-
plore the benefits of using file sizes as a substitute for
wave-width. The intuition is founded on the observation
in §3.1 (Figure 8) that wave-widths roughly correlate with
file sizes. We call the variant of LIFE that uses file sizes as
LIFE~. The results in Figure 16 shows that while LIFE~
keeps up with LIFE for small jobs, there is significant
difference for the large jobs in bin-4 and bin-5. The de-
tailed calculation of the wave-widths pays off with im-
provements differing by 1.7x for large jobs.

Whole-jobs: Recall from §2.2 and §4.3 that our desired
policy is to retain inputs of as many whole job inputs as
possible. As job-level information is typically not avail-
able at the file system or caching level, for ease and clean-
liness of implementation, LIFE and LFU-F approximate
this by retaining as many whole files as possible.

Evaluation shows that LIFE is on par with the eviction
policy that retains whole job inputs, for small jobs. This
is because small jobs typically tend to operate on single
files, therefore the approximation does not introduce er-

11

8 <100
g mLIFE ©LFU mLRU OMIN
o o 80
z E
= : 60 -
§g 40-
S5 _
3% 20
3 0+
1-10 11-50 50-150 150-500 >500
Bin (#Tasks)
(a) Facebook Workload
o = 100
g BLIFE ©LFU mLRU [IMIN
oo 80
z £
c l; 60 -
§8 40
S a
gE 27
xO 0 -
1-10 11-50 50-150 150-500 >500

Bin (#Tasks)
(b) Bing Workload

Figure 17: Comparison between LIFE, LFU-F, LFU, LRU and
MIN cache replacements.

rors. For larger jobs, that access multiple files, LIFE takes
a 11% hit in performance. The difference due to LFU-F
using whole files instead of whole job inputs is just a 2%
drop in efficiency. The comparable results make us con-
clude that the approximation is a reasonable trade-off for
the significant implementation ease.

5.4 Traditional Cache Replacement

Our prototype also implements traditional cache replace-
ment techniques like LRU and LFU. Figure 17 and Table 4
compare LIFE’s performance. Table 5 contrasts LFU-F’s
performance. LIFE outperforms both LRU and LFU for
small jobs while achieving comparable performance for
large jobs. Likewise, LFU-F is better than LRU and LFU
in improving cluster efficiency.

Interestingly, LIFE and LFU-F outperform even
MIN [11], the optimal replacement algorithm for cache
hit-ratio. MIN deletes the block that is to be accessed
farthest in the future. As Figure 17 shows, not taking the
all-or-nothing constraint of jobs into account hurts MIN,
especially with small jobs. LIFE is 7.1x better than MIN
in bin-1 and 2.5x better in bin-3 and bin-4. However,
MIN’s performance for bin-5 is comparable to LIFE.
As Table 5 shows, the sticky policy also helps in LFU-F
outperforming MIN in improving cluster efficiency.

Overall, this is despite a lower cache hit-ratio. This
underscores the key principle and differentiator in LIFE
and LFU-F - coordinated replacement implementing the
sticky policy, as opposed to simply focusing on hit-ratios.

Scheme Facebook Bing
% Job Hit % Job Hit
Saving | Ratio (%) Saving | Ratio (%)
LIFE 53% 43% 51% 39%
MIN 13% 63% 30% 68%
LRU 15% 36% 16% 34%
LFU 10% 47% 21% 48%

Table 4: Performance of cache replacement schemes in im-
proving average completion times. LIFE beats all its competi-
tors despite a lower hit-ratio.

Scheme Facebook Bing
% Cluster Hit % Cluster Hit
Efficiency | Ratio (%) Efficiency | Ratio (%)
LFU-F 47% 58% 54% 62%
MIN 40% 63% 44% 68%
LRU 32% 36% 23% 34%
LFU 41% 47% 46% 48%

Table 5: Performance of cache replacement schemes in im-
proving cluster efficiency. LFU-F beats all its competitors de-
spite a lower hit-ratio.

5.5 Cache Size

We now evaluate PACMan’s sensitivity to available cache
size (Figure 18) by varying the budgeted cache space at
each PACMan client varies between 2GB and 32GB. The
encouraging observation is that both LIFE and LFU-F re-
act gracefully to reduction in cache space. As the cache
size reduces from 20GB on to 12GB, the performance of
LIFE and LFU-F under both workloads hold to provide
appreciable reduction of 35% in completion time and 29%
improvement in cluster efficiency, respectively.

For lower cache sizes (< 12GB), the workloads have
a stronger influence on performance. While both work-
loads have a strong heavy-tailed distribution, recall from
Table 2 that the skew between the small jobs and large
jobs is higher in the Facebook workload. The high frac-
tion of small jobs in the Facebook workload ensures that
LIFE’s performance drops much more slowly. Even at
lower cache sizes, there are sufficient small jobs whose in-
puts can be retained by LIFE. Contrast with the sharper
drop for caches sizes < 12GB for the Bing workload.

LFU-F reacts more smoothly to decrease in cache
space. Unlike job completion time, cluster efficiency im-
proves even with incomplete files; the sticky policy helps
improve it. The correlation between the frequency of ac-
cess and size of files (§3.2), coupled with the fact that
the inputs of the large jobs are bigger in the Facebook
workload than the Bing workload, leads to LFU-F’s per-
formance deteriorating marginally quicker with reducing
cache space in the Facebook workload.

12

;;-;% gg : 4Facebook < éi :g 4Facebook

Z E 40 4 § 240

e’ 30 £G 30 -

c S Q&

S % 20 o w20 -

o5 i S g |

é g 10 £ & 10

o 0- o 0-
0 8 16 24 32 0 8 16 24 32
Cache per machine (GB) Cache per machine (GB)

(a) LIFE (b) LFU-F

Figure 18: LIFE’s and LFU-F’s sensitivity to cache size.

12
- ~ 2
210 7 2O 1.8
. % 1
g g e +64MB E 6
g8 ° 17 2128MB oy
5 41" 256MB g 14 /
g 2 812 —
=
F 0 T T T T 1 1 . . y
0 4 8 12 16 20 0 4000 8000 12000
Number of Tasks Requests/s
(a) PACMan Client (b) PACMan Coordinator

Figure 19: Scalability. (a) Simultaneous tasks serviced by
client, (b) Simultaneous client updates at the coordinator.

5.6 Scalability

We now probe the scalability limits of the PACMan co-
ordinator and client. The client’s main functionality is
to provide and cache blocks for tasks. We measure the
throughput when tasks communicate with the client and
latency when clients deal with the coordinator.

PACMan Client: We stress the PACMan client to under-
stand the number of simultaneous tasks it can serve be-
fore its capacity saturates. Each task reads a block from the
client’s cache. Figure 19a reports the aggregate throughput
for block sizes of 64MB, 128MB and 256MB. For block
sizes of 128 MB, we see that the client saturates at 10 tasks.
Increasing the number of tasks beyond this point results
in no increase in aggregate throughput. Halving the block
size to 64MB only slightly nudges the saturation point to
12 tasks. We believe this is due to the overheads asso-
ciated with connection management. Connections with
256 MB blocks peak at 8 tasks beyond which the through-
put stays constant. The set of block sizes we have tested
represent the commonly used settings in many Hadoop
installations. Also, since Hadoop installations rarely exe-
cute more than 8 or 10 map tasks per machine, we con-
clude that our client scales sufficiently to handle the ex-
pected load.

PACMan Coordinator: Our objective is to understand the
latency added to the task because of the PACMan client’s
communication with the PACMan coordinator. Since we
assume a single centralized coordinator, it is crucial that
it supports the expected number of client requests (block
updates and LIFE eviction). We vary the number of client
requests directed at the server per second and observe

the average latency to service those requests. As Fig-
ure 19b shows, the latency experienced by the requests
stays constant at ~1.2ms until 10,300 requests per sec-
ond. At this point, the coordinator’s processing overhead
starts increasing the latency. The latency nearly doubles
at around 11,000 requests per second. Recently reported
research on framework managers [10] show that the num-
ber of requests handled by the centralized job managers
of Hadoop is significantly less (3,200 requests/second).
Since a task makes a single request to the coordinator via
the client, we believe the coordinator scales well to handle
expected loads.

6 Enhancements to PACMan

We now discuss two outstanding issues with PACMan that
can help improve its performance.

6.1 Optimal Replacement for Parallel Jobs

An unanswered question is the optimal cache replace-
ment strategy to minimize average completion time of
parallel jobs or maximize cluster efficiency. The optimal
algorithm picks that block for replacement whose absence
hurts the least when the entire trace is replayed. Note the
combinatorial explosion as a greedy decision for each re-
placement will not be optimal. We outline the challenges
in formulating such an oracular algorithm.

The completion time of a job is a function of when its
tasks get scheduled, which in turn is dependent on the
availability of compute slots. An aspect that decides the
availability of slots for a job is its fair share. So, when exe-
cuting tasks of a job finish, slots open up for its unsched-
uled tasks. Modeling this requires knowing the speed-up
due to memory locality but that is non-trivial because it
varies across tasks of even the same job. Further, sched-
uler policies may allow jobs to use some extra slots if avail-
able. Hence one has to consider scheduler policies on us-
ing extra slots as well as the mechanism to reclaim those
extra slots (e.g, killing of running tasks) when new jobs
arrive. Precise modeling of the speed-ups of tasks, sched-
uler policies and job completion times will help formu-
late the optimal replacement scheme and evaluate room
for improvement over LIFE and LFU-F.

6.2 Pre-fetching

A challenge for any cache is data that is accessed only
once. While our workloads have only a few jobs that read
such singly-accessed blocks, they nonetheless account for
over 30% of all tasks. Pre-fetching can help provide mem-
ory locality for these tasks.

We consider two types of pre-fetching. First, as soon as
ajob is submitted, the scheduler knows its input blocks. It

13

can inform the PACMan coordinator which can start pre-
fetching parts of the input that is not in cache, especially
for the later waves of tasks. This approach is helpful for
jobs consisting of multiple waves of execution. This also
plays nicely with LIFE’s policy of favoring small single-
waved jobs. The blocks whose files are absent are likely to
be those of large multi-waved jobs. Any absence of their
input blocks from the cache can be rectified through pre-
fetching. Second, recently created data (e.g., output of jobs
or logs imported into the file system) can be pre-fetched
into memory as they are likely to be accessed in the near
future, for example, when there are a chain of jobs. We
believe that an investigation and application of different
pre-fetching techniques will further improve cluster effi-
ciency.

7 Related Work

There has been a humbling amount of work on in-
memory storage and caches. While our work borrows and
builds up on ideas from prior work, the key differences
arise from dealing with parallel jobs that led to a coor-
dinated system that improved job completion time and
cluster efficiency, as opposed to hit-ratio.

RAMCloud [18] and prior work on databases such as
MMDB [16] propose storing all data in RAM. While this
is suited for web servers, it is unlikely to work in data-
intensive clusters due to capacity reasons — Facebook has
600x more storage on disk than aggregate memory. Our
work thus treats memory as a constrained cache.

Global memory systems such as the GMS project [5],
NOW project [6] and others [14] use the memory of
a remote machine instead of spilling to disk. Based on
the vast difference between local memory and network
throughputs, PACMan’s memory caches only serves tasks
on the local node. However, nothing in the design pre-
cludes adding a global memory view. Crucially, PACMan
considers job access patterns for replacement.

Web caches have identified the difference between byte
hit-ratios and request hit-ratios, i.e., the value of having
an entire file cached to satisfy a request [9, 12, 23]. Request
hit-ratios are best optimized by retaining small files [26],
a notion we borrow. We build up on it by addressing
the added challenges in data-intensive clusters. Our dis-
tributed setting, unlike web caches, necessitate coordi-
nated replacement. Also, we identify benefits for partial
cache hits, e.g., large jobs that benefit with partial mem-
ory locality. This leads to more careful replacement like
evicting parts of an incomplete file. The analogy with web
caches would not be a web request but a web page — col-
lection of multiple web objects (.gif, .html). Web caches,
to the best of our knowledge, have not considered cache
replacment to optimize at that level.

LIFE’s policy is analogous to servicing small requests

in queuing systems, e.g., web servers [19]. In particular,
when the workload is heavy-tailed, giving preference to
small requests hardly hurts the big requests.

Distributed filesystems such as Zebra [17] and xFS [8]
developed for the Sprite operating system [22] make use
of client-side in-memory block caching, also suggesting
using the cache only for small files. However, these sys-
tems make use of relatively simple eviction policies and
do not coordinate scheduling with locality since they were
designed for usage by a network of workstations.

Cluster computing frameworks such as Piccolo [25]
and Spark [21] are optimized for iterative machine learn-
ing workloads. They cache data in memory after the first
iteration, speeding up further iterations. The key differ-
ence with PACMan is that since we assume no application
semantics, our cache can benefit multiple and a greater
variety of jobs. We operate at the storage level and can
serve as a substrate for such frameworks to build upon.

8 Conclusion

We have described PACMan, an in-memory coordinated
caching system for data-intensive parallel jobs. Parallel
jobs run multiple tasks simultaneously in a wave, and
have the all-or-nothing property, i.e., a job is sped up only
when inputs of all such parallel tasks are cached. By glob-
ally coordinating access to the distributed caches, PAC-
Man ensures that a job’s different tasks, distributed across
machines, obtain memory locality. On top of its coordi-
nated infrastructure, PACMan implements two cache re-
placement policies — LIFE and LFU-F - that are designed
to minimize average completion time of jobs and maxi-
mize efficiency of the cluster. We have evaluated PACMan
using a deployment on EC2 using production workloads
from Facebook and Microsoft Bing, along with extensive
trace-driven simulations. PACMan reduces job comple-
tion times by 53% and 51% (small interactive jobs im-
prove by 77%), and improves efficiency by 47% and 54%,
respectively. LIFE and LFU-F outperform traditional re-
placement schemes, including MIN.

Acknowledgments

We thank Facebook and Microsoft Bing for access to
job traces from their production clusters. We are also
grateful to our shepherd, Eddie Kohler, and the anony-
mous reviewers whose inputs greatly improved the pa-
per. For feedback on the draft, we thank Arka Bhat-
tacharya, Mosharaf Chowdhury, Tathagata Das, Aurojit
Panda, Ariel Rabkin and David Zats of the AMP Lab at
Berkeley, and Sriram Rao of Yahoo! Research.

14

References

[1]
[2]
[3]

[4]
[5]

(6]
[7]

(8]

[9]

[10]

[11]
[12]
(13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

Amazon Elastic Compute Cloud.
com/ec2/instance-types/.
Hadoop Distributed File System. http://hadoop.apache.
org/hdfs.

Hadoop Slowstart. https://issues.apache.org/
jira/browse/MAPREDUCE-1184/.

Hive. http://wiki.apache.org/hadoop/Hive.

The Global Memory System (GMS) Project. http://www.cs.
washington.edu/homes/levy/gms/.

The NOW Project. http://now.cs.berkeley.edu/.

G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, E. Har-
ris, and B. Saha. Reining in the Outliers in Map-Reduce Clusters
using Mantri. In USENIX OSDI, 2010.

T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S.
Roselli, and R. Y. Wang. Serverless Network File Systems. In ACM
SOSP, 1995.

M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and T. Jin. Evalu-
ating Content Management Techniques for Web Proxy Caches. In
WISP, 1999.

B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. Joseph, R.
Katz, S. Shenker, 1. Stoica. Mesos: A Platform for Fine-Grained
Resource Sharing in the Data Center. In USENIX NSDI, 2011.
Laszlo A. Belady. A Study of Replacement Algorithms for Virtual-
Storage Computer. IBM Systems Journal, 1966.

L. Cherkasova and G. Ciardo. Role of Aging, Frequency, and Size
in Web Cache Replacement Policies. In HPCN Europe, 2001.

J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing
on Large Clusters. In USENIX OSDI, 2004.

M. J. Franklin, M. J. Carey, and M. Livny. Global Memory Man-
agement in Client-Server Database Architectures. In VLDB, 1992.
G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, L.
Stoica, D. Harlan, E. Harris. Scarlett: Coping with Skewed Popu-
larity Content in MapReduce Clusters. In ACM EuroSys, 2011.

H. Garcia-Molina and K. Salem. Main Memory Database Systems:
An Overview. In IEEE Transactions on Knowledge and Data Engi-
neering, 1992.

John H. Hartman and John K. Ousterhout. The Zebra Striped Net-
work File System. In ACM SOSP, 1993.

J. Ousterhout et al. The Case for RAMClouds: Scalable High-
Performance Storage Entirely in DRAM. In SIGOPS Operating
Systems Review, 2009.

M. Harchol-Balter M. E. Crovella, R. Frangioso.
Scheduling in Web Servers. In USENIX USITS, 1999.
M. Isard, M. Budiu, Y. Yu, A. Birrell and D. Fetterly. Dryad: Dis-
tributed Data-parallel Programs from Sequential Building Blocks.
In ACM Eurosys, 2007.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica.
Spark: Cluster Computing with Working Sets. In USENIX Hot-
Cloud, 2010.

M. N. Nelson, B. B. Welch, and J. K. Ousterhout. Caching in the
Sprite Network File System. ACM TOCS, Feb 1988.

P.Cao and S.Irani. Cost Aware WWW Proxy Caching Algorithms.
In USENIX USITS, 1997.

R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib, S. Weaver,
J. Zhou. SCOPE: Easy and Efficient Parallel Processing of Massive
Datasets. In VLDB, 2008.

R. Power and J. Li. Piccolo: Building Fast, Distributed Programs
with Partitioned Tables. In USENIX OSDI, 201o0.

S. Williams, M. Abrams, C. R. Standridge, G. Abdulla, and E. A.
Fox. Removal Policies in Network Caches for World-Wide Web
Documents. In ACM SIGCOMM, 1996.

http://aws.amazon.

Connection

