Optimizing Data Shuffling in Data-Parallel Computation by Understanding
User-Defined Functions

Jiaxing Zhang" Hucheng Zhou' Rishan Chen'* Xuepeng Fan'® Zhenyu Guo'
Haoxiang Lin" Jack Y. Li ™® Wei Lin* Jingren Zhou* Lidong Zhou'
TMicrosoft Research Asia *Microsoft Bing *Peking University
&Huazhong University of Science and Technology* Georgia Institute of Technology

ABSTRACT

Map/Reduce style data-parallel computation is charac-
terized by the extensive use of user-defined functions for
data processing and relies on data-shuffling stages to pre-
pare data partitions for parallel computation. Instead of
treating user-defined functions as “black boxes”, we pro-
pose to analyze those functions to turn them into “gray
boxes” that expose opportunities to optimize data shuf-
fling. We identify useful functional properties for user-
defined functions, and propose SUDO, an optimization
framework that reasons about data-partition properties,
functional properties, and data shuffling. We have as-
sessed this optimization opportunity on over 10,000 data-
parallel programs used in production SCOPE clusters,
and designed a framework that is incorporated it into the
production system. Experiments with real SCOPE pro-
grams on real production data have shown that this opti-
mization can save up to 47% in terms of disk and network
I/O for shuffling, and up to 48% in terms of cross-pod
network traffic.

1 INTRODUCTION

Map/Reduce style data-parallel computation [15, 3, 23]
is increasingly popular. A data-parallel computation job
typically involves multiple parallel-computation phases
that are defined by user-defined functions (or UDFs). The
key to data-parallel computation is the ability to create
data partitions with appropriate properties to facilitate
independent parallel computation on separated machines
in each phase. For example, before a reducer UDF can be
applied in a reduce phase, data partitions must be clus-
tered with respect to a reduce key so that all data entries
with the same reduce key are mapped to and are contigu-
ous in the same partition.

To achieve desirable data-partition properties, data-
shuffling stages are often introduced to prepare data for
parallel processing in future phases. A data-shuffling
stage simply re-organizes and re-distributes data into ap-
propriate data partitions. For example [45], before ap-
plying a reducer UDF, a data shuffling stage might need
to perform a local sort on each partition, re-partition

*Services Computing Technology and System Lab, Cluster and
Grid Computing Lab, School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan, 430074,
China.

the data on each source machine for re-distribution to
destination machines, and do a multi-way merge on re-
distributed sorted data streams from source machines, all
based on the reduce key. Data shuffling tends to incur
expensive network and disk I/O because it involves all
data [48, 26]. Our analysis of a one-month trace collected
from one of our production systems running SCOPE [10]
jobs shows that with tens of thousands of machines data
shuffling accounts for 58.6% of the cross-pod traffic and
amounts to over 200 petabytes in total. Data shuffling
also accounts for 4.56% intra-pod traffic.

In this paper, we argue that reasoning about data-
partition properties across phases opens up opportuni-
ties to reduce expensive data-shuffling. For example,
if we know that data-partitions from previous compu-
tation phases already have desirable properties for the
next phase, we are able to avoid unnecessary data-
shuffling steps. The main obstacle to reasoning about
data-partition properties across computation phases is the
use of UDFs [24, 26]. When a UDF is considered a
“black box”, which is usually the case, we must assume
conservatively that all data-partition properties are lost
after applying the UDF. One of the key observations of
this paper is that those “black boxes” can be turned into
“eray boxes” by defining and analyzing a set of useful
functional properties for UDFs in order to reason about
data-partition properties across phases. For example, if a
particular key is known to pass-through a UDF without
any modification, the data-partition properties of that key
will be preserved. Furthermore, we show how we can re-
define the partitioning function in a data-shuffling phase
to help preserve data-partition properties when UDFs are
applied.

We make the following contributions in this paper.
First, we define how a set of data-partition properties are
related to data-shuffling in a simple and general UDF-
centric data-parallel computation model. Second, we de-
fine how a set of functional properties for UDFs change
the data-partition properties when the UDFs are applied.
Third, we design a program analysis framework to iden-
tify functional properties for UDFs, and develop an opti-
mization framework named SUDO to reason about data-
partition properties, functional properties, and data shuf-
fling. We further integrate SUDO into the production
SCOPE optimization framework. Finally, we study the

real workload on the SCOPE production system to assess
the potentials for this optimization and provided careful
evaluations of a set of example showcase applications.
The study uses 10,000 SCOPE programs collected from
production clusters; SUDO is able to optimize 17.5% of
the 2,278 eligible programs which involve more than one
data-shuffling stages. Experiments with real SCOPE pro-
grams on real production data have shown savings of up
to 47% in terms of disk and network I/O for shuffling,
and up to 48% in terms of cross-pod network traffic.
The rest of the paper is organized as follows. Sec-
tion 2 introduces the system model that SUDO oper-
ates on, defines data-partition properties, and shows how
they relate to data-shuffling. Section 3 defines functional
properties of UDFs, describes how they affect data-
partition properties when UDFs are applied, and presents
the SUDO optimization framework that reasons about
data-partition properties. Section 4 presents further op-
timization opportunities that expand on the framework
in the previous section, by considering re-defining par-
tition functions. Implementation details are the subject
of Section 5, followed by our evaluations in the context
of the SCOPE production system in Section 6. Section 7
discusses the related work, and we conclude in Section 8.

2 SYSTEM MODEL

A typical data-parallel job performs one or more trans-
formations on large datasets, which consist of a list of
records; each with a list of columns. A transformation
uses a key that consists of one or more columns. For par-
allel computation, a dataset is divided into data parti-
tions that can be operated on independently in parallel
by separated machines. A data-parallel job involves mul-
tiple parallel-computation phases whose computations
are defined by user-defined functions (UDFs). Following
Map/Reduce/Merge [12], our model contains three types
of UDFs: mappers, reducers, and mergers. By choosing
low-level “assembly language”-like computation model,
our techniques can be applied broadly: programs written
in any of the high-level data-parallel languages, such as
SCOPE [10], HIVE [40], PigLatin [33], and DryadLINQ
[46], can be compiled into jobs in our model.

within-
Cross- Pariion | 1 one contiguous | sorted
partition
none AdHoc | - LSorted
partitioned Disjoint | Clustered | PSorted
ranged - - GSorted

Table 1: Data-partition properties defined in SUDO.

Certain data-partition properties, which are defined
with respect to keys, are necessary before a computa-
tion phase can be applied. For example, a reducer or a

Figure 1: Data-partition property lattice in SUDO.

merger requires that all the records with the same key
are contiguous in the same partition. In general, data-
partition properties specify behaviors within a partition
and across partitions, as shown in Table 1. Within a par-
tition, records are contiguous if all same-key records
are stored together, or sorted if they are arranged by
their keys. Across partitions, records are partitioned if
same-key records are mapped to the same partition, or
ranged if they are stored on partitions according to non-
overlapping key ranges. Among the nine combinations
(cells in Table 1), we focus specifically on the following
six: AdHoc, LSorted, Disjoint, Clustered, PSorted,
and GSorted. For example, GSorted means that the
records are sorted within a partition and ranged across
partitions. We do not include the rest because they are
not important in practice based on our experiences; in-
corporating them into SUDO is straightforward.

A data-partition property is stronger than another
that it implies; for example, GSorted implies PSorted,
which in turn implies Clustered. Such relationships are
captured in the lattice shown in Figure 1, where a data-
partition property is stronger than its lower data-partition
properties. With this lattice, we can define max of a set of
data-partition properties as the weakest one that implies
all properties in that set. For example, max of Clustered
and LSorted is PSorted. We define min analogously to
max.

Data-shuffling stages are introduced to achieve ap-
propriate data-partition properties by re-arranging data
records without modifying them. A typical data shuffling
stage consists of three steps: a local-sort step that sorts
records in a partition with respect to a key, a re-partition
step that re-distributes records to partitions via hash or
range partitioning, and a multi-way merge step that clus-
ters re-distributed records based on the key. Combina-
tions of those steps are used to achieve certain proper-
ties; some requires taking all three steps, while others
do not, depending on the data-partition properties before
and after data shuffling. Figure 2 illustrates the relation-
ship between data-partition properties and data-shuffling

Local Sort
Repartition(range) Repartition(range)
Merge Merge

Repartition(range)

M
erge PSorted
Local Sort
Repartition(hash)
Merge Local Sort
@ Local Sort
Repartition(hash)
Merge
Local Sort

Repartition(hash)

Figure 2: Transformation of data-partition properties us-
ing data shuffling.

steps. Note that because Clustered cannot be generated
precisely through data-shuffling steps as the current im-
plementation for the merge step uses merge-sort, SUDO
always generates PSorted instead to satisfy Clustered.

In the rest of this paper, a data-parallel job is rep-
resented as a directed acyclic graph (DAG) with three
types of vertices: data vertices that correspond to in-
put/output data, each with an associated data-partition
property; compute vertices that correspond to compu-
tation phasess, each with a type (mapper, reducer, or
merger) and a UDF; and shuffle vertices that correspond
to data-shuffling stages, each indicating the steps in that
stage. The re-partitioning stages in shuffle vertices also
specify whether hash or range partitioning is used. This
DAG can be created manually or generated automati-
cally by a compiler from a program in a high-level lan-
guage, and allows us to flexibly define SUDO optimiza-
tion scope. For example, we can use the same framework
to analyze a pipeline of jobs or a segment of a job.

SuDoO focuses on optimizing data shuffling by find-
ing a valid execution plan with the lowest cost for a job J.
The plan satisfies the following conditions: (i) the execu-
tion plan differs from J only at data-shuffling stages; (ii)
for each computation phase, the input must have the nec-
essary data-partition properties, i.e., data partitions must
be Clustered for a reducer and PSorted for a merger;
(iii) for a merger, all its input vertices must have the same
data-partitioning (i.e., PSorted or GSorted on the same
merge key); and finally, the execution plan preserves all
data-partition properties of any output vertex.

Two SUDO optimizations are enabled by reasoning
about how data-partition properties propagate through

UDF w/
UDF —— Ar:iaIIDerr Functional |—
¥ Properties
DAG w/
DAG — Backwarq Weakest —
WP Analysis L
Postcondition
Forward Data-Partition
valid Plans Property Propagation
Cost Valid Plan w/
Model Lowest Cost

Figure 3: SUDO Optimization with Functional Proper-
ties.

computation phases with UDFs. The first identifies un-
necessary data-shuffling steps by using functional prop-
erties of UDFs to reason about data-partition properties,
while the second further re-defines the partition func-
tion in a re-partitioning step of data shuffling to prop-
agate certain data-partition properties for optimizations.
We describe the first optimization in Section 3 and the
second in Section 4.

3 FUNCTIONAL PROPERTIES

Data-shuffling stages in our model tend to be expen-
sive as they often involve heavy disk and network I/O.
They are added to satisfy data-partition properties for
subsequent computation phases and to satisfy user re-
quirements on output data. Although a preceding data-
shuffling stage can result in certain data-partition proper-
ties, a computation phase with a UDF is not guaranteed
to preserve those properties because traditionally, UDFs
are considered “black boxes”.

Our main observation for the first SUDO optimiza-
tion is that, by defining appropriate functional proper-
ties, UDFs can be turned into “gray boxes” that expose
how data-partition properties propagate across phases to
facilitate the elimination of unnecessary data-shuffling
steps. Figure 3 illustrates the overall flow of the SUDO
optimization with functional properties. Given a job, we
first extract and analyze all its UDFs to determine their
functional properties. At the same time, we do a back-
ward WP analysis to compute the Weakest Pre-condition
before each computation phase and the Weakest Post-
condition after each data-shuffling stage that maintains
correctness as defined in Section 2. We then do a forward
data-partition property propagation to generate valid ex-
ecution plans with optimized data-shuffling stages, and
then select the plan with the lowest cost according to a

cost model. The rest of this section elaborates on this op-
timization flow.

3.1 Defining Functional Properties

A functional property describes how an output column
that is computed by a UDF depends on the UDF’s input
columns. Because SUDO focuses on optimizing the data-
shuffling stages that are added to satisfy data-partition
properties, we are particularly interested in functional
properties that preserve or transform data-partition prop-
erties. Ideally, those functional properties should be sim-
ple enough to be identified easily through automatic pro-
gram analysis. Here we limit our attention to determinis-
tic functions that compute a single output column from a
single input column in one single record. A UDF might
exhibit one functional property on one output column
and another on another column; we focus on columns
that are used as a reduce key, merge key, or re-partition
key, as well as those used to compute those keys. A list
of interesting functional properties for SUDO follows.

A pass-through function f is an identity function
where the output column is the same as the correspond-
ing input column. By definition, a reducer/merger is a
pass-through function for the reduce/merge key. A pass-
through function preserves all data-partition properties.

Function f is strictly-monotonic if and only if,
for any inputs x; and xp, x; < xp always implies
F(x1) < f(x2) (strictly-increasing) or always implies
f(x1) > f(x2) (strictly-decreasing). Examples of strictly-
monotonic functions include normalizing a score (e.g.,
score’ = Ig(score)/a), converting time formats (e.g.,
DateTime.ToFileTime()), adding common prefix or
postfix to a string (e.g., supplementing “http://” and “/in-
dex.html” to the head and tail of a site), and any lin-
ear transformation (e.g., y = a-x+ b where a # 0).
A strictly monotonic function also preserves all data-
partition properties, although the output column might
be in a reverse sort-order.

Function f is monotonic if and only if, for any in-
puts x1 and xp, x; < xp implies f(x;) <f(xz) (increasing)
or f(x1) > f(x2) (decreasing). Examples of monotonic
functions include time-unit conversion (e.g., minute =
|second/60]) and substring from the beginning (e.g.,
“abcd” — “ab” and “ac123” — “ac’). Monotonic func-
tions preserves sort-order within a partition, but are not
guaranteed to preserve partitioned or ranged properties
across partitions because two different input keys can be
mapped to the same output key.

Function f is one-to-one if and only if, for any in-
puts x; and xz, x| # xp implies f(x1) # f(x2). Exam-
ples of one-to-one UDFs include reversing urls (e.g.,
“www.acm.org” — “org.acm.www’”) and MDS5 calcula-
tion (assuming no conflicts). One-to-one functions do not
preserve sort-order, but do preserve contiguity within a

Pass-Through
Strictly-Monotonic

Pass-Through
Strictly-Monotonic

/
/ One-to-One Pass-Through

1
I
! / @ Strictly-Monotonic
Monotonic \\ - One-to-One
(@ AN / Pass-Through
CN L @’ Strictly-Monotonic
ol ; One-to-One

Pass-Through NNy

Strictly-Monotonic - Other functional properties
Monotonic NN

~

i’

Figure 4: Data-partition property propagation through
UDFs with various functional properties.

partition and the partitioned property across partitions.
As aresult, it preserves data-partition properties such as
Disjoint and Clustered but downgrades GSorted and
PSorted to Clustered.

Figure 4 shows how data-partition properties prop-
agate through UDFs with various functional properties,
which are not chosen randomly. In fact, monotonic is
sufficient and necessary for preserving LSorted; one-
to-one is sufficient and necessary for preserving Clus-
tered; and strictly-monotonic is sufficient and necessary
for preserving GSorted. A proof is given in [47].

3.2 Identifying Functional Properties

SUDO allows users to annotate UDFs with appropriate
functional properties. It further uses program-analysis
techniques to infer properties automatically whenever
possible, in a bottom-up approach inspired by bddb-
ddb [1]. Because functional properties focus on the de-
pendency relationship between an output column and its
relevant input columns, SUDO applies program slicing
[42] to extract a UDF’s core function for inferring its
functional property with respect to each output column
of interest. The analysis then starts from facts about the
input columns, and applies deduction rules to the low-
level instructions as well as third-party library calls to
infer functional properties recursively until a fixed point
is reached. The process returns the final functional prop-
erties associated with the UDFs upon termination.
Figure 5 shows examples of facts and rules. A fact
represents the property of a function between a variable
in a UDF and an input column that the variable is com-
puted from. For example, for a variable y and an in-
put column ¢, such that y = f(¢) for some function f,
One20ne(y,) states that f is a one-to-one function. Fig-
ure 5 (line 1) defines the basic fact that every input col-

PassThrough (t, t)

3 _(y,t)
StInc(z,t)

1

2

3 :— ASSIGN y x, _(x,t)
4

5 StInc(z,t)
6

7

8

:— ADD z x y, StInc(x,t), Inc(y,t)
:— ADD z x vy, Inc(x,t), StInc(y,t)
One20ne (y,t) :- MD5 y x, One20ne (x,t)
9 StInc(x,t)
10 One20ne (x,t),Inc(x,t)
11 One20ne (x,t),Dec(x,t)
12 Func(x,t) :- _(x,t)

13 Inc(x,_),Dec(x,_) :— Constant (x)

:— PassThrough (x, t)
:— StInc(x,t)
:— StDec(x,t)

Figure S: Examples of facts and deduction rules in a dat-
alog format. StInc, StDec, Inc, and Dec stand for
strictly-increasing, strictly-decreasing, increasing, and
decreasing, respectively.

umn is considered a PassThrough function over itself.

Deduction rules infer the functional property of an in-
struction’s output operand from the functional properties
of its input operands. SUDO introduces a set of deduc-
tion rules; examples are shown in Figure 5 (lines 3-5).
The first rule (line 3) states that, for ASSIGN instruc-
tions, the functional property of the input operand x can
simply be propagated to the output operand y (the _ sym-
bol means any functional property). The second and third
rules state that, for ADD instructions, the output operand
is strictly-increasing as long as one of the input operands
is strictly-increasing, while the other is increasing.

Besides instructions, UDFs also call into functions in
third-party libraries. SUDO either applies the deduction
rules directly to the instructions in the library calls, or
treats these function calls simply as “instructions” and
provide deduction rules manually. SUDO has an accumu-
lated knowledge base with manually provided deduction
rules for commonly used library calls. Those manual an-
notations are particularly useful for cases where the auto-
matic inference runs into its limitation. For example, the
functional property for MD5 (line 7) cannot be inferred
automatically.

We also have rules that encode the relations among
functional properties, where one function property might
imply another. Examples of such rules are shown in Fig-
ure 5 (lines 9-13). We use Func as the weakest func-
tional property that satisfies no specific constraints and
also introduce Constant as a pseudo functional prop-
erty for constant values, which is both increasing (Inc)
and decreasing (Dec).

3.3 Backward WP Analysis

Based on the definition of a valid execution plan, we
must figure out the requirement on each data-shuffling
stage for validity. This is done through the following
backward WP analysis in a reverse topological order of a
given job. When visiting a new vertex, the backward WP

procedure OnVisitVertex(v)
v.WPrecondition <— AdHoc
if v.Type = UDF then
if v.UDF = Reducer then
v.WPrecondition < Clustered
else if v.UDF = Merger then
v.WPrecondition <— PSorted
end if
else if v.IsOutputVertex then
v.WPrecondition < v.GetOutputDataProperty()
else
v.WPostcondition <+
v.OutVertices.Select(ov => ov.WPrecondition).Max()
end if

end procedure

Figure 6: Algorithm for backward WP analysis.

| 81: hash partition on A.x | | $2: hash partition on B.x |
WP: PSorte WP: PSorted

(Merger: A LEFT JOIN B on Ax=B.x)

Reducer: on x

$5: range partition on x

% WP: GSorted

(Mapper: (x, value)->(x'=log(x), value’))

| 83: hash partition on x’ |
WP: Clustered

| S4: range partition on x’ |

¥ WP: GSorted

Figure 7: A sample data-parallel job.

analysis computes weakest precondition and postcondi-
tion as shown in Figure 6; the weakest postcondition as-
sociated with a data-shuffling stage is the data-partition
property required on the result of that stage.

Figure 7 depicts a sample compiled DAG from a
SCOPE job: circles correspond to data vertices; rect-
angles correspond to data-shuffling stages, and rounded
rectangles correspond to computation phases with UDFs.
SuDO firstly analyzes the UDFs in the job, and annotates
them with functional properties. In this case, both the
merger and the reducers are pass-through functions, and
the mapper is a strictly-monotonic function (using log).
Then it runs backward WP analysis to get the weakest
postcondition for all data shuffling stages: this results in
GSorted for S4 and S5, Clustered for S3, PSorted for
S1, and max(PSorted, Clustered) = PSorted for S2.

3.4 Forward Property Propagation

Once SUDO completes the backward WP analysis,
it tries to find all valid execution plans accord-

procedure ForwardExplorer (currGraph, traverseSuffix)
while rraverseSuffix.IsNotEmpty() do
v < traverseSuffix.RemoveFirst()
if v.InVertices.Count = 0 then
inputDP < v.Input.GetDataProperty()
else if v.InVertices.Count = 1 then
inputDP <— v.InVertices|0].CurrentPostDP
else
if lv.ValidateMerge() then
return
end if
inputDP < v.InVertices|0].CurrentPostDP
end if
if v.Type = UDF then
v.CurrentPostDP
DPPropertyTransition(inputDP, funcProperty)
else
for prop in {p|p >= v.WPostcondition} do
v.CurrentPostDP < prop
v.SSteps < GetShufflingSteps(inputDP, prop)
ForwardExplorer(currGraph, traverseSuffix)
end for
end if
end while
Plans.Add(currGraph)

end procedure

Figure 8: Algorithm for enumerating all valid plans.

ingly through forward data-partition property propa-
gation. This process tracks output data-partition prop-
erty in a CurrentPostDP field for each ver-
tex and discovers valid query plans along the way.
The goal is to set the needed steps in each data-
shuffling stage in order to generate valid execution
plans. This is done through a recursive procedure
ForwardExplorer (shown in Figure 8), which takes
the current execution graph (currGraph) and the cur-
rent suffix of the topologically ordered list of vertices
(traverseSuffix). The procedure also uses three
primitives: DPPropertyTransition takes an input
data-partition property and a functional property, and
outputs the resulting data-partition property based on the
propagation graph in Figure 4; Get ShufflingSteps
takes an input data-partition property and an output data-
partition property, and outputs the needed data-shuffling
steps according to Figure 2; ValidateMerge checks
whether input vertices of a merger phase all conform to
the same data-partition property (PSorted or GSorted
on the merge key).

Using the same example in Figure 7, we show how
the algorithm can create a different execution plan: the
CurrentPostDP is set to AdHoc for the input data
vertices and PSorted for S1 and S2. Because the Merger
is a pass-through function, its CurrentPostDP is
set to PSorted. The CurrentPostDP is also set
to PSorted after the Mapper because it is strictly-
monotonic. Because PSorted implies Clustered, which
is the weakest postcondition for S3, all steps of S3 can

Y Y

| $1: hash partition on x | | S1": hash partition on my(x) |

Mapper: x’=mj(x) Mapper: x’=mj(x)

| S$2: hash partition on x’ |

Reducer: on x’

Local Sort (x)

Reducer: on x’

(a) Original (b) Optimized

Figure 9: Chained shuffling optimization.

be removed to produce an alternative valid plan.

For simplicity, this algorithm enumerates all valid ex-
ecution plans. It is conceivable to add heuristics to prune
the candidates if there are too many valid execution plans
to evaluate. All valid executions are evaluated based on
the cost model, where the one with the lowest cost will
be chosen.

4 RE-DEFINING PARTITIONING KEY

Not all UDFs have the desirable functional properties
for preserving data-partition properties, especially when
we conservatively assume the input data can be arbitrary.
SUDO can further leverage the ability to re-define a par-
titioning key to apply some constraint to the input data
S0 as to preserve certain data-partition properties (e.g.,
Disjoint) for optimizing data-shuffling. These mecha-
nisms further increase the coverage of the optimization
framework described in Section 3. This section describes
how we can re-define partitioning keys to preserve data-
partition properties.

Considering the simple case in Figure 9 with two
data-shuffling stages S; and S, where S; does a hash
re-partitioning on key x, S, does a hash re-partitioning
on key x/, and mapper my is not one-to-one, we cannot
eliminate steps in S, using the algorithm discussed in
Section 3 because m; does not have the needed func-
tional property. It is however possible to re-define the
partitioning key in S| by taking into account m; and S,
in order to eliminate some steps in S,. For example, if
my maps each x to a single x, SUDO can apply hash-
ing on my(x) for Sy, rather than on x directly. Then, this
hash re-partitioning ensures not only that all records with
the same x are mapped to the same partition, but also
that all records with the same x’ after applying m, are
mapped to the same partition. This can help eliminate

the re-partitioning step in S,.

It is worth pointing out that there are side effects in
this optimization, although it reduces the amount of total
network I/O by eliminating a later re-partitioning step.
The re-partitioning in S} is slightly more expensive as it
has to invoke m, on all input records; the number of these
records might far exceed the number in the later mapper
phase with my because of the reducer on x. To reduce
this extra overhead, SUDO applies program slicing to get
a simpler function, as done in the analysis of functional
properties. Also, the new partitioning might lead to data
skew that does not exist in the original plan because of
the different partitioning key used. Again, a cost model is
used to assess whether or not to apply this optimization.

We can easily generalize this type of optimizations to
a chain of data-shuffling stages. S;,53,...,Sy is a chain
of data shuffling with hash re-partitioning, where before
each S; (except Sy) there is a mapper with UDF m; (i =
2...N). To guarantee that a single re-partitioning causes
all the keys in later phases to be partitioned appropriately,
we can construct partition function in S; as a hash on
(my ...msmy(x)) where x is the initial input key.

;

| $1: hash partition on x | | S$2: hash partition on x |

Mapper: x’=f;(x) Align Mapper: x'=f,(x)
£~ a

| S3: hash partition on x’ | | S4: hash partition on x’ |

(Merger: A JOIN B on A.x'=B.X’)

O

Figure 10: Joined shuffling optimization.

Two other data-shuffling patterns, joined shuffling
and forked shuffling are more complicated. Joined-
shuffling is widely used to implement a JOIN to correlate
records in data-parallel programs. Figure 10 shows one
such case. Shuffling stages S3 and Sy are required and
inserted by the merger phase. This pattern can be con-
sidered as the merge of multiple chained data shuffling:
in this example, one formed by S, f, and S3, while the
other by S», f>, and S4. Separately, SUDO can use a hash
function on fj (x) for S and a hash function on f;(x) for
S, in order to remove re-partitioning in S3 and S4. Due to
merger, the two chains must be aligned in that the same
key will be mapped to the same partition. This is easily
achievable as long as SUDO applies the same hashing to

f1 (x) andfz ()C)

Mapper: x'=f1(x) Mapper: x”’=f,(x)

| $1: hash partition on x’ | | $2: hash partition on x” |

v v

Figure 11: Forked shuffling optimization.

Figure 11 shows an example of forked shuffling,
where an input is consumed by two separate threads of
processing. In the figure, f] and f, are two mapper func-
tions that map a record key from x to x’ and x”, respec-
tively. Two data-shuffling stages S| and S, perform hash
re-partitioning on x’ and x”, respectively. It is conceiv-
able that SUDO can perform one data-shuffling by hash-
ing on a function of x, to create disjoint data partitions
both for fi(x) and for f>(x). That is, the data-shuffling
must guarantee that, if fj(x;) = f2(x2), then x; and x,
are mapped to the same partition by Sy. For example,
given fi(x) = [x/2| and f>(x) = |x/3], stage Sy should
use |x/6] as the re-partitioning key. Such a function
might not always exist, as is the case with fi (x) = |x/2]
and f>(x) = [(x+1)/2]. Constructing the symbolic func-
tion automatically is challenging. We resort to record-
ing known patterns and recognizing them through pattern
matching on a sliced data-dependency graph. Currently,
SuDO includes the following patterns: f(x) = |[x/a],
f(x) =x mod a, where x is an integer.

SUDO creates new execution options with re-defined
partitioning keys: they can be regarded as special mecha-
nisms to preserve certain data-partition properties. Those
options can be integrated into the framework described
in Section 3 to create more valid execution plans, which
will be evaluated using a cost model.

5 IMPLEMENTATION

We have implemented SUDO based on and integrated
into the SCOPE compiler [10] and optimizer [48].
SCOPE is a SQL-like scripting language for data-
parallel computation. The SCOPE optimizer uses a
transformation-based optimizer to generate efficient ex-
ecution plans. The optimizer leverages many existing
work on relational query optimization and performs rich
and non-trivial query rewritings that consider the input
script in a holistic manner. The main contribution of the

SCOPE Compiler

Compiled Execution Graph

Cost Model

I

| ‘ UDF Analyzer ‘ ‘ SUDO Rewriter }—l_—@ctor
Valid

| Plans

| Data and Functional Properties !

| I

__________ [

Optimized Execution Graph

=N

Figure 12: SUDO architecture.

SuDO implementation is to add the support of reasoning
about functional properties, data-partition properties, and
data shuffling into the current optimizer: without under-
standing UDFs, the system cannot derive any structural
properties and thus potentially miss important optimiza-
tion opportunities. With SUDO, functional properties be-
tween input and output columns are identified and inte-
grated into the optimization framework. It enables effi-
cient property derivation and allows the optimizer to op-
timize query plans with UDFs effectively.

Figure 12 depicts an architectural overview of SUDO,
its components, and their interactions with the existing
components in the SCOPE compiler and optimizer. The
UDF analyzer and the rewriter are the two main SUDO
modules. The UDF analyzer extracts the functional prop-
erties of the UDFs, while the rewriter generates opti-
mized execution plans by leveraging the functional prop-
erties. The current implementation for the two modules
contains 8,281 and 1,316 lines of C# code, respectively.
The execution plans are further fed to the selector, which
uses a cost model to find the best one among them.

5.1 UDF Analyzer

We have implemented the UDF analyzer at the high-
level IR (HIR) of the Phoenix framework [35] shipped
with Visual Studio 2010, together with the bddbddb en-
gine [1]. Phoenix is a framework for building compiler-
related tools for program analysis and optimizations. It
allows external modules to be plugged in with full access
to the internal Phoenix Intermediate Representation (IR).
With Phoenix, the analyzer feeds the instructions and the
library calls for a given UDF to the bddbddb engine, to-
gether with the deduction rules. The engine then applies
the deduction process, as discussed in Section 3.2.

We describe in further detail the rules in SUDO. In
the extracted IR excluding opcode CALL, we select top
8 unary operators and 7 binary operators in terms of fre-
quency of use. These operators account for 99.99% of

operator uses (again excluding CALL). We have a total
of 28 rules for those operators. Coming up with those
28 rules requires some care. First, if done naively, we
might have many more rules. We have reduced the num-
ber with the following two approaches: (i) some instruc-
tion type, such as ASSIGN and BOX, belong to the same
equivalent class as they share the same set of deduc-
tion rules. (ii) binary operators (e.g., the ADD operator
shown in Figure 5 (b)) usually requires more than one
rule. We manually introduce several pseudo operators to
convert some to others. For example, we add NEGATE
and RECIPROCAL in order to convert SUBSTRACT and
DIVIDE to ADD and MULTIPLY respectively, thereby
reducing the total number of rules.

Second, constraints are often needed in the rules for
precision. The constraints could be on some aspects of
the operands, such as their types and value ranges. For
example, the CONVERT operator is used to convert num-
bers between different types. Converting a number from
a type with a smaller byte size to one with a larger size
(e.g., from int to double) preserves its value; that
conversion is considered a pass-through function. This
is not the case for the opposite direction. SUDO extracts
operand types and makes the rules type-sensitive with the
type constraints embedded to handle these cases.

Finally, the UDFs contain loops and branches. The
value of an operand may come from any one of its in-
put operands defined in any of the branches. SUDO in-
troduces the INTERSECT operator with the rule stating
that the output operand has a certain property if both its
input operands have the same functional property.

For the 157 system calls in the extracted IR of mscor-
lib and ScopeRuntime, we set 73 rules for 66 unary
calls and 10 binary calls. The remaining system calls
are marked Func (as in line 12 of Figure 5). For the
891 third-party calls (with no source code), we select top
10 most-frequently used and wrote 16 rules for them.
Most of them are string related (e.g., UrlReverse,
PrefixAdd, and String.Concat), while others are
mostly math related.

5.2 SuDO Rewriter

SUDO rewriter generates all valid execution plans us-
ing the algorithms presented in Section 3, as well as the
mechanisms described in Section 4. The implementation
of the algorithm for enumerating all of the valid plans
described in Section 3 is straightforward. In practice, the
techniques in Section 4 plays an important role in uncov-
ering optimization opportunities even after manual per-
formance tuning and optimizations. The goal of SUDO
rewriter is in principle similar to that of the SCOPE op-
timizer in that they are both enumerating all valid plans
for cost estimation, although with key differences; for ex-
ample, the SUDO rewriter works at the “physical” level,

while the SCOPE optimizer starts with logical relational
operators. For ease of implementation, the current SUDO
rewriter simply takes as input the best physical execu-
tion plan from the SCOPE optimizer. The results from
the SUDO rewriter are then assessed based on the inter-
nal cost model of the SCOPE optimizer. This simple in-
tegration might lead to sub-optimal results as two opti-
mization phases are carried out separately. We are in the
process of integrating SUDO into the SCOPE optimizer
to reason about functional properties and structured data
properties in a single uniform framework, and seamlessly
generates and optimizes both serial and parallel query
plans.

6 EVALUATION

In this section, we use real traces in a SCOPE production
bed to assess the overall potential for SUDO optimiza-
tions and evaluate in details the effectiveness of those
optimizations on representative jobs (pipelines).

6.1 Optimization Coverage Study

We have studied 10,099 jobs collected over a continuous
period of time from a production bed with tens of thou-
sands machines. The study aims at revealing the distribu-
tion of functional properties for the UDFs in those jobs
and gauging the optimization opportunities for SUDO to
leverage those properties.

Property UDF funcs (#) | Ratio(%)
Pass-through 1,998,819 84.73
Strictly-increasing 147,820 6.27
Strictly-decreasing 0 0.00
Increasing 138 0.00
Decreasing 0 0.00
One-to-one 1,758 0.08
Func 210,544 8.92
Sum 2,359,079 100

Table 2: Statistics on functional properties.

We first look at the computation for each output col-
umn in each UDF to infer its functional property. Our
analysis is limited to handling only computation where
an output column in a row depends on a single input col-
umn in a single input row. Among the 236,457 UDFs
and 3,000,393 output columns, 2,359,079 (78.63%) out-
put columns satisfy this constraint. We then carry out our
study on the 2,359,079 functions that produce those out-
put columns.

For each functional property, Table 2 reports the
number of functions that have this functional property
and the percentage. For a function that satisfies multiple
functional properties, only its strongest functional prop-
erty is counted. For example, for a strictly-increasing
function, it is counted only as strictly-increasing, but not

as increasing. Pass-though functions clearly dominate
and accounts for 84.73%, followed by strictly-increasing
functions with 6.27%. A small fraction (0.08%) of the
functions are one-to-one. About 8.92% of the functions
do not have any of the functional properties SUDO cares
about. Surprisingly, we do not find any (strictly-) de-
creasing functions.

We further run our optimizer to see how many jobs
SUDO can optimize by leveraging the identified func-
tional properties. This study focuses only on jobs with
more than one data-shuffling stages. This eligible job set
contains a total of 2,278 (22.6%) jobs. Among all the el-
igible jobs, SUDO is able to optimize 17.5% of them.

It is worth noting that the original SCOPE compiler
supports user annotations of the pass-through functional
property. In practice, 6% of the eligible jobs have been
annotated, and 4.6% are actually optimized. Our auto-
matic analysis engine is shown to have discovered sig-
nificantly more optimization opportunities.

6.2 Optimization Effectiveness Study

To study the optimization effectiveness on individual
jobs (pipelines), we select three important web search re-
lated SCOPE jobs. All the jobs are running on the same
cluster as the one we collected the trace from for our
UDF study. The number of machines used in each job
depends on the size of the input data. Table 3 summa-
rizes the optimization details for each case, while Table 4
gives the detailed performance comparisons between the
original versions and the optimized ones. In this section,
we describe these cases with their optimizations and then
discuss the performance numbers together for ease of
comparison.

6.2.1 Anchor Data Pipeline

Hyperlinks in web pages form a web graph. Anchor
texts associated with hyperlinks, together with the web
graph, are valuable for evaluating the quality of web
pages and other search-relevance related metrics. One of
the basic anchor-data pre-processing jobs is to put the
anchors that point to the same page together (using a
data-shuffling stage), and de-duplicate the anchors with
the same text. The job further outputs the reversed url
and the anchor text pairs, e.g., (“org.acm.www/sigs”, an-
chor text) instead of (“www.acm.org/sigs”, anchor text),
as this reversed url format is the de-facto representation
of a url as urls of the same domain are laid out contigu-
ously in that format to enable simple domain-level ag-
gregations.

The optimization opportunity comes when other jobs
consume the output of this job. Figure 13 shows an exam-
ple where the second job Job?2 tries to count the words in
the anchor text for each url. Before optimization, Job2
has to insert a data shuffling stage (S2) to group the

Case OptStages | FuncProperty PreservedDP RPF Stages | PreservedDP+ EndShuffSteps

§6.2.1 | S2 One-to-One Clustered {0} Clustered {0}

§6.2.2 | S2,S3 Increasing,Increasing LSorted,LSorted | {SI1} PSorted,PSorted | {0},{0}

§6.2.3 | S3,54, None,None, AdHoc,AdHoc, {S1,52} Disjoint,Disjoint, | {LS},{LS},
S5,S6 Pass-through,Pass-through | GSorted,GSorted GSorted,GSorted | {0},{0}

Table 3: Optimization detail for the three cases. The columns represent the section reference, the shuffling stages that
are optimized (OptStages), the functional properties of the UDFs before the shuffling stages, preserved data-partition
property by the UDFs (FuncProperty), shuffling stages having their partition functions re-defined (RPF Stages), data-
partition properties preserved with both FuncProperty and RPF, and the final steps for each in OptStages. LS stands

for local sort.

data by url. However, this operation is redundant because
url reversing is a one-to-one function, which preserves
the Clustered property. SUDO recognizes this functional
property and eliminates stage S2.

6.2.2 Trend Analysis Pipeline

Trend analysis is a way to understand how things
change over time, which is important for many search
related applications as well as being a stand-alone
service. One kind of trend-analysis job collects the
(term,time,aspect) tuples in the search-query logs,
where term is the search keyword, time is when the query
is submitted, and aspect is one of the search query’s
property (e.g., its market), and aggregates various as-
pects’ occurrences at different time-scales such as hours,
days, and months. For instance, we can know the top
three market along the years for a specific brand using
trend analysis.

Figure 14 shows a pipeline of trend-analysis jobs.
Jobl pre-processes the input query logs and aggre-
gates the entries within the same second for all as-
pects we need. Based on this result, Job2 calculates the
(term,time, market) distribution over days, and Job3 cal-

Anchor Data: <URL, Anchor> Anchor Data: <URL, Anchor>

| 81: hash partition on URL |

Y
Job1

(Mapper: URL’=Reverse(URL))
T
|
|

| 81: hash partition on URL |

Reducer: on URL

(Mapper: URL’=Reverse(URL))

T

|

I

|

|

| $2: hash partition on URL’ | }
|

Job2 '
Reducer: on URL’ Reducer: on URL'
(a) Original (b) Optimized

Figure 13: Optimization on the anchor data pipeline. The
redundant shuffling stage in Job2 is eliminated.

Query Log: <term, second, market, intent>

| $1: hash partition on second |

Jobf

s N
’ N
s N
s N
’ N

»
(Mapper: second->day)

4
(Mapper: second->week)
Y

| 83: hash partition on week |

)
O Job3

| $2: hash partition on day |

)
Job2 O

(a) Original

Query Log: <term, second, market, intent>

| 81" hash partition on second |

Y
Jobf

s N
’ N
s N
s N
’ N

4
(Mapper: second->week)

O Job3

»
(Mapper: second->day)

Job2 O

(b) Optimized

Figure 14: Optimization on the trend-analysis pipeline.
The two data-shuffling stages on new time-scales are
merged into the previous shuffling.

culates the (term,time,intent) distribution over weeks,
where intent is obtained from user-click-behavior of the
queries and tells whether the search query is for infor-
mation, business, or other purposes. Before optimization,
each job requires a data-shuffling stage. SUDO merges
the three shuffling stages into one and redefines the par-
tition key in Jobl. The function ensures that the seconds
within the the same week are always on the same par-
tition, which guarantees the Disjoint property even af-
ter the two mapper functions that converts seconds to
days and weeks, respectively. Besides, because the time
conversion function is increasing, LSorted is preserved

and the local-sort operations in Job2 and Job3 are elim-
inated. Together, the optimization eliminates two shuf-
fling stages, and ensures PSorted property before each
reducer function in the three jobs.

6.2.3 Query-Anchor Relevance

Search queries and anchors are two term sets that can
be bridged by urls. Looking at the joined data set is im-
portant to improve the search quality. If a query happends
to result in a url that an anchor points to, then the query
and the anchor are very likely to be relevant. For instance,
if the word “China” appears frequently in query with
result URL example.org/a.html, and the word
“Emerging Market” appears in the anchor that points
the same example.org/a.html, then “China” and
“Emerging Market” are relevant. Furthermore, if these
two words appear in example.org many times and
their pointing-to urls also overlap a lot, they have a high
relevance.

Anchor Data: <Anchor, URL> Query Log: <Query, URL>

| 81: hash partition on URL | | $2: hash partition on URL |

Reducer: on URL Reducer: on URL

Mapper: URL->site Mapper: URL->site

it
it

| 83: hash partition on site | | 84: hash partition on site |

Reducer: on site Reducer: on site

|¢
|¢

| $5: hash partition on site | | S6: hash partition on site |

/
3

C Merger: A JOIN B on A.site=B.site)

O (a) Original

Anchor Data: <Anchor, URL> Query Log: <Query, URL>

| $1": hash partition on URL | | 82" hash partition on URL |

Reducer: on URL Reducer: on URL

Mapper: URL->site Mapper: URL->site

L
L

Local Sort (site)

Reducer: on site

Local Sort (site)

Reducer: on site

|
|

C Merger: A JOIN B on A.site=B.site)

Q (b) Optimized

Figure 15: Optimization on anchor-query relevance
analysis jobs. Four shuffling stages are saved.

Figure 15 shows a job that aggregates anchor data as
well as query logs, correlates them via sites, and applies
some learning models for relevance study (omitted in the
figure). The job first groups anchor texts on url (around
S1), and reduces that into (url, map(term, frequency)),
where term is a keyword inside anchor texts and
frequency is the number of times that the term occurred
in these anchors. Then it converts urls to sites using a
mapper, and groups the records on the same sites (S3).
Inside the reducer, it computes an aggregated frequency
for each term based on the data for different urls (within
the same site). The job applies almost the same algo-
rithm to the query logs too. After that, it joins these two
output datasets on site for further study with two further
shuffling stages (S5 and S6). There are in total six shuf-
fling stages in the job; SUDO applies its optimization and
makes it two, as shown in the figure. The new shuffling
stages partitions the input data according to the sites they
belong to, so as to keep the Disjoint property along the
data flow. However, because the desired data-partition
property for reduce on site is not satisfied (the mapper
function which converts url to site does not preserve any
data-partition property), SUDO partially eliminates stage
S3 and S4 with a local-sort operation only. Because the
reducer on site does not change the site key, the last two
data-shuffling stages can be eliminated as the PSorted
property is preserved.

6.2.4 Optimization Effectiveness

Table 4 gives the performance comparisons between
the original versions and the optimized ones. It shows
significant read I/O reduction (47%, 35%, and 41%) for
all three cases. In particular, cross-pod read data usually
has a much larger reduction compared to intra-pod read
data; this is because most data-shuffling stages involve a
large number of machines (1,000 and 2,500) that cannot
fit in a single pod except those in the first case (150).

The I/0O reduction leads to the reduction of vertex
numbers and vertex hours, where a vertex is a basic
scheduling unit and a chain of UDFs can be continu-
ously applied on one or more data partitions. The ver-
tex numbers are reduced when the repartitioning step in
the shuffling stages is removed, and the reduction ratio
is basically proportional to the percentage of optimized
shuffling stages (40%, 38%, and 82%). The reduction in
vertex hour is relatively small and not proportional to the
saved I/O; this is partially because the time complexity
of the computation in the vertices is not necessarily lin-
ear to the input size (O(n)); for example, local sort takes
O(nxlog(n)), and the optimization introduces data-skew
problems (described next).

Usually, significantly reduced I/O leads to much re-
duced end-to-end execution time (e.g., 47% vs. 40%
and 35% vs. 45% for the first two cases). However, as

Case Setting In(GB) | Node# | E2E(min) | Vertex(hour) | Vertex# | TotalR(GB) | IPR(GB) | CPR(GB)
§6.2.1 | original 241 150 25 35 2,974 902 102 800
optimized 241 150 15 28 1,780 474 43 431
reduction - - 40% 20% 40% 47% 59% 46%
§6.2.2 | original 10,118 1,000 230 5,852 | 382,708 60,428 12,437 47,991
optimized 10,118 1,000 127 3,350 | 237,751 39,080 11,658 27,422
reduction - - 45% 42% 38% 35% 6% 43%
§6.2.3 | original 241/341 2,500 96 856 | 352,406 14,651 2,970 11,681
optimized | 241/341 2,500 122 371 62,619 8,677 2,656 6,021
reduction - - -27% 57% 82% 41% 11% 48%

Table 4: Performance comparisons between unoptimized and optimized jobs. In indicates the input data size. E2E
refers to the end-to-end time. Vertex(hour) represents the total vertex running-time across all machines. TotalR, IPR,
and CPR report the sizes of total, intra-pod, and cross-pod read data for shuffling. The third case involves a join of two

input sets, whose sizes are reported separately.

discussed before, when redefining partition keys, SUDO
may bring in data-skew problems. We did observe a se-
rious data-skew problem that causes the optimized job
to be slower (-27%) than the original one in the third
case, which was introduced by enforcing the records for
the same sites on the same data partition before the first
reduce function. The data skew problem leads to strag-
glers among partitions at the same computation phase
and hurts the overall latency. In the future, we need more
work on handling data-skew problems better and/or on
the cost model for better execution plan selection.

6.3 Observations and Future Directions

During our study on the SCOPE jobs, we have also ob-
served a set of interesting and somewhat “negative” is-
sues that are worth further investigation. First, unlike in
a typical MapReduce model, where reducers and mergers
are constrained to be pass-through functions for the keys,
SCOPE’s programming model is different and allows re-
ducers and mergers to change keys. Knowing that a re-
ducer or merger in SCOPE is a pass-through function en-
ables more optimizations in SCOPE, but we do not count
them in our study because those are specific to SCOPE.
In general, it is interesting to observe that a more con-
strained language often leads to better automatic opti-
mizations. A good programming language must carefully
balance flexibility and optimizability.

Second, we observed that for quite a few jobs, the I/O
cost is dominated by the initial “extractor” phase to load
the data initially. A careful investigation shows that some
of those jobs were loading more data than necessary and
could benefit greatly from notions like column groups in
BigTable or any column-based organizations.

Third, for some jobs, we found that the first data-
shuffling stage dominates in terms of shuffling cost, as
the output size of the reduce phase after that stage is sig-
nificantly smaller than the input. This was one of the rea-
sons that caused us to look at pipeline opportunities be-

cause a first phase in a job might also be optimized if it
takes outputs from another job.

Finally, the rule-based deduction can be further im-
proved. To ensure soundness, our current implemen-
tation is conservative and can be improved by mak-
ing the analysis context-sensitive and path-sensitive. By
being context-sensitive, SUDO’s analysis will be able
to differentiate the cases where a function is invoked
by different callers with different parameters; by being
path-sensitive, SUDO’s analysis takes branching condi-
tions into account. SUDO can further incorporate the
value-range information to handle operators, such as
MULTIPLY, whose functional properties depend on the
value ranges of the input operands. Currently, SUDO rec-
ognizes the sign of all constant numbers automatically,
but requires that developers mark the value range of an
input column if it is used as a partitioning key and in-
volved in the deduction process with value-range sensi-
tive operators. It would be ideal not having to depend on
such annotations.

7 RELATED WORK

SUDO proposes an optimization framework for data-
parallel computation, as pioneered by MapReduce [15],
followed by systems such as Hadoop [3] and Dryad [23].
The MapReduce model has been extended [12] with
Merge to support joins and to support pipelining [13].
CIEL [30] is a universal execution engine for distributed
data-flow programs. High-level and declarative program-
ming languages, often with some SQL flavors, have
been proposed. Examples include Sawzall [36], Pig [33],
Hive [40], SCOPE [10], and DryadLINQ [46]. Those
high-level programs are compiled into low-level execu-
tion engines such as MapReduce. Because SUDO works
at the low-level Map/Reduce/Merge model, the optimiza-
tions can be applied in general to these systems: the ex-
tensive support of UDFs and heavy use of data-shuffling
are common in all those proposals. The trend of em-

bracing high-level programming languages also plays
into our favor: SUDO can be integrated nicely into the
compiler/optimizer, can rely on high-level semantics,
and often have the extra flexibility of re-defining par-
tition functions, as they are being generated by a com-
piler/optimizer. In fact, many pieces of recent work (e.g.,
[43, 37, 11, 21, 20]) have introduced notions of query
optimizations into MapReduce and its variants.

The idea of tracking data properties has been used
extensively in the database community and dates back at
least to System R [38], which tracks ordering informa-
tion for intermediate query results. Simmen, et al. [39]
showed how to infer sorting properties by exploiting
functional dependencies. Wang, et al. [41] introduced a
formalism on ordering and grouping properties; it can
be used to reason about ordering and grouping prop-
erties and to avoid unnecessary sorting and grouping.
Neumann and Moerkotte [32, 31] also described a com-
bined platform to optimize sorting and grouping. Zhou,
et al. [48] are the first to take into account partition-
ing, in addition to sorting and grouping, in the context
of the SCOPE optimizer. Such optimization heavily re-
lies on reasoning about data properties and applies com-
plex query transformation to choose the best execution
plan in a cost-based fashion. Agarwal, et al. [5] collects
code and data properties by piggybacking on job exe-
cution. It adapts execution plans by feeding these con-
textual properties to a query optimizer. The existence of
UDFs prevents the system from effectively reasoning re-
lationship between the input and the output data proper-
ties [21]. As a result, the system may miss many impor-
tant optimization opportunities and end up with subopti-
mal query plans. SUDO builds upon the idea of reasoning
about data properties, defines a set of simple and practi-
cal data-partition properties, and takes UDFs and their
functional properties into account.

The need to analyze UDFs, by means of differ-
ent static analysis techniques such as dataflow analy-
sis [6, 7, 28], abstract interpretation [14], and symbolic
execution [19, 22, 25], has also been recognized. Ke et
al. [26] focuses on data statistics and computational com-
plexity of UDFs to cope with data skew, a problem that
has been also studied extensively [16, 34, 17, 9, 8]. Man-
imal [24] extracts relational operations such as selection,
projection and data compression from UDFs through
static analysis, so that traditional database optimization
techniques can be applied. Manimal use the ASM byte-
code manipulation library [4] to process the compiled
byte-code of UDFs. Given that previous papers [26, 24]
care about different properties for UDFs for different op-
timization properties, it is an interesting future direction
to see whether a coherent UDF framework can be estab-
lished to enable all those optimizations. Scooby [44] an-
alyzed the dataflow relations of SCOPE UDFs between

input and output tables, such as column independence,
column equality, and non-null of column’s value, by ex-
tending the Clousot analysis infrastructure [27] so that
the analysis can handle .NET methods. In comparison,
SUDO extends the analysis to cover functional proper-
ties such as monotone, strict monotone and one-to-one
of UDFs, other than column equality analysis, in order
to optimize data shuffling. Yuan ef al. [45] investigated
the user-defined aggregations, especially the properties
of commutative and associative-decomposable to enable
partial aggregation. Such properties are explicitly anno-
tated by programmers. Jockey [18] precomputes statis-
tics using a simulator that captures the job’s complex in-
ternal dependencies, accurately and efficiently predict-
ing the remaining run time at different resource allo-
cations and in different stages of the job to maximize
the economic utility while minimizing its impact on the
rest of the cluster. Steno et al. [29] can translate code
for declarative LINQ [2] queries to type-specialized, in-
lined, and loop-based imperative code that is as efficient
as hand-optimized code. It applies data analysis to elim-
inate chains of iterators and optimizes nested queries.

8 CONCLUSION

Extensive use of user-defined functions and expensive
data-shuffling are two defining characteristics of data-
parallel computation in the map/reduce style. By defining
a framework that connects functional properties, data-
partition properties, and data shuffling, SUDO opens up
a set of new optimization opportunities that are proven
effective using the workload in a large-scale production
cluster. SUDO also reflects our belief that data-parallel
computation could learn not only from database systems
and distributed systems, but also from programming lan-
guages and program analysis. A systematic approach that
combines those perspectives in a seamless framework is
likely to bring tremendous benefits.

ACKNOWLEDGEMENT

We thank our shepherd, Srikanth Kandula, and the
anonymous reviewers for their insightful comments. We
are grateful to Chang Liu and Sean McDirmid for valu-
able feedback, and to Chao Wang, Zekan Qian, Bo Cao,
and Lin Song for sharing production jobs and data.

REFERENCES
[1] bddbddb. http://bddbddb.sourceforge.net/.

[2] LINQ. http://msdn.microsoft.com/en-us/
library/bb308959.aspx.

[3] Hadoop. http://lucene.apache.org/hadoop/, June
2007.

[4] ASM. http://asm.ow2.0org/, 2010.

[5] S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu, 1. Stoica, and
J. Zhou. Reoptimizing data parallel computing. In NSDI’12,
2012.

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Princiles,
Techniques, and Tools. Addison-Wesley, 1986.

R. Allen and K. Kennedy. Optimizing Compilers for Modern
Architectures: A Dependence-based Approach. Morgan
Kaufmann, 2001.

G. Ananthanarayanan, S. Agarwal, S. Kandula, A. G. Greenberg,
I. Stoica, D. Harlan, and E. Harris. Scarlett: coping with skewed
content popularity in MapReduce clusters. In EuroSys, 2011.

G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica,
Y. Lu, B. Saha, and E. Harris. Reining in the outliers in
Map-Reduce clusters using Mantri. In OSDI, 2010.

R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. SCOPE: easy and efficient parallel
processing of massive data sets. PVLDB, 1(2), 2008.

B. Chattopadhyay, L. Lin, W. Liu, S. Mittal, P. Aragonda,

V. Lychagina, Y. Kwon, and M. Wong. Tenzing a SQL
implementation on the MapReduce framework. PVLDB, 4(12),
2011.

H. chih Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker.
Map-reduce-merge: simplified relational data processing on
large clusters. In SIGMOD, 2007.

T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,
K. Elmeleegy, and R. Sears. MapReduce online. In NSDI, 2010.

P. Cousot. Abstract interpretation. ACM Comput. Surv., 28, June
1996.

J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In OSDI, 2004.

D. J. DeWitt, J. F. Naughton, D. A. Schneider, and S. Seshadri.
Practical skew handling in parallel joins. In VLDB, 1992.

B. Fan, H. Lim, D. G. Andersen, and M. Kaminsky. Small
cache, big effect: Provable load balancing for randomly
partitioned cluster services. In SOCC, 2011.

A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and
R. Fonseca. Jockey: Guaranteed job latency in data parallel
clusters. In EuroSys, 2012.

T. Hansen, P. Schachte, and H. Sgndergaard. State joining and
splitting for the symbolic execution of binaries. In RV, 2009.

B. He, M. Yang, Z. Guo, R. Chen, B. Su, W. Lin, and L. Zhou.
Comet: batched stream processing for data intensive distributed
computing. In SoCC’10, 2010.

H. Herodotou, F. Dong, and S. Babu. MapReduce programming
and cost-based optimization? Crossing this chasm with Starfish.
PVLDB, 4(12), 2011.

W. E. Howden. Experiments with a symbolic evaluation system.
In AFIPS, 1976.

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
distributed data-parallel programs from sequential building
blocks. In EuroSys, 2007.

E. Jahani, M. J. Cafarella, and C. Ré. Automatic optimization
for MapReduce programs. PVLDB, 4(6), 2011.

R. H. H. Jr. Multilisp: A language for concurrent symbolic
computation. ACM Trans. Program. Lang. Syst., 7(4), 1985.

Q. Ke, V. Prabhakaran, Y. Xie, Y. Yu, J. Wu, and J. Yang.
Optimizing data partitioning for data-parallel computing. In
HorOS X111, 2011.

F. Logozzo and M. Fahndrich. On the relative completeness of

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47]

[48]

bytecode analysis versus source code analysis. In CC, 2008.

S. S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, 1997.

D. G. Murray, M. Isard, and Y. Yu. Steno: automatic
optimization of declarative queries. In PLDI, 2011.

D. G. Murray, M. Schwarzkopf, C. Smowton, S. Smith,
A. Madhavapeddy, and S. Hand. CIEL: a universal execution
engine for distributed data-flow computing. In NSDI, 2011.

T. Neumann and G. Moerkotte. A combined framework for
grouping and order optimization. In VLDB, 2004.

T. Neumann and G. Moerkotte. An efficient framework for order
optimization. In /CDE, 2004.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. TomKins.
Pig Latin: a not-so-foreign language for data processing. In
SIGMOD, 2008.

A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt,
S. Madden, and M. Stonebraker. A comparison of approaches to
large-scale data analysis. In SIGMOD, 2009.

Phoenix. http://research.microsoft.com/en-us/
collaboration/focus/cs/phoenix.aspx, June 2008.

R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting
the data: Parallel analysis with Sawzall. Scientific Programming,
13(4), 2005.

G. Sagy, D. Keren, 1. Sharfman, and A. Schuster. Distributed
threshold querying of general functions by a difference of
monotonic representation. PVLDB, 4(2), 2010.

P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie,
and T. G. Price. Access path selection in a relational database
management system. In SIGMOD, 1979.

D. E. Simmen, E. J. Shekita, and T. Malkemus. Fundamental
techniques for order optimization. In SIGMOD, 1996.

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,
H. Liu, P. Wyckoff, and R. Murthy. Hive - a warehousing
solution over a Map-Reduce framework. PVLDB, 2(2), 2009.

X. Wang and M. Cherniack. Avoiding ordering and grouping in
query processing. In VLDB, 2003.

M. Weiser. Program slicing. In ICSE, 1981.

S. Wu, S. Agarwal, F. Li, S. Mehrotra, and B. C. Ooi. Query
optimization for massively parallel data processing. In SoCC,
2011.

S. Xia, M. Fahndrich, and F. Logozzo. Inferring dataflow
properties of user defined table processors. In SAS, 2009.

Y. Yu, P. K. Gunda, and M. Isard. Distributed aggregation for
data-parallel computing: interfaces and implementations. In
SOSP, 2009.

Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K.
Gunda, and J. Currey. DryadLINQ: A system for
general-purpose distributed data-parallel computing using a
high-level language. In OSDI, 2008.

J. Zhang, H. Zhou, R. Chen, X. Fan, Z. Guo, H. Lin, J. Y. Li,
W. Lin, J. Zhou, and L. Zhou. Optimizing data shuffling in
data-parallel computation by understanding user-defined
functions. MSR-TR-2012-28, 2012.

J. Zhou, P-A. Larson, and R. Chaiken. Incorporating
partitioning and parallel plans into the SCOPE optimizer. In
ICDE, 2010.

