Jellyfish: Networking Data Centers Randomly

Ankit Singla™* Chi-Yao Hong'*, Lucian Popa?, P. Brighten Godfrey"
¥ University of Illinois at Urbana—Champaign
“ HP Labs

Abstract

Industry experience indicates that the ability to incre-
mentally expand data centers is essential. However, ex-
isting high-bandwidth network designs have rigid struc-
ture that interferes with incremental expansion. We
present Jellyfish, a high-capacity network interconnect
which, by adopting a random graph topology, yields it-
self naturally to incremental expansion. Somewhat sur-
prisingly, Jellyfish is more cost-efficient than a fat-tree,
supporting as many as 25% more servers at full capacity
using the same equipment at the scale of a few thousand
nodes, and this advantage improves with scale. Jellyfish
also allows great flexibility in building networks with
different degrees of oversubscription. However, Jelly-
fish’s unstructured design brings new challenges in rout-
ing, physical layout, and wiring. We describe approaches
to resolve these challenges, and our evaluation suggests
that Jellyfish could be deployed in today’s data centers.

1 Introduction

A well provisioned data center network is critical to en-
sure that servers do not face bandwidth bottlenecks to
utilization; to help isolate services from each other; and
to gain more freedom in workload placement, rather than
having to tailor placement of workloads to where band-
width is available [22]. As a result, a significant body of
work has tackled the problem of building high capacity
network interconnects [6, 17-20, 38, 42, 43].

One crucial problem that these designs encounter is
incremental network expansion, i.e., adding servers and
network capacity incrementally to the data center. Ex-
pansion may be necessitated by growth of the user base,
which requires more servers, or by the deployment of
more bandwidth-hungry applications. Expansion within
a data center is possible through either planned over-
provisioning of space and power, or by upgrading old
servers to a larger number of more powerful but energy-
efficient new servers. Planned expansion is a practical
strategy to reduce up-front capital expenditure [28].

*A coin toss decided the order of the first two authors.

Industry experience indicates that incremental expan-
sion is important. Consider the growth of Facebook’s
data center server population from roughly 30,000 in
Nov. 2009 to >60,000 by June 2010 [34]. While Face-
book has added entirely new data center facilities, much
of this growth involves incrementally expanding exist-
ing facilities by “adding capacity on a daily basis” [33].
For instance, Facebook announced that it would dou-
ble the size of its facility at Prineville, Oregon by early
2012 [16]. A 2011 survey [15] of 300 enterprises that run
data centers of a variety of sizes found that 84% of firms
would probably or definitely expand their data centers
in 2012. Several industry products advertise incremen-
tal expandability of the server pool, including SGI’s Ice-
Cube (marketed as “The Expandable Modular Data Cen-
ter” [5]; expands 4 racks at a time) and HP’s EcoPod [24]
(a “pay-as-you-grow” enabling technology [23]).

Do current high-bandwidth data center network pro-
posals allow incremental growth? Consider the fat-tree
interconnect, as proposed in [6], as an illustrative exam-
ple. The entire structure is completely determined by
the port-count of the switches available. This is limit-
ing in at least two ways. First, it makes the design space
very coarse: full bisection bandwidth fat-trees can only
be built at sizes 3456, 8192, 27648, and 65536 corre-
sponding to the commonly available port counts of 24,
32, 48, and 64'. Second, even if (for example) 50-port
switches were available, the smallest “incremental” up-
grade from the 48-port switch fat-tree would add 3,602
servers and would require replacing every switch.

There are, of course, some workarounds. One can re-
place a switch with one of larger port count or oversub-
scribe certain switches, but this makes capacity distri-
bution constrained and uneven across the servers. One
could leave free ports for future network connections [14,
20] but this wastes investment until actual expansion.
Thus, without compromises on bandwidth or cost, such
topologies are not amenable to incremental growth.

Since it seems that structure hinders incremental ex-
pansion, we propose the opposite: a random network in-

!Other topologies have similar problems: a hypercube [7] allows
only power-of-2 sizes, a de Bruijn-like construction [39] allows only
power-of-3 sizes, etc.

terconnect. The proposed interconnect, which we call
Jellyfish, is a degree-bounded® random graph topol-
ogy among top-of-rack (ToR) switches. The inher-
ently sloppy nature of this design has the potential to
be significantly more flexible than past designs. Addi-
tional components—racks of servers or switches to im-
prove capacity—can be incorporated with a few random
edge swaps. The design naturally supports heterogene-
ity, allowing the addition of newer network elements
with higher port-counts as they become available, un-
like past proposals which depend on certain regular port-
counts [6, 18-20, 38, 42]. Jellyfish also allows construc-
tion of arbitrary-size networks, unlike topologies dis-
cussed above which limit the network to very coarse de-
sign points dictated by their structure.

Somewhat surprisingly, Jellyfish supports more
servers than a fat-tree [6] built using the same network
equipment while providing at least as high per-server
bandwidth, measured either via bisection bandwidth or
in throughput under a random-permutation traffic pat-
tern. In addition, Jellyfish has lower mean path length,
and is resilient to failures and miswirings.

But a data center network that lacks regular structure
is a somewhat radical departure from traditional designs,
and this presents several important challenges that must
be addressed for Jellyfish to be viable. Among these
are routing (schemes depending on a structured topology
are not applicable), physical construction, and cabling
layout. We describe simple approaches to these prob-
lems which suggest that Jellyfish could be effectively de-
ployed in today’s data centers.

Our key contributions and conclusions are as follows:

e We propose Jellyfish, an incrementally-expandable,
high-bandwidth data center interconnect based on a
random graph.

e We show that Jellyfish provides quantitatively eas-
ier incremental expansion than prior work on incre-
mental expansion in Clos networks [14], growing
incrementally at only 40% of the expense of [14].

e We conduct a comparative study of the bandwidth
of several proposed data center network topologies.
Jellyfish can support 25% more servers than a fat-
tree while using the same switch equipment and
providing at least as high bandwidth. This advan-
tage increases with network size and switch port-
count. Moreover, we propose degree-diameter op-
timal graphs [12] as benchmark topologies for high
capacity at low cost, and show that Jellyfish remains
within 10% of these carefully-optimized networks.

2Degree-bounded means that the number of connections per node
is limited, in this case by switch port-counts.

e Despite its lack of regular structure, packet-level
simulations show that Jellyfish’s bandwidth can be
effectively utilized via existing forwarding tech-
nologies that provide high path diversity.

e We discuss effective techniques to realize physical
layout and cabling of Jellyfish. Jellyfish may have
higher cabling cost than other topologies, since its
cables can be longer; but when we restrict Jellyfish
to use cables of length similar to the fat-tree, it still
improves on the fat-tree’s throughput.

Outline: Next, we discuss related work (§2), followed
by a description of the Jellyfish topology (§3), and an
evaluation of the topology’s properties, unhindered by
routing and congestion control (§4). We then evaluate
the topology’s performance with routing and congestion
control mechanisms (§5). We discuss effective cabling
schemes and physical construction of Jellyfish in various
deployment scenarios (§6), and conclude (§7).

2 Related Work

Several recent proposals for high-capacity networks ex-
ploit special structure for topology and routing. These in-
clude folded-Clos (or fat-tree) designs [6, 18, 38], several
designs that use servers for forwarding [19, 20, 45], and
designs using optical networking technology [17, 43].
High performance computing literature has also studied
carefully-structured expander graphs [27].

However, none of these architectures address the in-
cremental expansion problem. For some (including the
fat-tree), adding servers while preserving the structural
properties would require replacing a large number of net-
work elements and extensive rewiring. MDCube [45] al-
lows expansion at a very coarse rate (several thousand
servers). DCell and BCube [19, 20] allow expansion to
an a priori known target size, but require servers with
free ports reserved for planned future expansion.

Two recent proposals, Scafida [21] (based on scale-
free graphs) and Small-World Datacenters (SWDC) [41],
are similar to Jellyfish in that they employ randomness,
but are significantly different than our design because
they require correlation (i.e., structure) among edges.
This structured design makes it unclear whether the
topology retains its characteristics upon incremental ex-
pansion; neither proposal investigates this issue. Fur-
ther, in SWDC, the use of a regular lattice underlying
the topology creates familiar problems with incremental
expansion.® Jellyfish also has a capacity advantage over

3For instance, using a 2D torus as the lattice implies that maintain-
ing the network structure when expanding an n node network requires
adding ®(/n) new nodes. The higher the dimensionality of the lattice,
the more complicated expansion becomes.

both proposals: Scafida has marginally worse bisection
bandwidth and diameter than a fat-tree, while Jellyfish
improves on fat-trees on both metrics. We show in §4.1
that Jellyfish has higher bandwidth than SWDC topolo-
gies built using the same equipment.

LEGUP [14] attacks the expansion problem by trying
to find optimal upgrades for Clos networks. However,
such an approach is fundamentally limited by having to
start from a rigid structure, and adhering to it during the
upgrade process. Unless free ports are preserved for such
expansion (which is part of LEGUP’s approach), this can
cause significant overhauls of the topology even when
adding just a few new servers. In this paper, we show
that Jellyfish provides a simple method to expand the net-
work to almost any desirable scale. Further, our com-
parison with LEGUP (§4.2) over a sequence of network
expansions illustrates that Jellyfish provides significant
cost-efficiency gains in incremental expansion.

REWIRE [13] is a heuristic optimization method to
find high capacity topologies with a given cost budget,
taking into account length-varying cable cost. While [13]
compares with random graphs, the results are inconclu-
sive.* Due to the recency of [13], we have left a direct
quantitative comparison to future work.

Random graphs have been examined in the context of
communication networks [31] previously. Our contribu-
tion lies in applying random graphs to allow incremental
expansion and in quantifying the efficiency gains such
graphs bring over traditional data center topologies.

3 Jellyfish Topology

Construction: The Jellyfish approach is to construct a
random graph at the top-of-rack (ToR) switch layer. Each
ToR switch i has some number k; of ports, of which it
uses r; to connect to other ToR switches, and uses the
remaining k; — r; ports for servers. In the simplest case,
which we consider by default throughout this paper, ev-
ery switch has the same number of ports and servers: Vi,

4REWIRE attempts to improve a given “seed” graph. The seed
could be a random graph, so in principle [13] should be able to ob-
tain results at least as good as Jellyfish. In [13] the seed was an empty
graph. The results show, in some cases, fat-trees obtaining more than
an order of magnitude worse bisection bandwidth than random graphs,
which in turn are more than an order of magnitude worse than REWIRE
topologies, all at equal cost. In other cases, [13] shows random graphs
that are disconnected. These significant discrepancies could arise from
(a) separating network port costs from cable costs rather than optimiz-
ing over the total budget, causing the random graph to pay for more
ports than it can afford cables to connect; (b) assuming linear physical
placement of all racks, so cable costs for distant servers scale as @(n)
rather than ®(y/n) in a more typical two-dimensional layout; and (c)
evaluating very low bisection bandwidths (0.04 to 0.37) — in fact, at
the highest bisection bandwidth evaluated, [13] indicates the random
graph has higher throughput than REWIRE. The authors indicated to
us that REWIRE has difficulty scaling beyond a few hundred nodes.

k = k; and r = r;. With N racks, the network supports
N(k —r) servers. In this case, the network is a random
regular graph, which we denote as RRG(N, k, r). This is
a well known construct in graph theory and has several
desirable properties as we shall discuss later.

Formally, RRGs are sampled uniformly from the space
of all r-regular graphs. This is a complex problem in
graph theory [29]; however, a simple procedure produces
“sufficiently uniform” random graphs which empirically
have the desired performance properties. One can simply
pick a random pair of switches with free ports (for the
switch-pairs are not already neighbors), join them with
a link, and repeat until no further links can be added. If
a switch remains with > 2 free ports (p;, p») — which
includes the case of incremental expansion by adding a
new switch — these can be incorporated by removing
a uniform-random existing link (x,y), and adding links
(p1,x) and (py,y). Thus only a single unmatched port
might remain across the whole network.

Using the above idea, we generate a blueprint for the
physical interconnection. (Allowing human operators to
“wire at will” may result in poor topologies due to human
biases — for instance, favoring shorter cables over longer
ones.) We discuss cabling later in §6.

Intuition: Our two key goals are high bandwidth and
flexibility. The intuition for the latter property is simple:
lacking structure, the RRG’s network capacity becomes
“fluid”, easily wiring up any number of switches, hetero-
geneous degree distributions, and newly added switches
with a few random link swaps.

But why should random graphs have high bandwidth?
We show quantitative results later, but here we present
the intuition. The end-to-end throughput of a topology
depends not only on the capacity of the network, but
is also inversely proportional to the amount of network
capacity consumed to deliver each byte — that is, the
average path length. Therefore, assuming that the rout-
ing protocol is able to utilize the network’s full capacity,
low average path length allows us to support more flows
at high throughput. To see why Jellyfish has low path
length, Fig. 1(a) and 1(b) visualize a fat-tree and a rep-
resentative Jellyfish topology, respectively, with identi-
cal equipment. Both topologies have diameter 6, mean-
ing that any server can reach all other servers in 6 hops.
However, in the fat-tree, each server can only reach 3
others in < 5 hops. In contrast, in the random graph,
the typical origin server labeled o can reach 12 servers
in < 5 hops, and 6 servers in < 4 hops. The reason for
this is that many edges in the fat-tree are not useful from
the perspective of their effect on path length; for exam-
ple, deleting the two edges marked X in Fig. 1(a) does
not increase the path length between any pair of servers.
In contrast, the RRG’s diverse random connections lead

(@) (b)

Fraction of Server Pairs

2 3

4 5 6
Path length
e Jellyfish = Fat-tree

(©)

Figure 1: Random graphs have high throughput because they have low average path length, and therefore do less work to deliver
each packet. (a): Fat-tree with 16 servers and 20 four-port switches. (b): Jellyfish with identical equipment. The servers are
leaf nodes; switches are interior nodes. Each ‘concentric’ ring contains servers reachable from any server v in the fat-tree, and
an arbitrary server o in Jellyfish, within the number of hops in the marked label. Jellyfish can reach many more servers in few
hops because in the fat tree, many edges (like those marked “X”) are redundant from a path-length perspective. (c): Path length
distribution between servers for a 686-server Jellyfish (drawn from 10 trials) and same-equipment fat-tree.

to lower mean path length.> Figure 1(c) demonstrates
these effects at larger scale. With 686 servers, >99.5%
of source-destination pairs in Jellyfish can be reached in
fewer than 6 hops, while the corresponding number is
only 7.5% in the fat-tree.

4 Jellyfish Topology Properties

This section evaluates the efficiency, flexibility and re-
silience of Jellyfish and other topologies. Our goal is to
measure the raw capabilities of the topologies, were they
to be coupled with optimal routing and congestion con-
trol. We study how to perform routing and congestion
control separately, in §5.

Our key findings from these experiments are:

e Jellyfish can support 27% more servers at full ca-
pacity than a (same-switching-equipment) fat-tree
at a scale of <900 servers. The trend is for this ad-
vantage to improve with scale.

e Jellyfish’s network capacity is >91% of the best-
known degree-diameter graphs [12], which we pro-
pose as benchmark bandwidth-efficient graphs.

e Paths are shorter on average in Jellyfish than in a
fat-tree, and the maximum shortest path length (di-
ameter) is the same or lower for all scales we tested.

o Incremental expansion of Jellyfish produces topolo-
gies identical in throughput and path length Jellyfish
topologies generated from scratch.

e Jellyfish provides a significant cost-efficiency ad-
vantage over prior work (LEGUP [14]) on in-
cremental network expansion in Clos networks.

SThis is related to the fact that RRGs are expander graphs [11].

In a network expansion scenario that was made
available for us to test, Jellyfish builds a slightly
higher-capacity expanded network at only 40% of
LEGUP’s expense.

e Jellyfish is highly failure resilient, even more so
than the fat-tree. Failing a random 15% of all links
results in a capacity decrease of <16%.

Evaluation methodology: Some of the results for net-
work capacity in this section are based on explicit calcu-
lations of the theoretical bounds for bisection bandwidth
for regular random graphs.

All throughput results presented in this section are
based on calculations of throughput for a specific class
of traffic demand matrices with optimal routing. The
traffic matrices we use are random permutation traffic:
each server sends at its full output link rate to a sin-
gle other server, and receives from a single other server,
and this permutation is chosen uniform-randomly. Intu-
itively, random permutation traffic represents the case of
no locality in traffic, as might arise if VMs are placed
without regard to what is convenient for the network®.
Nevertheless, evaluating other traffic patterns is an im-
portant question that we leave for future work.

Given a traffic matrix, we characterize a topology’s
raw capacity with “ideal” load balancing by treating
flows as splittable and fluid. This corresponds to solv-
ing a standard multi-commodity network flow problem.
(We use the CPLEX linear program solver [1].)

For all throughput comparisons, we use the same
switching equipment (in terms of both number of
switches, and ports on each switch) for each set of

Supporting such flexible network-oblivious VM placement with-
out a performance penalty is highly desirable [22].

topologies compared. Throughput results are always nor-
malized to [0, 1], and averaged over all flows.

For comparisons with the full bisection bandwidth fat-
tree, we attempt to find, using a binary search procedure,
the maximum number of servers Jellyfish can support us-
ing the same switching equipment as the fat-tree while
satisfying the full traffic demands. Specifically, each step
of the binary search checks a certain number of servers m
by sampling three random permutation traffic matrices,
and checking whether Jellyfish supports full capacity for
all flows in all three matrices. If so, we say that Jelly-
fish supports m servers at full capacity. After our binary
search terminates, we verify that the returned number of
servers is able to get full capacity over each of 10 more
samples of random permutation traffic matrices.

4.1 Efficiency

Bisection Bandwidth vs. Fat-Tree: Bisection band-
width, a common measure of network capacity, is the
worst-case bandwidth spanning any two equal-size par-
titions of a network. Here, we compute the fat-tree’s bi-
section bandwidth directly from its parameters; for Jelly-
fish, we model the network as a RRG and apply a lower
bound of Bollobas [8]. We normalize bisection band-
width by dividing it by the total line-rate bandwidth of
the servers in one partition’.

Fig. 2(a) shows that at the same cost, Jellyfish supports
a larger number of servers (x axis) at full bisection band-
width (y axis = 1). For instance, at the same cost as a fat-
tree with 16,000 servers, Jellyfish can support >20,000
servers at full bisection bandwidth. Also, Jellyfish allows
the freedom to accept lower bisection bandwidth in ex-
change for supporting more servers or cutting costs by
using fewer switches.

Fig. 2(b) shows that the cost of building a full
bisection-bandwidth network increases more slowly with
the number of servers for Jellyfish than for the fat-tree,
especially for high port-counts. Also, the design choices
for Jellyfish are essentially continuous, while the fat-tree
(following the design of [6]) allows only certain discrete
jumps in size which are further restricted by the port-
counts of available switches. (Note that this observation
would hold even for over-subscribed fat-trees.)

Jellyfish’s advantage increases with port-count, ap-
proaching twice the fat-tree’s bisection bandwidth. To
see this, note that the fat-tree built using k-port switches
has k3 /4 servers, and being a full-bisection interconnect,
it has k3 /8 edges crossing each bisection. The fat-tree
has k*/2 switch-switch links, implying that its bisec-
tion bandwidth represents % of its switch-switch links.
For Jellyfish, in expectation, % of its switch-switch links

7Values larger than 1 indicate overprovisioning.

Jellyfish; N=2880; k=48 —a—
% 14 L Fat-tree; N=2880; k=48 [}
s Jellyfish; N=1280; k=32 —c—
S Fat-tree; N=1280; k=32
s 1.2F Jellyfish; N=720; k=24
Cg Fat-tree; N=720; k=24
2 T]
(5]
&
o 0.8
®
N 06|
[
€
5 04}
b4
02 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80
Number of Servers in Thousands

()

— 400 -
§ Fat-tree; {24,32,48,64} ports @
& 350 |- Jellyfish; 24 ports
3 Jellyfish; 32 ports e
2 3ol Jellyfish; 48 ports sweessees
l; Jellyfish; 64 ports
» 250 |
5
o 200
X P Increasing port-count
3 150 |
o
€ 100
£
8 50 F
3
w O 1 1 1 1 1 1 1]
10 20 30 40 50 60 70 80
Number of Servers in Thousands
(b)
900
< 800 |
2
§ 10F
= -
e 1 T S
- S~ (O
E s00f g
p=}
L 400 +
©
@ 300
(4 o
S 200 fo S
() <
* 100 | Jellyfish (Optimal routing) —&—
0 ; lfat-tree (pptimal lrouting) l.~ i
0 500 1000 1500 2000 2500 3000 3500

Equipment Cost [Total #Ports] Using Identical Equipment
(©

Figure 2: Jellyfish offers virtually continuous design space,
and packs in more servers at high network capacity at the same
expense as a fat-tree. From theoretical bounds: (a) Normal-
ized bisection bandwidth versus the number of servers sup-
ported; equal-cost curves, and (b) Equipment cost versus the
number of servers for commodity-switch port-counts (24, 32,
48) at full bisection bandwidth. Under optimal routing, with
random-permutation traffic: (c) Servers supported at full ca-
pacity with the same switching equipment, for 6, 8, 10, 12 and
14-port switches. Results for (c) are averaged over 8 runs.

cross any given bisection of the switches, which is twice
that of the fat-tree assuming they are built with the same
number of switches and servers. Intuitively, Jellyfish’s
worst-case bisection should be slightly worse than this
average bisection. The bound of [8] bears this out: in

almost every r-regular graph with N nodes, every set of
N /2 nodes is joined by at least N(§ — @) edges to the
rest of the graph. As the number of network ports r — oo
this quantity approaches Nr/4, i.e., % of the Nr/2 links.

Throughput vs. Fat Tree: Fig. 2(c) uses the random-
permutation traffic model to find the number of servers
Jellyfish can support at full capacity, matching the fat-
tree in capacity and switching equipment. The improve-
ment is as much as 27% more servers than the fat-tree at
the largest size (874 servers) we can use CPLEX to eval-
vate. As with results from Bollobas’ theoretical lower
bounds on bisection bandwidth (Fig. 2(a), 2(b)), the trend
indicates that this improvement increases with scale.

Throughput vs. Degree-Diameter Graphs: We com-
pare Jellyfish’s capacity with that of the best known
degree-diameter graphs. Below, we briefly explain what
these graphs are, and why this comparison makes sense.

There is a fundamental trade-off between the degree
and diameter of a graph of a fixed vertex-set (say of size
N). At one extreme is a clique — maximum possible de-
gree (N — 1), and minimum possible diameter (1). At the
other extreme is a disconnected graph with degree 0 and
diameter c. The problem of constructing a graph with
maximum possible number N of nodes while preserv-
ing given diameter and degree bounds is known as the
degree-diameter problem and has received significant at-
tention in graph theory. The problem is quite difficult and
the optimal graphs are only known for very small sizes:
the largest degree-diameter graph known to be optimal
has N = 50 nodes, with degree 7 and diameter 2 [12].
A collection of optimal and best known graphs for other
degree-diameter combinations is maintained at [12].

The degree-diameter problem relates to our objective
in that short average path lengths imply low resource us-
age and thus high network capacity. Intuitively, the best
known degree-diameter topologies should support a large
number of servers with high network bandwidth and low
cost (small degree). While we note the distinction be-
tween average path length (which relates more closely
to the network capacity) and diameter, degree-diameter
graphs will have small average path lengths too.

Thus, we propose the best-known degree-diameter
graphs as a benchmark for comparison. Note that such
graphs do not meet our incremental expansion objec-
tives; we merely use them as a capacity benchmark for
Jellyfish topologies. But these graphs (and our measure-
ments of them) may be of independent interest since they
could be deployed as highly efficient topologies in a set-
ting where incremental upgrades are unnecessary, such
as a pre-fab container-based data center.

For our comparisons with the best-known degree-
diameter graphs, the number of servers we attach to the
switches was decided such that full-bisection bandwidth

Normalized Throughput

0.8

0.6

0.4

0.2

° 2y 8y 18, 7, R, 2y (7
SN S 7 g o,

7 7 7
® v e 0. %, %, %,
4 .) 7 7, v
. S 2 . 4 . o () E4
& 4 7 < 7 S B "7y '/6‘
7 >/

Best-known Degree-Diameter Graph =1
Jellyfish

Figure 3: Jellyfish’s network capacity is close to (i.e., ~91%
or more in each case) that of the best-known degree-diameter
graphs. The x-axis label (A, B, C) represents the number of
switches (A), the switch port-count (B), and the network de-
gree (C). Throughput is normalized against the non-blocking
throughput. Results are averaged over 10 runs.

Jellyfish

Small World Ring
Small World 2D-Torus

Small World 3D-Hex-Torus
1 1

1
0 0.2 0.4 0.6 0.8 1

Normalized Throughput

Figure 4: Jellyfish has higher capacity than the (same-
equipment) small world data center topologies [41] built us-
ing a ring, a 2D-Torus, and a 3D-Hex-Torus as the underlying
lattice. Results are averaged over 10 runs.

was not hit for the degree-diameter graphs (thus ensur-
ing that we are measuring the full capacity of degree-
diameter graphs.) Our results, in Fig. 3, show that the
best-known degree-diameter graphs do achieve higher
throughput than Jellyfish, and thus improve even more
over fat-trees. But in the worst of these comparisons, Jel-
lyfish still achieves ~91% of the degree-diameter graph’s
throughput. While graphs that are optimal for the degree-
diameter problem are not (known to be) provably optimal
for our bandwidth optimization problem, these results
strongly suggest that Jellyfish’s random topology leaves
little room for improvement, even with very carefully-
optimized topologies. And what improvement is possi-
ble may not be worth the loss of Jellyfish’s incremental
expandability.

Throughput vs. small world data centers (SWDC):
SWDC [41] proposes a new topology for data centers in-
spired by a small-world distribution. We compare Jelly-
fish with SWDC using the same degree-6 topologies de-
scribed in the SWDC paper. We emulate their 6-interface
server-based design by using switches connected with
1 server and 6 network ports each. We build the three
SWDC variants described in [41] at topology sizes as
close to each other as possible (constrained by the lat-
tice structure underlying these topologies) across sizes

Jellyfish; Diameter --@-
Expanded Jellyfish; Diameter ---a
35 Jellyfish; Mean —H— .-~ ’
Expanded Jellyfish; Mean —@— .-

Path Length Between Switches

/Staning point

1 1 1 1 1 1 1 J
0 5 10 15 20 25 30 35 40
#Servers [in Thousands]

Figure 5: Jellyfish has short paths: Path length versus number
of servers, with k = 48 port switches of which r = 36 connect
to other switches and 12 connect to servers. Each data point
is derived from 10 graphs. The diameter is <4 at these scales.
This figure also shows that constructing Jellyfish from scratch,
or using incremental growth yields topologies with very similar
path length characteristics.

we can simulate. Thus, we use 484 switches for Jel-
lyfish, the SWDC-Ring topology, and the SWDC-2D-
Torus topology; for the SWDC-3D-Hex-Torus, we use
450 nodes. (Note that this gives the latter topology an
advantage, because it uses the same degree, but a smaller
number of nodes. However, this is the closest size where
that topology is well-formed.) At these sizes, the first
three topologies all yielded full throughput, so, to distin-
guish between their capacities, we oversubscribed each
topology by connecting 2 servers at each switch instead
of just one. The results are shown in Fig. 4. Jellyfish’s
throughput is ~119% of that of the closest competitor,
the ring-based small world topology.

Path Length: Short path lengths are important to en-
sure low latency, and to minimize network utilization.
In this context, we note that the theoretical upper-bound
on the diameter of random regular graphs is fairly small:
Bollobas and de la Vega [10] showed that in almost ev-
ery r-regular graph with N nodes, the diameter is at
most 1+ [log,_;((2+¢€)rNlogN)] for any € > 0. Thus,
the server-to-server diameter is at most 3 + [log,_;((2+
€)rNlogN)]. Thus, the path length increases logarithmi-
cally (base r) with the number of nodes in the network.
Given the availability of commodity servers with large
port counts, this rate of increase is very small in practice.

We measured path lengths using an all-pairs shortest-
paths algorithm. The average path length (Fig. 5) in Jel-
lyfish is much smaller than in the fat-tree®. For example,
for RRG(3200, 48, 36) with 38,400 servers, the average
path length between switches is <2.7 (Fig. 5), while the

8Note that the results in Fig. 5 use 48-port switches throughout,
meaning that the only point of direct, fair comparison with a fat-tree is
at the largest scale, where Jellyfish still compares favorably against a
fat-tree built using 48-port switches and 27,648 servers.

Jellyfish (Incremental) ——
Jellyfish (From Scratch) +—e—

= 095 |

3

Q.

<

2 09 $

<

=

E oss| ﬁ

(]

i

© L

g 0.8 o

S b

2 o7t é g

O 7 ! 1 1 1 1 ! ﬁ J
0 100 200 300 400 500 600 700

#Servers

Figure 6: Incrementally constructed Jellyfish has the same ca-
pacity as Jellyfish built from scratch: We built a Jellyfish topol-
ogy incrementally from 20 to 160 switches in increments of 20
switches, and compared the throughput per server of these in-
crementally grown topologies to Jellyfish topologies built from
scratch using our construction routine. The plot shows the av-
erage, minimum and maximum throughput over 20 runs.

fat-tree’s average is 3.71 at the smallest size, 3.96 at the
size of 27,648 servers. Even though Jellyfish’s diameter
is 4 at the largest scale, the 99.99'" percentile path-length
across 10 runs did not exceed 3 for any size in Fig. 5.

4.2 Flexibility

Arbitrary-sized Networks: Several existing proposals
admit only the construction of interconnects with very
coarse parameters. For instance, a 3-level fat-tree allows
only k3 /4 servers with k being restricted to the port-count
of available switches, unless some ports are left unused.
This is an arbitrary constraint, extraneous to operational
requirements. In contrast, Jellyfish permits any number
of racks to be networked efficiently.

Incremental Expandability: Jellyfish’s construction
makes it amenable to incremental expansion by adding
either servers and/or network capacity (if not full-
bisection bandwidth already), with increments as small
as one rack or one switch. Jellyfish can be expanded
such that rewiring is limited to the number of ports be-
ing added to the network; and the desirable properties are
maintained: high bandwidth and short paths at low cost.

As an example, consider an expansion from an
RRG(N, k, r) topology to RRG(N + 1, k, r). In other
words, we are adding one rack of servers, with its ToR
switch u, to the existing network. We pick a random link
(v,w) such that this new ToR switch is not already con-
nected with either v or w, remove it, and add the two links
(u,v) and (u,w), thus using 2 ports on u. This process is
repeated until all ports are filled (or a single odd port re-
mains, which could be matched with another free port
on an existing rack, used for a server, or left free). This
completes incorporation of the rack, and can be repeated
for as many new racks as desired.

A similar procedure can be used to expand network
capacity for an under-provisioned Jellyfish network. In
this case, instead of adding a rack with servers, we only
add the switch, connecting all its ports to the network.

Jellyfish also allows for heterogeneous expansion:
nothing in the procedure above requires that the new
switches have the same number of ports as the existing
switches. Thus, as new switches with higher port-counts
become available, they can be readily used, either in
racks or to augment the interconnect’s bandwidth. There
is, of course, the possibility of taking into account hetero-
geneity explicitly in the random graph construction and
to improve upon what the vanilla random graph model
yields. This endeavor remains future work for now.

We note that our expansion procedures (like our con-
struction procedure) may not produce uniform-random
RRGs. However, we demonstrate that the path length and
capacity measurements of topologies we build incremen-
tally match closely with ones constructed from scratch.
Fig. 5 shows this comparison for the average path length
and diameter where we start with an RRG with 1,200
servers and expand it incrementally. Fig. 6 compares the
normalized throughput per server under a random per-
mutation traffic model for topologies built incrementally
against those built from scratch. The incremental topolo-
gies here are built by adding successive increments of
20 switches, and 80 servers to an initial topology also
with 20 switches and 80 servers. (Throughout this exper-
iment, each switch has 12 ports, 4 of which are attached
to servers.) In each case, the results are close to identical.

Network capacity under expansion: Note that after
normalizing by the number of servers N(k —r), the
lower bound on Jellyfish’s normalized bisection band-
width (§4.1) is independent of network size N. Of course,
as N increases with fixed network degree r, average
path length increases, and therefore, the demand for ad-
ditional per-server capacity increases’. But since path
length increases very slowly (as discussed above), band-
width per server remains high even for relatively large
factors of growth. Thus, operators can keep the servers-
per-switch ratio constant even under large expansion,
with minor bandwidth loss. Adding only switches (with-
out servers) is another avenue for expansion which can
preserve or even increase network capacity. Our below
comparison with LEGUP uses both forms of expansion.

Comparison with LEGUP [14]: While a LEGUP im-
plementation is not publicly available, the authors were
kind enough to supply a series of topologies produced
by LEGUP. In this expansion arc, there is a budget
constraint for the initial network, and for each succes-

9This discussion also serves as a reminder that bisection-bandwidth,
while a good metric of network capacity, is not the same as, say, capac-
ity under worst-case traffic patterns.

1~
S
T
Z o0s8F /‘/t/‘
C
a
5 06 | ._”,..w'..
B o
3 = Jellyfish —5—
o 04F o e L) LEGUP @
B
g ‘
T o2t
g — > Increasing cost
zZ
O 1 1 1 | 1 1 1 i

2 3 4 5 6 7 8 9 10
Total Budget [in $100,000]

Figure 7: Jellyfish’s incremental expansion is substantially
more cost-effective than LEGUP’s Clos network expansion.
With the same budget for equipment and rewiring at each ex-
pansion stage (x-axis), Jellyfish obtains significantly higher bi-
section bandwidth (y-axis). Results are averaged over 10 runs.
(The drop in Jellyfish’s bisection bandwidth from stage 0 to 1
occurs because the number of servers increases in that step.)

sive expansion step; within the constraint, LEGUP at-
tempts to maximize network bandwidth, and also may
keep some ports free in order to ease expansion in future
steps. The initial network is built with 480 servers and 34
switches; the first expansion adds 240 more servers and
some switches; and each remaining expansion adds only
switches. To build a comparable Jellyfish network, at
each expansion step, under the same budget constraints,
(using the same cost model for switches, cabling, and
rewiring) we buy and randomly cable in as many new
switches as we can. The number of servers supported is
the same as LEGUP at each stage.

LEGUP optimizes for bisection bandwidth, so we
compare both LEGUP and Jellyfish on that metric (using
code provided by the LEGUP authors [14]) rather than
on our previous random permutation throughput metric.
The results are shown in Fig. 7. Jellyfish obtains substan-
tially higher bisection bandwidth than LEGUP at each
stage. In fact, by stage 2, Jellyfish has achieved higher
bisection bandwidth than LEGUP in stage 8, meaning
(based on each stage’s cost) that Jellyfish builds an equiv-
alent network at cost 60% lower than LEGUP.

A minority of these savings is explained by the fact
that Jellyfish is more bandwidth-efficient than Clos net-
works, as exhibited by our earlier comparison with fat-
trees. But in addition, LEGUP appears to pay a sig-
nificant cost to enable it to incrementally-expand a Clos
topology; for example, it leaves some ports unused in or-
der to ease expansion in later stages. We conjecture that
to some extent, this greater incremental expansion cost is
fundamental to Clos topologies.

Jellyfish (544 Servers) —8—
0.95 "~-.‘ Fat-tree (432 Servers) @
§_
2 o9t
D
3 085}
- N
5 ost :
N Q.
I) Y £ B e R St
© T ey
£ o7 ®-..
2 e,
0.65
®
06 1 1 1 1]
0 0.05 0.1 0.15 0.2 0.25

Fraction of Links Failed Randomly

Figure 8: Jellyfish is highly resilient to failures: Normalized
throughput per server decreases more gracefully for Jellyfish
than for a same-equipment fat-tree as the percentage of failed
links increases. Note that the y-axis starts at 60% throughput;
both topologies are highly resilient to failures.

4.3 Failure Resilience

Jellyfish provides good path redundancy; in particular, an
r-regular random graph is almost surely r-connected [9].
Also, the random topology maintains its (lack of) struc-
ture in the face of link or node failures — a random graph
topology with a few failures is just another random graph
topology of slightly smaller size, with a few unmatched
ports on some switches.

Fig. 8 shows that the Jellyfish topology is even more
resilient than the same-equipment fat-tree (which itself
is no weakling). Note that the comparison features a
fat-tree with fewer servers, but the same cost. This is to
justify Jellyfish’s claim of supporting a larger number of
servers using the same equipment as the fat-tree, in terms
of capacity, path length, and resilience simultaneously.

S Routing & Congestion Control

While the above experiments establish that Jellyfish
topologies have high capacity, it remains unclear whether
this potential can be realized in real networks. There are
two layers which can affect performance in real deploy-
ments: routing and congestion control. In our exper-
iments with various combinations of routing and con-
gestion control for Jellyfish (§5.1), we find that stan-
dard ECMP does not provide enough path diversity for
Jellyfish, and to utilize the entire capacity we need to
also use longer paths. We then provide in-depth results
for Jellyfish’s throughput and fairness using the best set-
ting found earlier—=k-shortest paths and multipath TCP
(§5.2). Finally, we discuss practical strategies for deploy-
ing k-shortest-path routing (§5.3).

5.1 ECMP is not enough

Evaluation methodology: We use the simulator devel-
oped by the MPTCP authors for both Jellyfish and fat-
tree. For routing, we test: (a) ECMP (equal cost multi-
path routing; We used 8-way ECMP, but 64-way ECMP
does not perform much better, see Fig. 9), a standard
strategy to distribute flows over shortest paths; and (b)
k-shortest paths routing, which could be useful for Jelly-
fish because it can utilize longer-than-shortest paths. For
k-shortest paths, we use Yen’s Loopless-Path Ranking al-
gorithm [2, 46] with k = 8 paths. For congestion control,
we test standard TCP (1 or 8 flows per server pair) and
the recently proposed multipath TCP (MPTCP) [44], us-
ing the recommended value of 8 MPTCP subflows. The
traffic model continues to be a random permutation at the
server-level, and as before, for the fat-tree comparisons,
we build Jellyfish using the same switching equipment as
the fat-tree.

Summary of results: Table 1 shows the average per
server throughput as a percentage of the servers’ NIC rate
for two sample Jellyfish and fat-tree topologies under dif-
ferent routing and load balancing schemes. We make two
observations: (1) ECMP performs poorly for Jellyfish,
not providing enough path diversity. For random permu-
tation traffic, Fig. 9 shows that about 55% of links are
used by no more than 2 paths under ECMP; while for 8-
shortest path routing, the number is 6%. Thus we need to
make use of k-shortest paths. (2) Once we use k-shortest
paths, each congestion control protocol works as least as
well for Jellyfish as for the fat-tree.

The results of Table 1 depend on the oversubscrip-
tion level of the network. In this context, we attempt
to match fat-tree’s performance given the routing and
congestion control inefficiencies. We found that Jelly-
fish’s advantage slightly reduces in this context com-
pared to using idealized routing as before: In compar-
ison to the same-equipment fat-tree (686 servers), now
we can support, at same or higher performance, 780
servers (i.e., 13.7% more that the fat-tree) with TCP, and
805 servers (17.3% more) with MPTCP. With ideal rout-
ing and congestion control, Jellyfish could support 874
servers (27.4% more). However, as we show quanti-
tatively in §5.2, Jellyfish’s advantage improves signifi-
cantly with scale. At the largest scale we could simulate,
Jellyfish supports 3,330 servers to the fat-tree’s 2,662 —
a > 25% improvement (after accounting for routing and
congestion control inefficiencies).

5.2 k-Shortest-Paths With MPTCP

The above results demonstrate using one representative
set of topologies that using k-shortest paths with MPTCP
yields higher performance than ECMP/TCP. In this sec-

18 -

8 Shortest Paths e
64-way ECMP
8-way ECMP ——

16 - B4-way ECMP s
14 L
12

10 |

Distinct Paths Link is on
(o]
T

o N A O
T

0 500 1000 1500

Rank of Link

2000 2500 3000

Figure 9: ECMP does not provide path diversity for Jelly-
fish: Inter-switch link’s path count in ECMP and k-shortest-
path routing for random permutation traffic at the server-level
on a typical Jellyfish of 686 servers (built using the same equip-
ment as a fat-tree supports 686 servers). For each link, we
count the number of distinct paths it is on. Each network cable
is considered as two links, one for each direction.

Congestion Fat-tree (686 svrs)| Jellyfish (780 svrs)
control ECMP [ECMP[8-shortest paths
TCP 1 flow 48.0% 57.9% 48.3%
TCP 8 flows 92.2% 73.9% 92.3%
MPTCP 8 subflows 93.6% 76.4% 95.1%

Table 1: Packet simulation results for different routing and
congestion control protocols for Jellyfish (780 servers) and
a same-equipment fat-tree (686 servers). Results show the
normalized per server average throughput as a percentage of
servers’ NIC rate over 5 runs. We did not simulate the fat-tree
with 8-shortest paths because ECMP is strictly better, and eas-
ier to implement in practice for the fat-tree.

5 1
5
o 038
=)
o
E 0.6
B8 04
N
g o2
S : : : [
=z 0
70 165 335 600 960
#Servers

Jellyfish (CPLEX) mmmmm
Jellyfish (Packet-level) ===

Figure 10: Simple k-shortest path forwarding with MPTCP
exploits Jellyfish’s high capacity well: We compare the
throughput using the same Jellyfish topology with both opti-
mal routing, and our simple routing mechanism using MPTCP,
which results in throughput between 86% — 90% of the optimal
routing in each case. Results are averaged over 10 runs.

tion we measure the efficiency of k-shortest path routing
with MPTCP congestion control against the optimal per-
formance (presented in §4), and later make comparisons
against fat-trees at various sizes.

10

3500
Jellyfish (Packet-level)

—a—
Fat-tree (Packet-level) «-@--

3000
2500
2000
1500

1000

#Servers at Full Throughput

14000

0 2000

4000
Equipment Cost [Total #Ports] Using Identical Equipment

6000 8000 10000 12000

Figure 11: Jellyfish supports a larger number of servers
(>25% at the largest scale shown, with an increasing trend)
than the same-equipment fat-tree at the same (or higher)
throughput, even with inefficiencies of routing and congestion
control accounted for. Results are averages over 20 runs for
topologies smaller than 1,400 servers, and averages over 10
runs for larger topologies.

Routing and Congestion Control Efficiency: The re-
sult in Fig. 10 shows the gap between the optimum per-
formance, and the performance realized with routing
and congestion control inefficiencies. At each size, we
use the same slightly oversubscribed!® Jellyfish topol-
ogy for both setups. In the worst of these comparisons,
Jellyfish’s packet-level throughput is at ~86% of the
CPLEX optimal throughput. (In comparison, the fat-
tree’s throughput under MPTCP/ECMP is 93-95% of
its optimum.) There is a possibility that this gap can
be closed using smarter routing schemes, but neverthe-
less, as we discuss below, Jellyfish maintains most of
its advantage over the fat-tree in terms of the number of
servers supported at the the same throughput.

Fat-tree Throughput Comparison: To compare Jel-
lyfish’s performance against the fat-tree, we first find
the average per-server throughput a fat-tree yields in the
packet simulation. We then find (using binary search)
the number of servers for which the average per-server
throughput for the comparable Jellyfish topology is ei-
ther the same, or higher than the fat-tree; this is the same
methodology applied for Table 1. We repeat this exercise
for several fat-tree sizes. The results (Fig. 11) are similar
to those in Fig. 2(c), although the gains of Jellyfish are
reduced marginally due to routing and congestion con-
trol inefficiencies. Even so, at the maximum scale of our
experiment, Jellyfish supports 25% more servers than the
fat-tree (3,330 in Jellyfish, versus 2,662 for the fat-tree).
We note however, that even at smaller scale (for instance,
496 servers in Jellyfish, to 432 servers in the fat-tree) the
improvement can be as large as ~15%.

10 An undersubscribed network may simply show 100% throughput,
masking some of the routing and transport inefficiency.

Jellyfish +—g—
0.98 + Fat-tree @
2
2 097
(=]
3 09|
£ Using Identical
5 oot Esmgmeenr}uca
8 : l/ quip
'(—é 0.94 + .
oo kY
5 093} 'f
2 ~ e §
0.92 |
0.91 L i i i i i i
0 500 1000 1500 2000 2500 3000 3500

#Servers

Figure 12: The packet simulation’s throughput results for Jel-
lyfish show similar stability as the fat-tree. (Note that the y-axis
starts at 91% throughput.) Average, minimum and maximum
throughput-per-server values are shown. The data plotted is
from the same experiment as Fig. 11. Jellyfish has the same or
higher average throughput as the fat-tree while supporting a
larger number of servers. Each Jellyfish data-point uses equip-
ment identical to the closest fat-tree data-point to its left (as
highlighted in one example).

We show in Fig. 12, the stability of our experiments by
plotting the average, minimum and maximum through-
put for both Jellyfish and the fat-tree at each size, over
20 runs (varying both topologies and traffic) for small
sizes and 10 runs for sizes >1,400 servers.

Fairness: We evaluate how flow-fair the routing and
congestion control is in Jellyfish. We use the packet sim-
ulator to measure each flow’s throughput in both topolo-
gies and show in Fig. 13, the normalized throughput per
flow in increasing order. Note that Jellyfish has a larger
number of flows because we make all comparisons using
the same network equipment and the larger number of
servers supported by Jellyfish. Both the topologies have
similarly good fairness; Jain’s fairness index [25] over
these flow throughput values for both topologies: 0.991
for the fat-tree and 0.988 for Jellyfish.

5.3 Implementing k-Shortest-Path Routing

In this section, we discuss practical possibilities for
implementing k-shortest-paths routing. For this, each
switch needs to maintain a routing table containing for
each other switch, k shortest paths.

OpenFlow [30]: OpenFlow switches can match end-to-
end connections to routing rules, and can be used for
routing flows along pre-computed k-shortest paths. Re-
cently, Devoflow [35] showed that OpenFlow rules can
be augmented with a small set of local routing actions
for randomly distributing load over allowed paths, with-
out invoking the OpenFlow controller.

SPAIN [36]: SPAIN allows multipath routing by us-

5
Qo
=]
D
=
<
=
=
2
o
[
Jellyfish —8—
0.4E i i . | Fat-treeI —- :
0 50 100 150 200 550 200

Rank of Flow

Figure 13: Both Jellyfish and the fat-tree show good flow-
fairness: The distribution of normalized flow throughputs in
Jellyfish and fat-tree is shown for one typical run. After the few
outliers (shown with points), the plot is virtually continuous
(the line). Note that Jellyfish has more flows because it sup-
ports a higher number of servers (at same or higher per-server
throughput). Jain’s fairness index for both topologies is ~99%.

ing VLAN support in commodity off-the-shelf switches.
Given a set of pre-computed paths, SPAIN merges these
paths into multiple trees, each of which is mapped to
a separate VLAN. SPAIN supports arbitrary topologies,
and can enable use of k-shortest path routing in Jellyfish.

MPLS [40]: One could set up MPLS tunnels between
switches such that all the pre-computed k-shortest paths
between a switch pair are configured to have the same
cost. This would allow switches to perform standard
equal-cost load balancing across paths.

6 Physical Construction and Cabling

Key considerations in data center wiring include:

o Number of cables: Each cable represents both a
material and a labor cost.

o Length of cables: The cable price/meter is $5-6 for
both electrical and optical cables, but the cost of an
optical transceiver can be close to $200 [37]. We
limit our interest in cable length to whether or not a
cable is short enough, i.e., <10 meters in length [17,
26], for use of an electrical cable.

e Cabling complexity: Will Jellyfish awaken the
dread spaghetti monster? Complex and irregular ca-
bling layouts may be hard to wire and thus suscepti-
ble to more wiring errors. We will consider whether
this is a significant factor. In addition, we attempt
to design layouts that result in aggregation of cables
in bundles, in order to reduce manual effort (and
hence, expense) for wiring.

In the rest of this section, we first address a common
concern across data center deployments: handling wiring

errors (§6.1). We then investigate cabling Jellyfish in two
deployment scenarios, using the above metrics (number,
length and complexity of cabling) to compare against
cabling a fat-tree network. The first deployment sce-
nario is represented by small clusters (~1,000 servers);
in this category we also include the intra-container clus-
ters for ‘Container Data Centers’ (CDC)!!' (§6.2). The
second deployment scenario is represented by massive-
scale data centers (§6.3). In this paper we only analyze
massive data centers built using containers, leaving more
traditional data center layouts to future work.'?

6.1 Handling Wiring Errors

We envision Jellyfish cabling being performed using a
blueprint automatically generated based on the topology
and the physical data center layout. The blueprint is then
handed to workers to connect cables manually.

While some human errors are inevitable in cabling,
these are easy to detect and fix. Given Jellyfish’s sloppy
topology, a small number of miswirings may not even re-
quire fixing in many cases. Nevertheless, we argue that
fixing miswirings is relatively inexpensive. For example,
the labor cost of cabling is estimated at ~10% of total
cabling cost [37]. With a pessimistic estimate where the
total cabling cost is 50% of the network cost, the cost of
fixing (for example) 10% miswirings would thus be just
0.5% of the network cost. We note that wiring errors can
be detected using a link-layer discovery protocol [32].

6.2 Small Clusters and CDCs

Small clusters and CDCs form a significant section of the
market for data centers, and thus merit separate consider-
ation. In a 2011 survey [15] of 300 US enterprises (with
revenues ranging from $1B-$40B) which operate data
centers, 57% of data centers occupy between 5,000 and
15,000 square feet; and 75% have a power load <2MW,
implying that these data centers house a few thousand
servers [13]. As our results in §4.1 show, even at a few
hundred servers, cost-efficiency gains from Jellyfish can
be significant (~20% at 1,000 servers). Thus, it is useful
to deploy Jellyfish in these scenarios.

We propose a cabling optimization (along similar lines
as the one proposed in [6]). The key observation is
that in a high-capacity Jellyfish topology, there are more
than twice as many cables running between switches than
from servers to switches. Thus, placing all the switches

11 As early as 2006, The Sun Blackbox [3] promoted the idea of using
shipping containers for data centers. There are also new products in the
market exploiting similar physical design ideas [4, 5, 24].

12The use of container-based data centers seems to be an industry
trend, with several players, Google and Microsoft included, already
having container-based deployments [17].

12

in close proximity to each other reduces cable length,
as well as manual labor. This also simplifies the small
amounts of rewiring necessary for incremental expan-
sion, or for fixing wiring errors.

Number of cables: Requiring fewer network switches
for the same server pool also implies requiring fewer ca-
bles (15 —20% depending on scale) than a fat-tree. This
also implies that there is more room (and budget) for
packing more servers in the same floor space.

Length of cables: For small clusters, and inside CDC
containers using the above optimization, cable lengths
are short enough for electrical cables without repeaters.

Complexity: For a few thousand servers, space equiva-
lent to 3-5 standard racks can accommodate the switches
needed for a full bisection bandwidth network (using
available 64-port switches). These racks can be placed
at the physical center of the data center, with aggregate
cable bundles running between them. From this ‘switch-
cluster’, aggregate cables can be run to each server-rack.
With this plan, manual cabling is fairly simple. Thus,
the nightmare cable-mess image a random graph network
may bring to mind is, at best, alarmist.

A unique possibility allowed by the assembly-line na-
ture of CDCs, is that of fabricating a random-connect
patch panel such that workers only plug cables from the
switches into the panel in a regular easy-to-wire pattern,
and the panel’s internal design encodes the random inter-
connect. This could greatly accelerate manual cabling.

Whether or not a patch panel is used, the problems of
layout and wiring need to be solved only once at design
time for CDCs. With a standard layout and construction,
building automated tools for verifying and detecting mis-
wirings is also a one-time exercise. Thus, the cost of any
additional complexity introduced by Jellyfish would be
amortized over the production of many containers.

Cabling under expansion: Small Jellyfish clusters can
be expanded by leaving enough space near the ‘switch-
cluster’ for adding switches as servers are added at the
periphery of the network. In case no existing switch-
cluster has room for additional switches, a new clus-
ter can be started. Cable aggregates run from this new
switch-cluster to all new server-racks and to all other
switch-clusters. We note that for this to work with only
electrical cabling, the switch-clusters need to be placed
within 10 meters of each other as well as the servers.
Given the constraints the support infrastructure already
places on such facilities, we do not expect this to be a
significant issue.

As discussed before, the Jellyfish expansion procedure
requires a small amount of rewiring. The addition of ev-
ery two network ports requires two cables to be moved
(or equivalently, one old cable to be disconnected and
two new cables to be added), since each new port will

be connected to an existing port. The cables that need to
be disconnected and the new cables that need to be at-
tached can be automatically identified. Note that in the
‘switch-cluster’ configuration, all this activity happens
at one location (or with multiple clusters, only between
these clusters). The only cables not at the switch-cluster
are the ones between the new switch and the servers at-
tached to it (if any). This is just one cable aggregate.

We note that the CDC usage may or may not be geared
towards incremental expansion. Here the chief utility of
Jellyfish is its efficiency and reliability.

6.3 Jellyfish in Massive-Scale Data Centers

We now consider massive scale data centers built by
connecting together multiple containers of the type de-
scribed above. In this setting, as the number of containers
grows, most Jellyfish cables are likely to be between con-
tainers. Therefore, inter-container cables in turn require
expensive optical connectors, and Jellyfish can result in
excessive cabling costs compared to a fat-tree.

However, we argue that Jellyfish can be adapted to
wire massive data centers with lower cabling cost than a
fat-tree, while still achieving higher capacity and accom-
modating a larger number of servers. For cabling the fat-
tree in this setting, we apply the layout optimization sug-
gested in [6], i.e., make each fat-tree ‘pod’ a container,
and divide the core-switches among these pods equally.
With this physical structure, we can calculate the num-
ber of intra-container cables (from here on referred to as
‘local’) and inter-container cables (‘global’) used by the
fat-tree. We then build a Jellyfish network placing the
same number of switches as a fat-tree pod in a container,
and using the same number of containers. The result-
ing Jellyfish network can be seen as a 2-layered random
graph—a random graph within each container, and a ran-
dom graph between containers. We vary the number of
local and global connections to see how this affects per-
formance in relation to the unrestricted Jellyfish network.

Note that with the same switching equipment as the
fat-tree, Jellyfish networks would be overprovisioned if
we used the same numbers of servers. To make sure that
any loss of throughput due to our cable-optimization is
clearly visible, we add a larger number of servers per
switch to make Jellyfish oversubscribed.

Fig. 14 plots the capacity (average server throughput)
achieved for 4 sizes'> of 2-layer Jellyfish, as we vary
the number of local and global connections, while keep-
ing the total number of connections constant for a topol-
ogy. Throughput is normalized to the corresponding un-
restricted Jellyfish. The throughput drops by <6% when

B3These are very far from massive scale, but these simulations are
directed towards observing general trends. Much larger simulations
are beyond our simulator’s capabilities.

13

1‘""'{*"-1
BE& 09
25
g3 08
=
%E 0.7
=0
ag 0.6 \§.
SE 05 160 Servers < a
35 375 Servers —@— %
Ego 041 720 Servers ssedees “
F 0 L 980 Servers —A— N
. 0 01 02 03 04 05 06 07 08 09

Fraction of Local (in-pod) Connections

Figure 14: Localization of Jellyfish random links is a promis-
ing approach to tackle cabling for massive scale data centers:
As links are restricted to be more and more local, the network
capacity decreases (as expected). However, when 50% of the
random links for each switch are constrained to remain inside
the pod, there is <3% loss of throughput.

60% of the network connections per switch are ‘local-
ized’. The percentage of local links for the equivalent
fat-tree is 53.6%. Thus, Jellyfish can achieve a higher de-
gree of localization, while still having a higher capacity
network; recall that Jellyfish is 27% more efficient than
the fat-tree at the largest scale (§4.1). The effect of cable
localization on throughput was similar across the sizes
we tested. For the fat-tree, the fraction of local links
(conveniently given by 0.5(1 + 1/k) for a fat-tree built
with k-port switches) decreases marginally with size.

Complexity: Building Jellyfish over switches dis-
tributed uniformly across containers will, with high prob-
ability, result in cable assemblies between every pair of
containers. A 100,000 server data center can be built
with ~40 containers. Even if all ports (except those
attached to servers) from each switch in each container
were connected to other containers, we could aggregate
cables between each container-pair leaving us with ~800
such cable assemblies, each with fewer than 200 cables.
With the external diameter of a I0GBASE-SR cable be-
ing only 245um, each such assembly could be packed
within a pipe of radius <lem. Of course, with higher
over-subscription at the inter-container layer, these num-
bers could decrease substantially.

Cabling under expansion: In massive-scale data cen-
ters, expansion can occur through addition of new con-
tainers, or expansion of containers (if permissible). Lay-
ing out spare cables together with the aggregates between
containers is helpful in scenarios where a container is ex-
panded. When a new container is added, new cable ag-
gregates must be laid out to every other container. Patch
panels can again make this process easier by exposing the
ports that should be connected to the other containers.

7

Conclusion

We argue that random graphs are a highly flexible archi-
tecture for data center networks. They represent a novel
approach to the significant problems of incremental and
heterogeneous expansion, while enabling high capacity,
short paths, and resilience to failures and miswirings.

We thank Chandra Chekuri, Indranil Gupta, Gianluca
Tannaccone, Steven Lumetta, Sylvia Ratnasamy, Marc
Snir, and the anonymous reviewers for helpful com-
ments; Andy Curtis for providing code for bisection
bandwidth calculation, and sharing LEGUP topologies
for comparison; and the MPTCP authors for sharing their
simulator. This work was supported in part by National
Science Foundation grant CNS 10-40396.

References

[1]

[2]

[3

[t}

[8

[t

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

CPLEX Linear Program Solver. http://www-01.
ibm.com/software/integration/optimization/
cplex-optimizer/.

An implementation of k-shortest path algorithm. http://code.
google.com/p/k-shortest-paths/.

Project blackbox. http://www.sun.com/emrkt/blackbox/
story. jsp.

Rackable systems. ICE Cube modular data center. http://www.
rackable.com/products/icecube.aspx.

SGI ICE Cube Air expandable line of modular data centers.
http://sgi.com/products/data_center/ice_cube_air.
M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commod-
ity data center network architecture. In SIGCOMM, 2008.

L. N. Bhuyan and D. P. Agrawal. Generalized hypercube and
hyperbus structures for a computer network. IEEE Transactions
on Computers, 1984.

B. Bollobés. The isoperimetric number of random regular graphs.
Eur. J. Comb., 1988.

B. Bollobds. Random graphs, 2nd edition. 2001.

B. Bollobas and W. F. de la Vega. The diameter of random regular
graphs. In Combinatorica 2, 1981.

A. Broder and E. Shamir. On the second eigenvalue of random
regular graphs. In FOCS, 1987.

F. Comellas and C. Delorme. The (degree, diameter) problem for
graphs. http://maite71.upc.es/grup_de_grafs/table_
g.html/.

A. R. Curtis, T. Carpenter, M. Elsheikh, A. Lopez-Ortiz, and
S. Keshav. REWIRE: an optimization-based framework for un-
structured data center network design. In INFOCOM, 2012.
A.R. Curtis, S. Keshav, and A. Lopez-Ortiz. LEGUP: using het-
erogeneity to reduce the cost of data center network upgrades. In
ACM CoNEXT, 2010.

Digital Reality Trust. What is driving the us market?
//goo.gl/qiaRY, 2001.

Facebook. Facebook to expand Prineville data center. http:
//goo.gl/fJAoU.

N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Sub-
ramanya, Y. Fainman, G. Papen, and A. Vahdat. Helios: A hybrid
electrical/optical switch architecture for modular data centers. In
SIGCOMM, 2010.

A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VL2: a scal-
able and flexible data center network. In SIGCOMM, 2009.

C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,
and S. Lu. BCube: A high performance, server-centric network
architecture for modular data centers. In SIGCOMM, 2009.

http:

14

[20]

[21]
[22]

[23]
[24]
[25]

[26]
[27]
[28]
[29]

[30]

[31]

[32]
[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu. DCell: a
scalable and fault-tolerant network structure for data centers. In
SIGCOMM, 2008.

L. Gyarmati and T. A. Trinh. Scafida: A scale-free network in-
spired data center architecture. In SIGCOMM CCR, 2010.

J. Hamilton. Datacenter networks are in my way. http://goo.
gl/Ho6mA.

HP. HP EcoPOD. http://goo.gl/8A0Ad.

HP. Pod 240a data sheet. http://goo.gl/axHPp.

R. K. Jain, D.-M. W. Chiu, and W. R. Hawe. A quantitative
measure of fairness and discrimination for resource allocation in
shared computer systems. Technical report, Digital Equipment
Corporation, 1984.

J. Kim, W. J. Dally, S. Scott, and D. Abts. Technology-driven,
highly-scalable dragonfly topology. ACM SIGARCH, 2008.

F. T. Leighton. Introduction to parallel algorithms and architec-
tures: Arrays, trees, hypercubes. 1991.

A. Licis. Data center planning, design and optimization: A global
perspective. http://goo.gl/Sfydq.

B. D. McKay and N. C. Wormald. Uniform generation of random
regular graphs of moderate degree. J. Algorithms, 1990.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Pe-
terson, J. Rexford, S. Shenker, and J. Turner. OpenFlow: enabling
innovation in campus networks. SIGCOMM CCR, 2008.

A. B. Michael, M. Nolle, and G. Schreiber. A message passing
model for communication on random regular graphs. In Interna-
tional Parallel Processing Symposium (IPPS), 1996.

Microsoft. Link layer topology discovery protocol. http://
goo.gl/bAcZ5.

R. Miller. Facebook now has 30,000 servers. http://goo.gl/
EGD2D.

R. Miller. Facebook server count: 60,000 or more. http://
goo.gl/79J4.

J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, A. R. Cur-
tis, and S. Banerjee. DevoFlow: cost-effective flow management
for high performance enterprise networks. In Hotnets, 2010.

J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. C. Mogul.
SPAIN: COTS data-center ethernet for multipathing over arbi-
trary topologies. In NSDI, 2010.

J. Mudigonda, P. Yalagandula, and J. Mogul. Taming the flying
cable monster: A topology design and optimization framework
for data-center networks. 2011.

R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat. Portland: A
scalable fault-tolerant layer 2 data center network fabric. In SIG-
COMM, 2009.

L. Popa, S. Ratnasamy, G. Iannaccone, A. Krishnamurthy, and
1. Stoica. A cost comparison of datacenter network architectures.
In ACM CoNEXT, 2010.

E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol Label
Switching Architecture. RFC 3031, 2001.

J.-Y. Shin, B. Wong, and E. G. Sirer. Small-world datacenters.
ACM Symposium on Cloud Computing (SOCC), 2011.

A. Singla, A. Singh, K. Ramachandran, L. Xu, and Y. Zhang.
Proteus: a topology malleable data center network. In HotNets,
2010.

G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki,
T. S. E. Ng, M. Kozuch, and M. Ryan. c-Through: Part-time
optics in data centers. In SIGCOMM, 2010.

D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley. Design,
implementation and evaluation of congestion control for Multi-
path TCP. In NSDI, 2011.

H. Wu, G. Lu, D. Li, C. Guo, and Y. Zhang. MDCube: a high
performance network structure for modular data center intercon-
nection. In ACM CoNEXT, 2009.

J. Yen. Finding the k shortest loopless paths in a network. Man-
agement Science, 1971.

http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://code.google.com/p/k-shortest-paths/
http://code.google.com/p/k-shortest-paths/
http://www.sun.com/emrkt/blackbox/story.jsp
http://www.sun.com/emrkt/blackbox/story.jsp
http://www.rackable.com/products/icecube.aspx
http://www.rackable.com/products/icecube.aspx
http://sgi.com/products/data_center/ice_cube_air
http://maite71.upc.es/grup_de_grafs/table_g.html/
http://maite71.upc.es/grup_de_grafs/table_g.html/
http://goo.gl/qiaRY
http://goo.gl/qiaRY
http://goo.gl/fJAoU
http://goo.gl/fJAoU
http://goo.gl/Ho6mA
http://goo.gl/Ho6mA
http://goo.gl/8A0Ad
http://goo.gl/axHPp
http://goo.gl/Sfydq
http://goo.gl/bAcZ5
http://goo.gl/bAcZ5
http://goo.gl/EGD2D
http://goo.gl/EGD2D
http://goo.gl/79J4
http://goo.gl/79J4

	1 Introduction
	2 Related Work
	3 Jellyfish Topology
	4 Jellyfish Topology Properties
	4.1 Efficiency
	4.2 Flexibility
	4.3 Failure Resilience

	5 Routing & Congestion Control
	5.1 ECMP is not enough
	5.2 k-Shortest-Paths With MPTCP
	5.3 Implementing k-Shortest-Path Routing

	6 Physical Construction and Cabling
	6.1 Handling Wiring Errors
	6.2 Small Clusters and CDCs
	6.3 Jellyfish in Massive-Scale Data Centers

	7 Conclusion

