
Structured Comparative Analysis of Systems Logs

to Diagnose Performance Problems

Karthik Nagaraj Charles Killian Jennifer Neville

Purdue University

{knagara, ckillian, neville}@cs.purdue.edu

Abstract

Diagnosis and correction of performance issues in mod-

ern, large-scale distributed systems can be a daunting

task, since a single developer is unlikely to be familiar

with the entire system and it is hard to characterize the

behavior of a software system without completely under-

standing its internal components. This paper describes

DISTALYZER, an automated tool to support developer

investigation of performance issues in distributed sys-

tems. We aim to leverage the vast log data available from

large scale systems, while reducing the level of knowl-

edge required for a developer to use our tool. Specifi-

cally, given two sets of logs, one with good and one with

bad performance, DISTALYZER uses machine learning

techniques to compare system behaviors extracted from

the logs and automatically infer the strongest associa-

tions between system components and performance. The

tool outputs a set of inter-related event occurrences and

variable values that exhibit the largest divergence across

the logs sets and most directly affect the overall perfor-

mance of the system. These patterns are presented to the

developer for inspection, to help them understand which

system component(s) likely contain the root cause of the

observed performance issue, thus alleviating the need for

many human hours of manual inspection. We demon-

strate the generality and effectiveness of DISTALYZER

on three real distributed systems by showing how it dis-

covers and highlights the root cause of six performance

issues across the systems. DISTALYZER has broad appli-

cability to other systems since it is dependent only on the

logs for input, and not on the source code.

1 Introduction

Modern, large-scale distributed systems are extremely

complex, not only because the software in each node

in the distributed system is complex, but because inter-

actions between nodes occur asynchronously, network

message delays and orderings are unpredictable, and

nodes are in heterogeneous environments, uncoupled

from each other and generally unreliable. Compounding

this is the fact that the software is typically developed by

teams of programmers, often relying on external com-

ponents and libraries developed independently, such that

generally no one developer is fully aware of the complex

interactions of the many components of the software.

Transmission [35] and HBase [20] exemplify the scale

of this type of software development. Transmission is an

open-source implementation of BitTorrent. In 2008, after

three years of development, it became the default BitTor-

rent client for Ubuntu and Fedora, the two most popular

Linux distributions. In the last two years alone, 15 devel-

opers committed changes to the codebase, not counting

patches/bugs submitted by external developers. HBase is

an open-source implementation of BigTable [5], depend-

ing on the Hadoop [19] implementation of the Google

File System [17]. HBase has grown very popular and is

in production use at Facebook, Yahoo!, StumbleUpon,

and Twitter. HBase’s subversion repository has over a

million revisions, with 21 developers from multiple com-

panies contributing over the last two years.

Given the activity in these projects, it not surpris-

ing that, in our experiments, we observed performance

problems, despite their mature status. In systems with

many independent developers, large user-bases with dif-

fering commercial interests, and a long history, diagnosis

and correction of performance issues can be a daunting

task—since no one developer is likely to be completely

familiar with the entire system. In the absence of clear

error conditions, manual inspection of undesirable be-

haviors remains a primary approach, but is limited by

the experience of the tester—a developer is more likely

to ignore occasional undesirable behavior if they do not

have intimate knowledge of the responsible subsystems.

Recent research on distributed systems has produced

several methods to aid debugging of these complex sys-

tems, such as execution tracing [13, 16, 31], replay de-

bugging [15], model checking [23, 24, 29], live property

testing [25], and execution steering [38]. However, these

methods either require either extensive manual effort, or

are automated search techniques focused on discovering

specific error conditions.

To address the challenge of debugging undesirable be-

haviors (i.e., performance issues), we focus on compar-

ing a set of baseline logs with acceptable performance to

another set with unacceptable behavior. This approach

aims to leverage the vast log data available from com-

plex, large scale systems, while reducing the level of

knowledge required for a developer to use our tool. The

state-of-the-art in debugging the performance of request

flows [2, 4, 6, 32] also utilizes log data; however, in con-

trast with this previous work, we focus on analyzing a

wider range of system behaviors extracted from logs.

This has enabled us to develop an analysis tool applica-

ble to more than simply request processing applications.

Other work in identifying problems in distributed sys-

tems from logs [37] is restricted to identifying anomalous

local problems, while we believe that poor performance

commonly manifests from larger implementation issues.

We present DISTALYZER, a tool to analyze logs of

distributed systems automatically through comparison

and identify components causing degraded performance.

More specifically, given two sets of logs with differing

performance (that were expected to have equivalent per-

formance), DISTALYZER outputs a summary of event oc-

currences and variable values that (i) most diverge across

the sets of logs, and (ii) most affect overall system per-

formance. DISTALYZER uses machine learning tech-

niques to automatically infer the strongest associations

between system components and performance. Contri-

butions of this paper include:

• An assistive tool, DISTALYZER, for the developer

to investigate performance variations in distributed

systems, requiring minimal additional log state-

ments and post processing.

• A novel algorithm for automatically analyzing sys-

tem behavior, identifying statistical dependencies,

and highlighting a set of interrelated components

likely to explain poor performance. In addition to

the highlighted results, DISTALYZER also provides

interactive exploration of the extended analysis.

• A successful demonstration of the application

of DISTALYZER to three popular, large scale

distributed systems–TritonSort [30], HBase &

Transmission–identifying the root causes of six per-

formance problems. In TritonSort, we analyzed a

recently identified performance variation—the Tri-

tonSort developers surmised DISTALYZER could

have saved them 1.5 days of debugging time. In

follow-up experiments on Transmission and HBase,

once we fixed the identified problems, their perfor-

mance was boosted by 45% and 25% respectively.

2 Instrumentation

DISTALYZER derives its analysis based on the data

extracted from logs of distributed systems executions.

Hence, we describe the process of obtaining and prepar-

ing the logs for analysis, before the actual design in § 3.

Applying our modeling to the logs of systems requires

that some amount of its meaning is provided to DIST-

ALYZER. Inherently, this is because we are not seeking

to provide natural language processing, but instead to an-

alyze the structure the logs represent. Xu et al. [37] have

considered the automatic matching of log statements to

source code, which requires tight coupling with pro-

gramming languages to construct abstract syntax trees.

In contrast, DISTALYZER aims to stay agnostic to the

source code by abstracting the useful information in the

logs. We describe this in more detail below.

The contributions of logging to debugging are so

deeply ingrained that systems typically are not successful

without a significant amount of effort expended in log-

ging infrastructures. DISTALYZER assumes that the col-

lection of logs has not affected the performance behav-

iors of interest in the system. This is a standard problem

with logging, requiring developers to spend much effort

toward efficient logging infrastructures. Logging infras-

tructures range from free text loggers like log4j [26], to

fully structured and meaningful logs such as Pip [31] and

XTrace [13]. Unfortunately, the common denominator

across logging infrastructures is not a precise structure

indicating the meaning of the logs.

Consider Pip [31], a logging infrastructure which pro-

vides log annotations indicating the beginning and end-

ing of a task, sending and receiving of messages, and

a separate log just as an FYI (a kind of catch-all log).

Every log also indicates a path identifier that the log be-

longs to, thus it is possible to construct path trees show-

ing dependencies between tasks within paths. This kind

of instrumentation has been leveraged by Sambasivan et

al. [32] to compare the path trees in systems logs. Unfor-

tunately, this detail of logging is neither sufficient (it does

not capture the instances of value logging, and does not

adequately handle tasks which belong to multiple flows),

nor is it widely available. A more commonly used log-

ging infrastructure, log4j, provides a much more basic

scheme - logs are associated with a “type,” timestamp,

priority, and free text string. It then remains to the devel-

oper to make sense of the logs, commonly using a brittle

set of log-processing scripts.

As a compromise between fully meaningful logs and

free-text logs, we work to find a middle-ground, which

can be applied to existing logs without onerous modifi-

cations to the system being investigated. Our insight is

that logs generally serve one of two purposes: event log

messages and state log messages.

2

Predictive

modeling

Collect

Logs
Log

Store

State

Event

Descriptive

modeling

Log files
Attention

Focussing

Feature

Creation

DISTALYZER

Figure 1: Four-step log comparison process in DISTALYZER leading up to a visual interface

Event log message. An event log message indicates that

some event happened at the time the log message

was generated. Most of the logging for Pip falls into

this category, in particular the start or end of tasks

or messages. Other examples of such logs include

logs that a particular method was called, branch of

code taken, etc. These logs are often most helpful

for tracing the flow of control with time between

different components of the system.

State log message. A state log message indicates that at

the time the log message was generated, the value

of some system variable is as recorded. Typically, a

state log message does not imply that the value just

became the particular value (that would instead be

an event log message), but merely that at the present

time it holds the given value. State log messages are

often printed out by periodically executed code, or

as debugging output called from several places in

the code. State log messages are often most helpful

for capturing snapshots of system state to develop a

picture of the evolution of a system.

Distinguishing state and event log messages is an im-

portant step, that allows us to tailor our modeling tech-

niques to treat each in kind. We will commonly refer to

these values as the Event Variables and the State Vari-

ables. A practical artifact of this approach is that we

can simply use the system’s existing infrastructure and

logging code to generate logs, and then write a simple

script to translate logs into state and event log messages

in a post-processing step (§ 4.1). Adopting this approach

makes it much easier to apply DISTALYZER to a wide

range of existing systems, and avoids extra logging over-

heads at runtime. Additionally, it is possible to inte-

grate our logging library into other logging infrastruc-

tures or code-generating toolkits that provide a distinc-

tion between state and event log messages, so that no

post-processing phase would be required. Furthermore,

this strategy allows the incorporation of external system

activity monitoring logs for a richer analysis.

3 Design

This section presents the design of DISTALYZER, an op-

erational tool capable of identifying salient differences

between sets of logs, with the aim of focusing the atten-

tion of the developer on aspects of the system that af-

fect overall performance and significantly contribute to

the observed differences in behavior. DISTALYZER in-

volves a multi-step analysis process as shown in Figure 1.

The input to the workflow is a set of logs with tagged

event and/or state log messages, separated by the devel-

oper into two classes C0 and C1 with different behav-

ior on some performance metric P (e.g., runtime). The

choice of performance metric can be easily determined

from Service Level Agreement (SLA) metrics. Some ex-

ample choices for separation of classes are as follows:

• Different versions of the same system

• Different requests in the same system

• Different implementations of the same protocol

• Different nodes in the same run

DISTALYZER uses machine learning methods to auto-

matically analyze the input data and learn the salient dif-

ferences between the two sets of logs, as well as the rela-

tionships among the system components. Further, DIST-

ALYZER identifies and presents to the developer (for in-

vestigation) the most notable aspects of the system likely

to contain the root cause of the observed performance

difference. Specifically the system involves the follow-

ing four components:

1. Feature Creation: A small set of event/state fea-

tures are extracted from each log instance (file) in

both classes to make the data more amenable for

automated analysis.

2. Predictive Modeling: The event/state variables are

analyzed with statistical tests to identify which fea-

tures distinguish the two classes of logs. This step

directs attention to the system components that are

the most likely causes of performance difference.

3. DescriptiveModeling: Within a single class of logs

(e.g., C0), the relationships among event/state vari-

ables are learned with dependency networks [21].

3

The learned models enhance the developer’s under-

standing of how aspects of the system interact and

helps to discard less relevant characteristics (e.g.,

background operations, randomness).

4. Attention Focusing: The outputs of steps 2 and 3

are combined to automatically identify a set of in-

terrelated variables that most diverge across the logs

and most affect overall performance (i.e., P). The

results are graphically presented to the developer for

investigation, not only indicating where to look for

performance bugs, but also insight into the system

itself, obviating the need for the developer to be an

expert at all system interactions.

We describe each of these components in more detail

below. We note that the user need not be aware of the in-

ternals of the statistical or machine learning techniques,

and is given an understandable graphical representation

of the variables likely to contain the root cause of per-

formance differences. With a clear understanding of the

root cause, the developer can spend more time on find-

ing a good fix for the performance bug. In Section 5 we

present results of using DISTALYZER to analyze Triton-

Sort (different versions), BigTable (different requests),

and BitTorrent (different implementations).

3.1 Feature creation

The workflow starts with extracting a handful of feature

summaries from the logs. The input is two sets of logsC0

andC1, classified by the developer according to a perfor-

mance metric of interest P. For example, the developer

may be interested in diagnosing the difference between

slow (C0) and fast (C1) nodes based on total runtime P.

DISTALYZER performs offline analysis on the logs, after

they have been extracted from the system execution. We

assume that a similar test environment was maintained

for both sets of logs, including workloads, physical node

setup, etc. However, it is not necessary that both classes

contain the same number of occurrences of a variable.

Also, the two classes are not required to have disjoint

non-overlapping values for P. The necessity for similar-

ity can be relaxed further under certain conditions (§ 7).

DISTALYZER begins by calculating features from vari-

ables extracted from the log instances. We refer to each

log instance as an instance. Each instance i contains

many event and state log messages, which first need to

be summarized into a smaller set of summary statistics

before analysis. The intuition behind summarizing is

that this reduces the complexity of the system execution

to a handful of features Xi, that are much less prone to

outliers, randomness and small localized discrepancies

in log statements. Since DISTALYZER aims to find the

source of overall performance problems (and not local-

ized problems as in [37]), a coarse-grained set of features

provides a better representative of each instance than ev-

ery single value within that instance. A smaller set of

features are a lesser burden on the developer, but a richer

set provides better coverage for different types of prob-

lems. DISTALYZER aims at striking the right balance be-

tween these objectives through our experiences and intu-

ition debugging distributed systems. DISTALYZER con-

structs a set of summary statistics X from the timestamps

of event log messages and the values of numeric vari-

ables for state log messages, as described below.

Event Features The timing of system events is often

closely related to overall performance, as it can identify

the progress of system components, the presence or ab-

sence of noteworthy events, or the occurrence of race

conditions between components. We consider a set of

event variables Y e that are recorded in the log instances

with timestamps. For example, an instance may refer to

a node downloading a file in BitTorrent, where the event

log may contain several recv bt piece events over time.

To summarize the timing information associated with

a particular type of event Y e in instance i, DISTALYZER

constructs features that record the time associated with

the first, median and last occurrence in Y e
i . (All times-

tamps within a log instance i are normalized based on

the start time). Specifically, X e
i.1 = min(Ye

i [t]), X e
i.2 =

median(Ye
i [t]), X

e
i.3 = max(Ye

i [t]). In addition, a fourth

feature is constructed that counts the total number of oc-

currences of Y e, X e
i.4 = |Ye

i |. Our experience debugging

systems suggests that these occurrences capture some of

the most useful, yet easily comprehensible, characteris-

tics of system progress. They most commonly indicate

issues including but not limited to startup delays, overall

slowdown and straggling finishes.

In addition to the above features, which consider the

absolute timing in instances, we consider the same set

of features for relative times. Since the instances from

C0 and C1 may have different total times, normalizing

the times within each instance to the range [0,1] before

computing the features will yield a different perspective

on event timings. For example, in BitTorrent, it is useful

to know that the last outgoing connection was made at

300sec, but for debugging it may be more important to

know that it occurred at 99% of the runtime when com-

paring to another instance where the last connection was

made at 305sec, but earlier at 70% of its total runtime.

In this case, the divergence in the relative event times is

more distinguishing. The top half of Table 1 outlines the

set of event feature types considered by DISTALYZER.

State Features It is common for some system state

variables to be directly or inversely proportional to the

performance, and their divergence could be equally im-

portant for diagnosis. We consider a set of state variables

Y s that maps to a list of values with their logged times-

4

tamps in an instance. For example, in BitTorrent, one

of the state variables logged is the download speed of a

node, which is inversely proportional to the total runtime

performance. DISTALYZER does not attempt to under-

stand the meaning behind the variables or their names,

but systematically searches for patterns in the values.

To summarize the information about a particular state

variable Y s in log i, we construct features that record the

minimum, average and maximum value in Y s
i . Specifi-

cally, X s
i.1 = min(Ys

i), X
s
i.2 = mean(Ys

i), X
s
i.3 = max(Ye

i).
In addition, to understand the variable values as the sys-

tem progresses and also give the values context, DIST-

ALYZER constructs features that record the variable val-

ues at one-fourth, half and three-fourth of the run. Simi-

lar to the events, the relative versions of these snapshots

are also considered as feature types. The complete list of

state feature types is listed in Table 1.

Event times

{First, Median, Last}
× {Absolute, Relative} occurrences

{Count}
State values

{Minimum, Mean, Maximum, Final}
{One-fourth, Half, Three-fourth}

× {Absolute, Relative} snapshots

Table 1: Feature types extracted from the system

Cost of Performance Differences Our analysis fo-

cuses on leveraging the characteristics of the average

performance difference between the two classes, thus

naı̈ve use of the instances in statistical techniques will

fail to distinguish performance in the tails of the dis-

tribution. For example, in a class of bad performance,

there may be 2-3% of instances that suffer from signif-

icantly worse performance. Although these cases are

relatively infrequent, the high cost of incurring such ex-

treme bad performance makes analysis of these instances

more important. DISTALYZER automatically detects a

significant number of abnormally high/low values of the

performance metric, and flags this to the developer for

consideration before further analysis. Specifically, DIST-

ALYZER identifies a “heavy” tail for P when the fraction

of Pi outside P̄± 3σP is larger than 1.1% (i.e., 4× the

expected fraction in a normal distribution). To more ex-

plicitly consider these instances in the modeling, we can

re-weight the instances according to a cost function (see

e.g., [12]) that reflects the increased importance of the

instances in the tail. Section 5.2.1 discusses this further.

3.2 Predictive Modeling

In the next stage of the workflow, DISTALYZER uses

statistical tests to identify the features that most distin-

guish the two sets of logs C0 and C1. Specifically, for

each event and state feature X described above (e.g.,

first(recv bt piece)), we consider the distribution of fea-

ture values for the instances in each class: XC0
and XC1

.

DISTALYZER uses t-tests to compare the two distribu-

tions and determine whether the observed differences are

significantly different than what would be expected if the

random variables were drawn from the same underlying

distribution (i.e., the means of XC0
and XC1

are equal). If

the t-test rejects the null hypothesis that the X̄C0
= X̄C1

,

then we conclude that the variable X is predictive, i.e.,

able to distinguish between the two classes of interest.

Specifically, we use Welch’s t-test [36], which is defined

for comparison of unpaired distributions of unequal vari-

ances. We use a critical value of p < 0.05 to reject

the null hypothesis and assess significance, adjusting for

multiple comparisons with a Bonferroni correction [11]

based on the total number of features evaluated.

Our use of t-tests is motivated by the fact that we want

to identify variables that distinguish the two classes on

average across many instances from the system. Previ-

ous work [32] has used Kolmogorov-Smirnov (KS) tests

to distinguish between two distributions of request flows.

In that work, the bulk of the two distributions are the

same and the KS test is used to determine whether there

are anomalous values in one of the two distributions. In

contrast, our work assumes that the log instances have

been categorized into two distinct classes based on de-

veloper domain knowledge. Thus the overlap between

distributions will be minimal if we can identify a vari-

able that is related to performance degradation in one of

the classes. In this circumstance, KS tests are too sensi-

tive (i.e., they will always reject the null hypothesis), and

t-tests are more suitable form of statistical test.

Given the features that are determined to be signifi-

cant, the magnitude of the t-statistic indicates the differ-

ence between the two distributions—a larger t-statistic

can be due to a larger difference in the means and/or

smaller variance in the two distributions (which implies

greater separation between the two classes). The sign of

the t-statistic indicates which distribution had a bigger

mean. Among the significant t-tests, we return a list of

significant variables ranked in descending order based on

the absolute sum of t-statistic over all features. This fa-

cilitates prioritized exploration on the variables that best

differentiate the two classes.

3.3 Descriptive Modeling

In the third component of the workflow, DISTALYZER

learns the relationships among feature values for each

class of logs separately. The goal of this component is to

identify salient dependencies among the variables within

a single class (i.e.,C0)—to help the developer understand

the relationships among aspects of the system for diag-

nosis and debugging, and to highlight the impact of di-

5

vergent variables on overall performance P. It is often

difficult to manually discover these relationships from

the code, because of large code bases. It is also possi-

ble that observed variation across the classes for a feature

is not necessarily related to performance. For example, a

timer period may have changed between the classes with-

out affecting the performance, and such a change can be

quickly ignored if the dependencies are understood.

Since we are interested in the overall associations be-

tween the features in one class, we move beyond pair-

wise correlations and instead estimate the joint distribu-

tion among the set of features variables. Specifically, we

use dependency networks (DNs) [21] to automatically

learn the joint distribution among the summary statistics

X and the performance variable P. This is useful to un-

derstand which sets of variables are inter-related based

on the feature values. We construct DNs for the event and

state features separately, and within each we construct

two DNs for each feature type (e.g., First.Absolute), one

for instances of class C0 and one for instances of C1.

DNs [21] are a graphical model that represents a joint

distribution over a set of variables. Consider the set of

variables X = (X1, ...,Xn) over which we would like to

model the joint distribution p(X)= p(X1, ...,Xn). Depen-

dencies among variables are represented with a directed

graph G = (V,E) and conditional independence is inter-

preted using graph separation. Dependencies are quanti-

fied with a set of conditional probability distributions P .

Each node vi ∈ V corresponds to an Xi ∈ X and is asso-

ciated with a probability distribution conditioned on the

other variables, p(xi|x−{xi}). The parents of node i are

the set of variables that render Xi conditionally indepen-

dent of the other variables (p(xi|pai) = p(xi|x−{xi})),
and G contains a directed edge from each parent node v j
to each child node vi ((v j,vi) ∈ E iff X j ∈ pai).

Both the structure and parameters of DNs are deter-

mined through learning the local CPDs. The DN learn-

ing algorithm learns a CPD for each variable Xi, condi-

tioned on the other variables in the data (i.e., X−{Xi}).

Any conditional learner can be used for this task (e.g.,

logistic regression, decision trees). The CPD is included

in the model as P(vi) and the variables selected by

the conditional learner form the parents of Xi (e.g., if

p(xi|{x− xi}) = αx j + βxk then PAi = {x j,xk}). If the

conditional learner is not selective (i.e., the algorithm

does not select a subset of the features), the DN will

be fully connected. To build understandable DNs, it is

thus desirable to use a selective learner. Since event and

state features have continuous values, we use Regression

Trees [10] as the conditional learner for the DNs, which

have an advantage over standard regression models in

that they are selective models.

Improvements The graphical visualization of the

learned DN are enhanced to highlight to the developer

(1) the divergence across classes (sizes of the nodes),

(2) the strength of associations among features (thickness

of edges), and (3) temporal dependencies among features

(direction of edges). Specifically, each feature (node) in

the DN is matched with its corresponding statistical t-test

value. Since the t-statistics reflect the amount of diver-

gence in the feature, across the two classes of logs, they

are used to size the nodes of the graph. Next, for the as-

sessment of relationship strength, we use an input param-

eter m for the regression tree that controls the minimum

number of training samples required to split a leaf node

in the tree and continue growing (i.e., a large value of

m leads to shorter trees because tree growth is stopped

prematurely). The dependencies identified in a shorter

tree are stronger because such variables are most corre-

lated with the target variable and affect a larger number

of instances. Thus, we weigh each edge by the value of

m for which the relationship is still included in the DN.

Finally, we augment the DN graphical representation to

include happens-before relationships among the features.

If a feature value Xi occurs before feature value X j in all

log instances, the edge between Xi and X j is drawn as

directed in the DN.

3.4 Attention Focusing

The final component of the workflow automatically iden-

tifies the most notable results to present to the user. The

goal of this component is to focus the developers atten-

tion on the most likely causes of the observed perfor-

mance differences. The predictive modeling component

identifies and presents a ranked list of features that show

significant divergences between the two classes of logs.

The divergence of a single feature is usually not enough

to understand both the root cause of performance prob-

lems and their impact on performance—because perfor-

mance problems often manifest as a causal chain, much

like the domino effect. The root cause feature initiates

the divergence and forces associated features (down the

causal chain) to diverge as well, eventually leading to

overall performance degradation.

Moreover, we noticed that divergences tend to increase

along a chain of interrelated features, thus the root cause

may not have the largest divergence (i.e., it may not ap-

pear at the top of the ranking). The descriptive mod-

eling component, on the other hand, identifies the as-

sociations among features within a single class of logs.

These dependencies can highlight the features that are

associated with the performance measure P. To iden-

tify likely causes for the performance difference, DIST-

ALYZER searches for a small set of features that are both

highly divergent and have strong dependencies with P.

The search procedure for finding the DN that highlights

this set is detailed below.

The set of DNs vary across three dimensions: (1) event

6

vs. state features, (2) feature type, e.g., First.Absolute,

and (3) the parameter value mmin used to learn the DN.

In our experiments, we set mmin to one-third of the

instances. The aim was to focus on the sufficiently

strong relationships among features, and this choice of

mmin consistently proved effective in all our case stud-

ies. However, mmin is included as a tunable parameter in

the system for the developer to vary and observe the im-

pact on the learned models. DISTALYZER identifies the

most notable DN graph for the state and event features

separately. Within a particular set, the attention-focusing

algorithm automatically selects the feature type with the

“best” scoring DN subgraph. To score the DN graphs,

they are first pruned for the smallest connected compo-

nent containing the node P, and then the selected com-

ponents are scored using Algorithm 1.

The intuition behind the DN subgraph score function

is that it should increase proportionally with both the

node weights (divergence across classes) and the edge

weights (strength of association). The node and edge

weights are normalized before computing this score. If

the developer is interested in biasing the search toward

features with larger divergences or toward stronger de-

pendencies, a parameter α can be used to moderate their

relative contributions in the score. The feature type with

the highest scoring connected component is selected and

returned to the developer for inspection.

Algorithm 1 Feature Scoring for Dependency Networks

Input: Log type: t (State / Event)

Input: Log class: c, Number of instances: N

Input: T-tests for all random variables in (t,c)
Input: DNs for all random variables in (t,c)
Input: Performance metric: P

feature graphs= {}
for Feature f : feature types(t) do

dn = DN f (mmin = N/3)

cc = Connected-component in dn containing P

tree = maxSpanningTree(cc) rooted at P

score= 0

for Node n: tree do

score += T f (n)∗ dn.weight(parentEdge(n))
end for

Append (score,cc) to feature graphs

end for

return feature graphs sorted by score

Section 5 describes the outputs of DISTALYZER for

real systems with observed performance problems. Apart

from the final output of the attention focusing algorithm,

the developer can also access a table of all the t-test val-

ues and dependency graphs for both the state and event

logs. This is shown as the final stage in Fig. 1.

setInstance (class , instance_id)

logStateValue (timestamp , name , value)

logEventTime (timestamp , name)

Figure 2: DISTALYZER logging API

4 Implementation

We describe some implementation details for transform-

ing text logs and developing DISTALYZER.

4.1 Processing Text Log messages

The BitTorrent implementations we considered were

implemented in C (Transmission) and Java (Azureus),

whereas HBase was implemented in Java. The Java im-

plementations used Log4j as their logger. Transmission

however used hand-coded log statements. HBase also

used Log4j, but did not have any logs in the request path.

For each implementation, we tailored a simple Perl

script to translate the text logs into a standard format that

DISTALYZER accepts. We maintained a simple internal

format for DISTALYZER. This format captures the times-

tamp, type of log, and the name of the log. For state logs,

the format additionally includes the value of the log. We

advocate adopting a similar procedure for analyzing any

new system implementation. A developer with domain

knowledge on the system should be able to write sim-

ple one-time text parsers to translate the most important

components of the log instances. To support the trans-

lation, we provide a simple library API for logging in a

format accepted by DISTALYZER (shown in Fig. 2). At

the beginning of each log instance, the translator calls

setInstance, which indicates the instance id and class la-

bel for subsequent log messages. It specifically requires

marking log messages as event or state logs at translation

time by calling one of the two log methods.

4.2 DISTALYZER

We implemented DISTALYZER in Python and C++ (4000

lines of code) using the scientific computing libraries

Numpy and Scipy. It is publicly available for down-

load [1]. The design allows adding or tweaking any of

the event or state features if required by the developer.

The Orange data mining library [10] provides regression

tree construction, and we implemented dependency net-

works and Algorithm 1 over that functionality. The DOT

language is used to represent the graphs, and Graphviz

generates their visualizations. The implementation of

DISTALYZER comprises of many embarrassingly paral-

lel sub-tasks and can easily scale on multiple cores and

machines enabling quick processing.

An interactive JavaScript based HTML interface is

presented to the developer along with the final output.

This immensely helps in trudging through the individ-

ual distributions of variables, and also to view the depen-

7

dency graphs of all features. This has been useful in the

post-root cause debugging process of finding a possible

fix for the issue. To a good extent, this also helps in un-

derstanding some of the non-performance related behav-

ioral differences between the logs. For example, in one

case of comparing different implementations, we noticed

that either system was preferring the use of different pro-

tocol messages to achieve similar goals.

5 Case Studies

Our goal in these case studies is to demonstrate that

DISTALYZER can be applied simply and effectively to a

broad range of existing systems, and that it simplifies the

otherwise complex process of diagnosing the root cause

of significant performance problems. We therefore ap-

plied DISTALYZER across three real, mature and popular

distributed systems implementations. Table 2 captures

the overview of the systems we considered. These sys-

tems represent different types of distributed system ap-

plications: distributed sorting, databases, and file trans-

fers. We identified previously unknown performance

problems with two of these systems, and worked with

an external developer to evaluate usefulness of DIST-

ALYZER in rediscovering a known performance bug with

another. In all cases, DISTALYZER significantly nar-

rowed down the space of possibilities without the devel-

oper having to understand all components. Due to space

constraints, we are unable to describe each action taken

by the developer leading to fixes for problems. A user

need not be aware of how the tool computes divergences

and dependencies to understand DISTALYZER’s outputs.

We describe the outputs of DISTALYZER and henceforth

straightforward debugging process.

5.1 TritonSort

TritonSort is a large scale distributed sorting system [30]

designed to sort up to 100TB of data, and holds four 2011

world records for 100TB sorting. We demonstrate the

effectiveness of DISTALYZER by applying it over logs

from a known bug. We obtained the logs of TritonSort

from the authors, taken from a run that suddenly exhib-

ited 74% slower performance on a day. After systemat-

ically and painstakingly exploring all stages of the sort

pipeline and running micro-benchmarks to verify exper-

imental scenarios, the authors finally fixed the problem.

They said that it took “the better part of two days to di-

agnose”. The debugging process for the same bug took

about 3-4hrs using DISTALYZER, which includes the im-

plementation time of a log parser in 100 lines of Python

code. A detailed analysis of the output of DISTALYZER

and the debugging process on these logs follows.

We had access to logs from a 34 node experiment from

the slow run that took 383 sec, and also a separate run

with the same workload that had a smaller runtime of 220

sec. These naturally fit into two classes of logs with one

instance per node, which could be compared to identify

the reason for the slowdown. These logs were collected

as a part of normal daily testing, meaning no additional

overhead for log collection. The logs contained both

event and state log messages that represented 8 different

stages of the system (Table 2). The performance metrics

were identified as Finish and runtime for the event and

state logs respectively, both indicating the time to com-

pletion. Fig. 3 shows the final dependency sub-graphs

output by DISTALYZER for both event and state logs.

To briefly explain the visualization generated by DIS-

TALYZER, nodes shown to be colored indicate the perfor-

mance metric and the font size is proportional to the mag-

nitude of the divergence. Edge thickness represents the

strength of the dependencies between variables. Directed

edges in event graphs indicate that a happens-before re-

lationship was identified between the two bounding vari-

ables, as described in Section 3.4.

The best dependency graph picked for events (Last

feature type) is shown in Fig. 3a, indicating that vari-

ables Writer 1 run and Writer 5 run are both significant

causes of Finish’s divergence. The final stage of Triton-

Sort’s pipeline is the writer which basically handles writ-

ing the sorted data to the disk. Each stage in TritonSort

is executed by multiple thread workers, denoted by the

number in the variable. This analysis attributes the root

cause of slow runs to highly divergent last occurrences

of the writer workers. A quick look at our distribution

comparison of the two sets of logs in both the writers in-

dicated that the slow run showed a difference of 90 sec.

The performance metric and the writer run distributions

also showed an outlier with a larger time than the rest.

Similarly, the DN picked for the states is shown in

Fig. 3b, where the performance metric Runtime is con-

nected to the subgraph consisting of the write queue size

of different writer workers. Although the figure was

scaled down for space constraints, it is clear that all the

nodes are highly divergent like the total performance.

To understand the reason of this divergence, we looked

at distributions for Absolute Half (best feature) to learn

that writers in the slow run were writing 83% more data.

Thus, we concluded the root cause as slow writers.

The actual bug had been narrowed down to the disk

writing stage, found to be slowing down earlier stages

of the pipeline. It was further noticed that a single node

was causing most of this delay, which eventually led the

authors to discover that the cache battery on that node

had disconnected. This resulted in the disks defaulting

to write-through and hence the poor performance. Both

the top ranked DNs output by DISTALYZER were useful

in identifying the bug. We shared these DNs and inter-

active t-test tables with the author of the paper, who had

8

System Implementation Types of Logs Volume Variables Issues Performance gain New issues

TritonSort State, Event 2.4 GB 227 1 n/a ×
HBase (BigTable) Event 2.5 GB 10 3 22%

√

Transmission (BitTorrent) State, Event 5.6 GB 40 2 45%
√

Table 2: Summary of performance issues identified by DISTALYZER

Writer_1 run

Finish

Writer_5 run

(a) Event

Runtime

Writer_0 write_size

Writer_2 write_size Writer_5 write_size

Writer_1 write_size

Writer_4 write_size Writer_7 write_size

Writer_6 write_size

(b) State

Figure 3: TritonSort dependency graphs indicating the root cause of the slow runtime

manually debugged this problem. The output root cause

was immediately clear to him, and he surmised “had we

had this tool when we encountered this problem, it would

have been a lot easier to isolate the difference between

the bad run and a prior good one”.

5.2 HBase

BigTable [5] is a large-scale storage system developed

by Google, holds structured data based on rows and

columns, and can scale efficiently to a very large num-

ber of rows and column content. HBase [20] is an open

source implementation of BigTable being developed by

the Apache foundation. It runs on top of Hadoop Dis-

tributed Filesystem (HDFS), and has been tuned and

tested for large scales and performance.

In our experiments, we noticed that “Workload D”

from the Yahoo Cloud Storage Benchmark (YCSB) [9]

had a notable heavy tail distribution of read request la-

tencies. The minimum and median latencies were 0 and

2 msec respectively. However the mean latency was 5.25

msec and the highest latency was as high as 1 second,

which is 3 orders of magnitude over the median. More-

over, more than 1000 requests have a latency greater than

100ms. To debug this performance bottleneck in HBase,

we would like to be able to compare these slow requests

to the huge bulk of fast ones. This task is infeasible

manually because these issues manifest only in large ex-

periments (1 million requests), and a sufficiently large

number of requests exhibit this behavior. We used DIS-

TALYZER to identify and debug three performance bugs

in HBase, two of which are described below in detail.

Experimental setup Our testbed consisted of 10 ma-

chines with 2.33GHz Intel Xeon CPUs, 8GB RAM and

1Gbps Ethernet connections running Linux 2.6.35.11.

Our HBase setup used a single master on a dedicated

machine, and 9 region servers (equivalent to BigTable

tablet servers), and 1 Million rows of 30kB each were

pre-loaded into the database. The YCSB client was run

on the same machine as the master (which was otherwise

lightly loaded), with 10 threads issuing parallel requests.

Each request is either a read or write for a single row

across all columns. “Workload D” consisted of 1 Million

operations out of which 5% were writes.

The HBase implementation had no log statements in

the request flow path, in spite of using the log4j logging

library that supports log levels. Therefore, we manually

added 10 event logs to the read request path, using the

request row key as the identifier. The request logs from

the different machines were gathered at the end of the run

and bucketed by request ID. The performance metric is

the event that signifies the last step in request processing

– HBaseClient.post get.

5.2.1 Fixing the slowest outliers

On applying DISTALYZER to the logs, it detected the

presence of a heavy tail in the performance metric (§ 3.1)

and suggested re-weighting the instances. The weight

function used to boost the instances with a large latency

was ⌊wlatency⌋. This is an exponential weight function

and we chose a value of w = 2(1/150), with the intuition

that instances with P < 150ms will have a weight of 1.

Fig. 4 shows the best DN of the root cause divergence.

All dependency edges are directed because all requests

follow the same flow path through the system. We identi-

fied two strong associations with large divergences lead-

ing up to the performance metric. Each of the chains is

considered independently, and we first chose to follow

the path leading from client.HTable.get lookup (the sec-

ond chain is discussed in § 5.2.2). This chain starts at

client.HTable.get which indicates that the HBase client

library received the request from YCSB, followed by

client.HTable.get lookup after completion of lookup for

the region server handling the given key.

This particular edge leads from a tiny variable to a

variable with significant divergence, and domain knowl-

9

HBaseClient.post_get

client.HTable.get

client.HTable.get_lookup

regionserver.HRegionServer.get

regionserver.HRegion

.get_results

regionserver.HRegion.get

regionserver.StoreScanner

_seek_end

regionserver.StoreScanner

_seek_start

Figure 4: DN for unmodified HBase events

HBaseClient.post_get

regionserver.HRegion.

get_results

regionserver.StoreScanner_

seek_end

Figure 5: DN for HBase after fixing lookups

edge indicates that no other event occur between them.

client.HTable.get is drawn small because it does not dif-

fer considerably between the two classes of logs. As it

is connected by a strong directed edge to the larger vari-

able, this indicates the two classes consistently differ be-

tween these two variables. In this context, the edge rep-

resents the operation where the client needs to lookup

the particular region server that manages the row, and

this is achieved by contacting the master who maintains

the mapping. The distributions of this particular event in

the t-test table shows that this event created gaps in the

request flow of the order of 1000 ms.

When we looked at the logs of the regionserver at the

same time these requests were being delayed, we noticed

that the server was throwing a NotServingRegionExcep-

tion. This is given by the server when it does not serve

a region that was specifically requested. This happens

when a region was moved to another server for load bal-

ancing. The client possesses a stale cache entry for the

region, and hence receives this exception. The client was

catching this exception as an IOException, and treated it

as a server failure. This triggers an exponential back off

procedure that starts at 1 sec. According to the Bigtable

description [5], the client immediately recognizes a stale

cache and retries with the master leading to an overhead

of just 2RTTs. We came up with a fix for this issue,

by treating the exceptions correctly and extracting the

NotServingRegionException, and retrying immediately.

This fixed the requests with latencies over 1 second.

5.2.2 Operating System effects

DISTALYZER was used again to analyze the new logs

to find the cause of the other delays. Since the distri-

bution skew was lesser than the threshold, the weight-

ing function was not used anymore. The best DN is

shown in Fig. 5, and closely resembles the right chain

of Fig. 4. In fact, this root cause was also identified

in the initial step as a second significant root cause,

but was not chosen for inspection. Here, the vari-

ables regionserver.StoreScanner seek end and region-

server.HRegion.get results chain up as the root cause.

The default Linux I/O scheduler since version 2.6.18 is

Completely Fair Queuing (CFQ), and it attempts to pro-

vide fairness between disk accesses from multiple pro-

cesses. It also batches requests to the disk controller

based on the priority, but it does not guarantee any com-

pletion times on disk requests. Since only the HBase

process was accessing the disk on these machines, we be-

lieved that this scheduling policy was not well suited to

random block reads requested by HBase. Another avail-

able I/O scheduler in Linux is the deadline scheduler,

which tries to guarantee a start service time for requests.

Hence the deadline scheduler would be more suited to-

ward latency sensitive operations.

After we applied the I/O scheduler change, we ran the

same experiment again to understand if this improved the

latencies of the slow requests. The number of slow re-

quests (≥100ms) reduced from 1200 to just under 500 –

a 60% reduction. Also, the mean latency for the work-

load dropped from 5.3ms to 4ms, which is a 25% overall

improvement in the read latency, confirming deadline is

appropriate for these workloads. Both the reported root

cause DNs were helpful in debugging HBase.

Further, we identified a problem with HBase’s TCP

networking code which affected latencies of requests, but

we do not discuss it here for brevity.

5.3 Transmission

Transmission implements the BitTorrent protocol, a dis-

tributed file sharing mechanism that downloads differ-

ent pieces of a file from multiple peers. The protocol

works by requesting a set of active peers for the file from

a tracker, then directly requests file pieces for down-

load from them. By downloading from multiple peers si-

multaneously, clients can more easily download at large

speeds limited only by its bandwidth. Azureus is another

BitTorrent implementation, that we used for comparison.

In some basic experiments, Transmission had a much

worse download time compared to Azureus (552 sec vs.

288 sec).

10

Finish

Recv Bt_Piece

Sent Bt_Have

(a) Event DN

Runtime

Pieces Have

Progress

(b) State DN: 1st with score 0.89

Runtime

Peers Connected

Upload Speed

Seed Ratio

(c) State DN: 2nd with score 0.84

Figure 6: Dependency graphs for unmodified Transmission

Transmission [35] is a light-weight C implementation,

and among all the free clients, it is known for its mini-

mal resource footprint. Azureus [3] is one of the most

popular free implementations of the protocol, developed

in Java. It is an older and more mature implementation

of the protocol and well known for its excellent perfor-

mance. Unlike Transmission, it extends the basic BitTor-

rent messaging protocol for extra minor optimizations in

communicating with supporting peers. Both are serious

implementations of the protocol, and we expect a well

tuned C implementation should perform no worse than a

Java implementation. Using DISTALYZER, we were able

to identify two performance bugs in Transmission that

eliminated the download time difference completely.

Experimental setup Experiments consisted of 180

BitTorrent clients (30 clients per machine) attempting to

download a 50MB file, providing ample interaction com-

plexity in the system. They used the same machines as

described in Sec. 5.2. The swarm was bootstrapped with

a single seeder, and each client was limited to an upload

bandwidth of 250KB/s which is similar to common In-

ternet bandwidths and makes ample room for running

30 clients on a single machine. Experiments were con-

ducted with each implementation in isolation.

We built Azureus from its repository at rev. 25602

(v4504). Azureus had a detailed log of BitTorrent pro-

tocol messages during a download, and we added some

state logs. The experiments used the HotSpot Server

JVM build 1.6.0 20. We used version 2.03 of Trans-

mission in our experiments, which contained debugging

logs, and we simply activated the ones pertaining to the

BitTorrent protocol. We identified the event and state

performance metrics Finish and Runtime, respectively.

5.3.1 Faulty component affecting performance

The best DNs output by DISTALYZER for both event and

state shown in Fig. 6a, 6b were dependencies between

trivial divergences. These are in a sense false positives

to the automatic root cause detection. More specifically,

Fig. 6a was picked from the Last event-feature and shows

the performance metric coalesced with the last piece re-

ceipt. The strong dependency to Sent Bt Have is justi-

fied by the fact that implementations send out piece ad-

vertisements to peers, as soon as they receive one more

piece. Similarly, the state dependency graph in Fig. 6b

shows strong dependencies between download comple-

tion time and the number of pieces download in half the

run, and also the progress (which is in fact a factor of

Pieces Have). We discard these DNs and move to lesser

ranks.

This led to considering the second ranked state graph

in Fig. 6c, which in fact had a very close score to the

highest rank. This DN was constructed from snapshots

of the state variables at three-fourth of Transmission’s

runtime. Runtime is connected to divergent Peers Con-

nected through a chain of variables. The chain involves

the amount of data seeded and upload speed, both affirm-

ing the symbiotic nature of BitTorrent. This immediately

takes us to the distributions of the number of peers, where

we noticed that all nodes reported 6 peers in Transmis-

sion, as against 50 for Azureus. We also verified these

values for the Maximum feature.

Fixing the bug To find the problem that limited Trans-

mission’s peer connectivity, we considered a single

node’s logs and fetched the set of unique IP:port pairs,

and on looking at the values, we immediately realized

that each peer had a different IP address. In our exper-

imental setup with 6 physical machines, different nodes

on the same physical machine were setup to listen on dif-

ferent ports and coexist peacefully. The bug was traced

to the internal set that holds peers, whose comparison

function completely ignored port numbers. When a node

obtains a new peer from the tracker, and it is already con-

nected to a peer with the same IP address, it is simply

dropped.

On looking through forums and bug management soft-

wares, we found that this inconsistency had actually been

identified 13 months back, but the bug was incorrectly

closed. We verified the authenticity of this bug and re-

opened it. The developers deemed this bug to be hard

to fix, in terms of requiring changes to many modules.

We argue that this is an important bug that limits Trans-

mission from connecting to multiple peers behind a NAT

11

Finish

Recv Bt_Piece
Announce

Recv Bt_Unchoke

Sent Bt_RequestSent Bt_Have

Sent Bt_Interested

(a) Event

Runtime

Seeds Total

Peers Connected

Seeds ConnectedPeers Total

(b) State

Figure 7: Dependency graphs for BitTorrent after fixing the NAT problem

box. In cases where multiple peers are situated behind a

NAT box in an ISP, they would definitely want to down-

load from each other and avoid the slow ISP link. This

bug would prevent local connections, thus forcing them

to connect to peers on the Internet.

5.3.2 Tuning the performance

Since the fix for the first bug was too tedious, we decided

to circumvent the problem by assigning unique virtual IP

addresses to each of the nodes. This did indeed solve

the problem and made Transmission faster to an average

download time of 342 sec, which was still much higher

than 288 sec. DISTALYZER was used again with the new

set of logs which produced the dependency graph output

shown in Fig. 7. Considering the event DN in Fig. 7a,

showing the highly divergent performance metric for the

Last feature. Some of the features of this DN are similar

to Fig. 6a that were discussed earlier.

The dependency between finishing and sending re-

quests fits well with the protocol specifications, that a re-

quest for a piece must be sent in order to receive one. The

Announce event happens after sending out requests, and

hence de-values its possibility for root cause. The inter-

ested messages were a more probable cause of the differ-

ences (compared to un-choke) because one must first ex-

press interest in another peer after connection establish-

ment. Only after this step does the remote peer un-choke

it, thus opening up the connection to piece requests. This

hypothesis was verified by viewing the distributions of

Sent Bt Interested across all features. After knowing

the root cause, the distribution for the offending variable

in the First feature showed gaps of the order of 10 sec on

Transmission, but was very small for Azureus.

We traced the code from the message generator to

fix these large gaps, and found a timer (called rechoke-

Timer) that fired every 10 sec. For comparison, we found

that Azureus had a similar timer set at 1 sec, thus giving

it a quicker download start. The large divergence in send-

ing interested messages could be fixed by shortening the

timer value from 10sec to 1sec. Fig. 7b shows the state

DN for the same logs for completeness, but it does not

indicate a highly divergent root cause.

Performance gains We were able to apply a quick fix

for this problem and the download times of Transmis-

sion were much better than earlier, dropping the mean

completion time to 288 sec. The performance was up to

45% better than the first experiment. It should be noted

that the more frequent timer did not affect the resource

utilization of Transmission, still using far fewer CPU cy-

cles and memory than Azureus. Neither of these issues

affected correctness, nor threw any sort of exceptions,

and present themselves as subtle challenges to the devel-

opers. Overall, 5 DNs were reported for the two issues

in Transmission, out of which 3 indicated trivial relation-

ships between the components, but the other two were

immensely helpful in understanding the root causes.

6 Related Work

Model checking aims to provide guarantees on program

code against pre-specified properties. A number of tech-

niques [18, 23, 28] have described different methods to

assert program correctness. However, traditional model

checking attempts to discover violations of clear fail-

ure conditions. There is also research in applying ma-

chine learning to logs of faulty executions, to categorize

them [4,8] and also predict the root cause [6]. Conditions

of performance degradation cannot be accurately mod-

eled using these approaches, because it is rarely possible

to specify performance as definite runtime predicates.

The formulation of debugging as an anomaly detection

task has been applied in a variety of contexts. Magpie [4]

and Pinpoint [6] model request paths in the system to

cluster performance behaviors, and identify root causes

of failures and anomalous performance. Fu et al. [14]

propose the use of a Finite State Automaton to learn

the structure of a normal execution, and use it to detect

anomalies in performance of new input log files. Xu et

al. [37] propose a mechanism to encode logs into state ra-

tio vectors and message count vectors, and apply Princi-

pal Component Analysis to identify anomalous patterns

within an execution. However, they completely ignore

timestamps in logs and use the value logged, to identify

localized problems within a single log file. On the other

hand, DISTALYZER finds the root cause of the most sig-

12

nificant performance problem that affects the overall per-

formance. In contrast to all these systems, DISTALYZER

aims to find the cause of performance problems in a ma-

jor portion of the log instances, and hence uses t-tests to

compare the average performance.

Request flows are a specific type of distributed pro-

cessing, with a pre-defined set of execution path events

in the system. Sambasivan et al. [32] aim to find struc-

tural and performance anomalies in request flows that are

induced by code changes. Their approach of compar-

ing different requests bears some similarity to our tech-

nique. However, as we illustrate through our case stud-

ies, DISTALYZER can be applied to request flow systems

(HBase), as well as other types of distributed systems,

by abstracting the logs into states and events. Although

these specific applications of machine learning (includ-

ing [2,4,6,7]) can leverage path structures, DISTALYZER

can show the most impacting root cause among many

performance problems.

Cohen et al. [7] use instrumentation data from servers

to correlate bad performance and resource usage using

tree-augmented Bayesian networks. Similarly, DIST-

ALYZER can utilize system monitoring data as outlined

in Section 2 to identify performance slowdowns due

to resource contention using DNs. NetMedic [22] and

Giza [27] use machine learning to construct dependency

graphs of networked components, to diagnose faults and

performance problems. WISE [34] uses network packet

statistics to predict changes to CDN response times on

configuration changes, using causal Bayesian networks.

In contrast, the use of distributed system logs allows

DISTALYZER to identify software bugs by marking spe-

cific components in the code. Our novel use of depen-

dency networks to learn associations between code com-

ponents alleviates the need for an expert developer.

Splunk [33] is an enterprise software for monitoring

and analyzing system logs, with an impressive feature

set. Although it provides a good visual interface for man-

ually scanning through logs and finding patterns, it does

not provide tools for rich statistical analysis on the data.

Furthermore, there is no support for comparing two sets

of logs automatically. We believe that Splunk is com-

plementary to our work, and the concepts embodied in

DISTALYZER could serve as a great addition to Splunk.

7 Practical Implications

While DISTALYZER has proven to be useful at finding

issues in real systems implementations, we now discuss

some of the practical implications of our approach, to

illustrate when it is a good fit for use.

First, DISTALYZER is based on comparing many log

instances using statistical approaches. To be effective,

there must exist enough samples of a particular behavior

for the tool to determine that a behavior is not just a sta-

tistical anomaly. The use of weights is a partial solution

to this problem. Similarly, however, the tool cannot find

problems which are not exercised by the logs at all, either

originating from an external black box component or in-

sufficient logging within the system. In the former case,

there is hope that existing logs would capture artifacts of

the external problem and hence point to that component.

The ideal approach would be combining logs from the

external component or network with the existing logs,

to paint the complete picture. With insufficient logging,

DISTALYZER would fail to find feature(s) that describe

the performance problem. This can be alleviated with

additional instrumentation followed by iterative use of

DISTALYZER to diagnose the issue.

Second, we assume similar execution environments

for generating the logs, leaving situations of differing

machine architectures, network setups or node count in

obscurity. This is a tricky process because a subset of

features can be dependent on the environment, and hence

their divergence would be trivial leading to futile DNs.

As a counter measure, these features can either be re-

moved or transformed into a comparable form with do-

main knowledge. The specific case of relative times for

event features highlights such a transformation. In fu-

ture work, we imagine support for a mapping technique

provided by the user for converting the features into com-

parable forms, allowing DISTALYZER to be used even to

compare different environments.

Finally, the system inherently requires log data. If

it is impractical to collect logs, either due to the over-

head imposed or the manual effort required to instru-

ment un-instrumented systems, our tool will not be a

good choice. Similarly, it is important when using DIST-

ALYZER to verify that the user-provided classifying dis-

tribution is not adversely affected by the instrumentation.

Indeed, one “problem” we tracked down using DIST-

ALYZER identified that some poor performance was actu-

ally caused by the system’s logging infrastructure flush-

ing to disk after every log call. This is observed by seeing

performance variations with and without logging.

8 Conclusion

This paper proposes a technique for comparing dis-

tributed systems logs with the aim of diagnosing perfor-

mance problems. By abstracting simple structure from

the logs, our machine learning techniques can analyze

the behavior of poorly performing logs as divergence

from a given baseline. We design and implement DIS-

TALYZER, which can consume log files from multiple

nodes, implementations, runs and requests and visually

output the most significant root cause of the performance

variation. Our analysis of three mature and popular dis-

13

tributed systems demonstrates the generality, utility, and

significance of the tool, and the reality that even mature

systems can have undiagnosed performance issues that

impact the overhead, cost, or health of our systems. DIS-

TALYZER can help to find and solve these problems when

manual analysis is unsuccessful.

9 Acknowledgments

We would like to thank Alex Rasmussen for assisting us with

using DISTALYZER on TritonSort logs, and our anonymous re-

viewers for their feedback and comments. This research was

supported in part by the National Science Foundation (NSF)

under grant CNS-1054567. Any opinions, findings and conclu-

sions or recommendations in this paper are those of the authors

and do not necessarily reflect the views of the NSF.

References

[1] Distalyzer download. http://www.macesystems.org/distalyzer/.

[2] AGUILERA, M. K., MOGUL, J. C., WIENER, J. L.,

REYNOLDS, P., AND MUTHITACHAROEN, A. Performance de-

bugging for distributed systems of black boxes. In SOSP (2003).

[3] Azureus BitTorrent Client. http://azureus.sourceforge.net/.

[4] BARHAM, P., DONNELLY, A., ISAACS, R., AND MORTIER, R.

Using Magpie for Request Extraction and Workload Modelling.

In Proceedings of OSDI (2004).

[5] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WAL-

LACH, D. A., BURROWS, M., CHANDRA, T., FIKES, A., AND

GRUBER, R. E. Bigtable: A Distributed Storage System for

Structured Data. In Proceedings of OSDI (2006).

[6] CHEN, M. Y., ACCARDI, A., KICIMAN, E., LLOYD, J., PAT-

TERSON, D., FOX, A., AND BREWER, E. Path-Based Failure

and Evolution Management. In Proceedings of NSDI (2004).

[7] COHEN, I., GOLDSZMIDT, M., KELLY, T., SYMONS, J., AND

CHASE, J. S. Correlating Instrumentation Data to System States:

A Building Block for Automated Diagnosis and Control. In Pro-

ceedings of OSDI (2004), USENIX Association, pp. 16–16.

[8] COHEN, I., ZHANG, S., GOLDSZMIDT, M., SYMONS, J.,

KELLY, T., AND FOX, A. Capturing, indexing, clustering, and

retrieving system history. In SOSP (2005), ACM, pp. 105–118.

[9] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISHNAN,

R., AND SEARS, R. Benchmarking Cloud Serving Systems with

YCSB. In Proceedings of SOCC (2010).

[10] DEMŠAR, J., ZUPAN, B., LEBAN, G., AND CURK, T. Orange:

From Experimental Machine Learning to Interactive Data Min-

ing. In Proceedings of PKDD. 2004.

[11] DUNN, O. J. Multiple Comparisons Among Means. Journal of

the American Statistical Association 56, 293 (1961), 52–64.

[12] ELKAN, C. The Foundations of Cost-Sensitive Learning. In IJ-

CAI (2001), pp. 973–978.

[13] FONSECA, R., PORTER, G., KATZ, R. H., SHENKER, S., AND

STOICA, I. X-trace: A Pervasive Network Tracing Framework.

In Proceedings of NSDI (2007), USENIX Association.

[14] FU, Q., LOU, J.-G., WANG, Y., AND LI, J. Execution

Anomaly Detection in Distributed Systems through Unstructured

Log Analysis. In Proceedings of ICDM (2009), pp. 149 –158.

[15] GEELS, D., ALTEKAR, G., MANIATIS, P., ROSCOE, T., AND

STOICA, I. Friday: Global Comprehension For Distributed Re-

play. In Proceedings of NSDI (2007).

[16] GEELS, D., ALTEKAR, G., SHENKER, S., AND STOICA, I. Re-

play Debugging for Distributed Applications. In Proceedings of

Usenix ATC (2006).

[17] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The Google

File System. SIGOPS Oper. Syst. Rev. 37, 5 (2003), 29–43.

[18] GODEFROID, P. Model Checking for Programming Languages

using VeriSoft. In Proceedings of POPL (1997).

[19] Apache Hadoop Project. http://hadoop.apache.org/.

[20] Hbase. http://hbase.apache.org/.

[21] HECKERMAN, D., CHICKERING, D. M., MEEK, C., ROUN-

THWAITE, R., AND KADIE, C. Dependency Networks For In-

ference, Collaborative Filtering, and Data Visualization. JMLR

(2001), 49–75.

[22] KANDULA, S., MAHAJAN, R., VERKAIK, P., AGARWAL, S.,

PADHYE, J., AND BAHL, P. Detailed Diagnosis in Enterprise

Networks. In Proceedings of ACM SIGCOMM (2009), pp. 243–

254.

[23] KILLIAN, C., ANDERSON, J. W., JHALA, R., AND VAHDAT,

A. Life, Death, and the Critical Transition: Detecting Liveness

Bugs in Systems Code. In Proceedings of NSDI (2007).

[24] KILLIAN, C., NAGARAJ, K., PERVEZ, S., BRAUD, R., AN-

DERSON, J. W., AND JHALA, R. Finding Latent Performance

Bugs in Systems Implementations. In Proc. of FSE (2010).

[25] LIU, X., GUO, Z., WANG, X., CHEN, F., LIAN, X., TANG, J.,

WU, M., KAASHOEK, M. F., AND ZHANG, Z. D3S: Debugging

Deployed Distributed Systems. In Proc. of NSDI (2008).

[26] Apache log4j. http://logging.apache.org/log4j.

[27] MAHIMKAR, A. A., GE, Z., SHAIKH, A., WANG, J., YATES,

J., ZHANG, Y., AND ZHAO, Q. Towards Automated Perfor-

mance Diagnosis in a Large IPTV Network. In Proceedings of

ACM SIGCOMM (2009), pp. 231–242.

[28] MUSUVATHI, M., PARK, D. Y. W., CHOU, A., ENGLER, D. R.,

AND DILL, D. L. CMC: A Pragmatic Approach to Model Check-

ing Real Code. In Proceedings of SOSP (2002), ACM.

[29] MUSUVATHI, M., QADEER, S., BALL, T., BASLER, G.,

NAINAR, P. A., AND NEAMTIU, I. Finding and Reproducing

Heisenbugs in Concurrent Programs. In Proc. of OSDI (2008).

[30] RASMUSSEN, A., PORTER, G., CONLEY, M., MADHYASTHA,

H. V., MYSORE, R. N., PUCHER, A., AND VAHDAT, A. Triton-

Sort: A Balanced Large-Scale Sorting System. In NSDI (2011).

[31] REYNOLDS, P., KILLIAN, C., WIENER, J. L., MOGUL, J. C.,

SHAH, M. A., AND VAHDAT, A. Pip: Detecting The Unexpected

In Distributed Systems. In Proceedings of NSDI (2006).

[32] SAMBASIVAN, R. R., ZHENG, A. X., ROSA, M. D., KREVAT,

E., WHITMAN, S., STROUCKEN, M., WANG, W., XU, L., AND

GANGER, G. R. Diagnosing Performance Changes by Compar-

ing Request Flows. In Proceedings of NSDI (2011).

[33] Splunk. http://www.splunk.com/.

[34] TARIQ, M., ZEITOUN, A., VALANCIUS, V., FEAMSTER, N.,

AND AMMAR, M. Answering What-If Deployment and Configu-

ration Questions with WISE. In Proceedings of ACM SIGCOMM

(2008), pp. 99–110.

[35] Transmission BitTorrent Client. http://www.transmissionbt.com/.

[36] WELCH, B. L. The Generalization of Student’s Problem when

Several Different Population Variances are Involved. Biometrika

34, 1-2 (1947), 28–35.

[37] XU, W., HUANG, L., FOX, A., PATTERSON, D., AND JORDAN,

M. I. Detecting Large-Scale System Problems by Mining Con-

sole Logs. In Proceedings of SOSP (2009), ACM, pp. 117–132.

[38] YABANDEH, M., KNEZEVIC, N., KOSTIC, D., AND KUNCAK,

V. CrystalBall: Predicting and Preventing Inconsistencies in De-

ployed Distributed Systems. In Proceedings of NSDI (2009).

14

