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Abstract
Users increasingly rely on the trustworthiness of the

information exposed on Online Social Networks (OSNs).
In addition, OSN providers base their business models on
the marketability of this information. However, OSNs
suffer from abuse in the form of the creation of fake ac-
counts, which do not correspond to real humans. Fakes
can introduce spam, manipulate online rating, or exploit
knowledge extracted from the network. OSN operators
currently expend significant resources to detect, manu-
ally verify, and shut down fake accounts. Tuenti, the
largest OSN in Spain, dedicates 14 full-time employees
in that task alone, incurring a significant monetary cost.
Such a task has yet to be successfully automated because
of the difficulty in reliably capturing the diverse behavior
of fake and real OSN profiles.

We introduce a new tool in the hands of OSN opera-
tors, which we callSybilRank . It relies on social graph
properties to rank users according to their perceived like-
lihood of being fake (Sybils). SybilRank is computation-
ally efficient and can scale to graphs with hundreds of
millions of nodes, as demonstrated by our Hadoop pro-
totype. We deployed SybilRank in Tuenti’s operation
center. We found that∼90% of the 200K accounts that
SybilRank designated as most likely to be fake, actually
warranted suspension. On the other hand, with Tuenti’s
current user-report-based approach only∼5% of the in-
spected accounts are indeed fake.

1 Introduction
The surge in popularity of online social network-
ing (OSN) services such as Facebook, Twitter, Digg,
LinkedIn, Google+, and Tuenti has been accompanied by
an increased interest in attacking and manipulating them.
Due to their open nature, they are particularly vulnerable
to the Sybil attack [26], under which a malicious user can
create multiple fake OSN accounts.

The problem. It has been reported that 1.5 million
fake or compromised Facebook accounts were on sale
during February 2010 [7]. Fake (Sybil) OSN accounts
can be used for various purposes [6, 7, 9]. For instance,
they enable spammers to abuse an OSN’s messaging sys-
tem to post spam [28, 51], or waste an OSN advertising
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customer’s resources by making him pay for online ad
clicks or impressions from or to fake profiles. Fake ac-
counts can also be used to acquire users’ private contact
lists [17]. Sybils can use the “+1” button to manipulate
Google search results [11] or to pollute location crowd-
sourcing results [8]. Furthermore, fake accounts can be
used to access personal user information [27] and per-
form large-scale crawls over social graphs [42].

The challenge. Due to the multitude of the reasons
behind their creation (§2.1), real OSN Sybils manifest
numerous and diverse profile features and activity pat-
terns. Thus, automated Sybil detection (e.g., Machine-
Learning-based) does not yield the desirable accuracy
(§2.2). As a result, adversaries can cheaply create fake
accounts that are able to evade detection [19]. At the
same time, although the research community has exten-
sively discussed social-graph-based Sybil defenses [23,
52–54,57,58], there is little evidence of wide industrial
adoption due to their shortcomings in terms of effective-
ness and efficiency (§2.4). Instead, OSNs employ time-
consuming manual account verification, driven by user
reports on abusive accounts. However, only a small frac-
tion of the inspected accounts are indeed fake, signifying
inefficient use of human labor (§2.3).

If an OSN provider can detect Sybil nodes in its sys-
tem effectively, it can improve the experience of its users
and their perception of the service by stemming annoy-
ing spam messages and invitations. It can also increase
the marketability of its user base and its social graph. In
addition, it can enable other online services or distributed
systems to treat a user’s online social network identity as
an authentic digital identity, a vision foreseen by recent
efforts such as Facebook Connect [2].

We therefore aim to answer the question: “can we
design a social-graph-based mechanism that enables a
multi-million-user OSN to pick up accounts that are very
likely to be Sybils?” The answer can help an OSN
stem malicious activities in its network. For example,
it can enable human verifiers to focus on likely-to-be-
fake accounts. It can also guide the OSN in send-
ing CAPTCHA [14] challenges to suspicious accounts,
while running a lower risk to annoy legitimate users.

Our solution. We present the design (§4), implementa-
tion (§5), and evaluation (§6,§7,§5) of SybilRank. Sybil-
Rank is a Sybil inference scheme customized for OSNs
whose social relationships are bidirectional.
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Our design is based on the same assumption as in pre-
vious work on social-graph-based defenses [23, 52–54,
57,58]: that OSN Sybils have a disproportionately small
number of connections to non-Sybil users. Differently,
our system achieves a significantly higher detection ac-
curacy at a substantially lower computational cost. It can
also be implemented in a parallel computing framework,
e.g., MapReduce [24], enabling the inference of Sybils
in OSNs with hundreds of millions of users.

Social-graph-based solutions uncover Sybils from the
perspective of already known non-Sybil nodes (trust
seeds). Unlike [52] and [53], SybilRank’s computational
cost does not increase with the number of trust seeds it
uses (§4.5). This facilitates the use of multiple seeds to
increase the system’s robustness to seed selection errors,
such as designating a Sybil as a seed. It also allows the
OSN to cope with the multi-community structure of on-
line social graphs [54] (§4.2.2).

We show that SybilRank outperforms existing ap-
proaches [23,33,38,53,57]. In our experiments, it detects
Sybils with at least 20% lower false positive and negative
rates (§6) than the second-best contender in most of the
attack scenarios. We also deployed SybilRank on Tuenti,
the leading OSN in Spain (§7). Almost 100% and 90% of
the 50K and 200K accounts, respectively, that SybilRank
designated as most suspicious, were indeed fake. This
compares very favorably to the∼5% hit rate of Tuenti’s
current abuse-report-based approach.

Our contributions. In summary, this work makes the
following contributions:
• We re-formulate the problem of Sybil detection in
OSNs. We observe that due to the high false positives
of binary Sybil/non-Sybil classifiers, manual inspection
needs to be part of the decision process for suspending an
account. Consequently, our aim is to efficiently derive a
quality ranking, in which a substantial portion of Sybils
ranks low. This enables the OSN to focus its manual in-
spection efforts towards the end of the list, where it is
more likely to encounter Sybils. Moreover, our ranking
can inform the OSN on whether to challenge suspicious
users with CAPTCHAs.
• The design of SybilRank, an effective Sybil-likelihood
ranking scheme for OSN users based on the land-
ing probability of short random walks. We efficiently
compute this landing probability using early terminated
power iteration. In addition, SybilRank copes with the
multi-community structure of social graphs [54] using
multiple seeds at no additional computational cost. We
thoroughly compare SybilRank with existing Sybil de-
tection schemes.
• We deployed SybilRank on Tuenti, an OSN with 11M
users. Our system has allowed Tuenti operations to de-
tect in the same time period 18 times more fake accounts
than their current process.

2 Background and Related Work
We have conducted a survey with Tuenti [4] to under-
stand the activities of fake accounts in the real world, the
importance of the problem for them, and what counter-
measures they currently employ. In the rest, we discuss
our findings and prior OSN Sybil defense proposals.

2.1 Fake accounts in the real world
Fake accounts are created for profitable malicious activ-
ities, such as spamming, click-fraud, malware distribu-
tion, and identity fraud [7,12]. Some fakes are created to
increase the visibility of niche content, forum posts, and
fan pages by manipulating votes or view counts [6,9].

People also create fake profiles for social reasons.
These include friendly pranks, stalking, cyberbullying,
and concealing a real identity to bypass real-life con-
straints [9]. Many fake accounts are also created for so-
cial online games [9].

2.2 Feature-based approaches
The large number of distinct reasons for the creation of
Sybil accounts [6, 7, 9] results in numerous and diverse
malicious behaviors manifested as profile features and
activity patterns. Automated feature-based Sybil detec-
tion [55] (e.g., Machine-Learning-based) suffers from
high false negative and positive rates due to the large
variety and unpredictability of legitimate and malicious
OSN users’ behaviors. This is reminiscent of how ML
has not been very effective in intrusion detection [49].

High false positives in particular pose a major obstacle
in the deployment of automated methods, as real users
respond very negatively to erroneous suspension of their
accounts [10]. To make matters worse, attackers can al-
ways adapt their behavior to evade detection by auto-
mated classifiers. Boshmaf et al. [19] recently showed
that the automated Facebook Immune System [50] was
able to detect only 20% of the fakes they deployed, and
almost all the detected accounts were flagged by users.

2.3 Human-in-the-loop counter-measures
In response to the inapplicability of automated account
suspension, OSNs employ CAPTCHA [5] and photo-
based social authentication [13] to rate-limit suspected
users, or manually inspect the features of accounts re-
ported as abusive (flagged) by other users [12,51,55].

The manual inspection involves matching profile pho-
tos to the age or address, understanding natural language
in posts, examining the friends of a user, etc [12]. The
inspectors also use simple tools to parse activity and IP
statistics of suspicious accounts. However, these tasks
require human intelligence and intuition, rendering them
hard to automate and scale. In addition, flagged accounts
have by definition already caused annoyance to some
users. Therefore, the need arises for a method that en-
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Figure 1: SybilRank as a part of an OSN’s Sybil defense toolchain.

ables human verifiers to focus on accounts that are very
likely to be fake and to disable them in a timely manner.

Tuenti receives on average 12,000 reports regarding
abusive accounts and 4,000 reports for violating photos
per day. An employee can review an average of 250 to
350 reports in an hour. Among those reported suspicious
accounts, only∼5% are indeed fake [12]. On average,
Tuenti’s manual inspection team, which consists of 14
employees, deletes 800 to 1500 fake accounts per day.

Our solution can be a component of the overall frame-
work employed by OSN providers to ensure the health
of their user base (Figure1). It is a proactive method
that can uncover fakes even before they interact with real
users. It complements ML- and user-report-based meth-
ods. The users that these methods designate as suspi-
cious are typically challenged in the form of CAPTCHAs
or are manually inspected.

2.4 Social-graph-based approaches

Sybil detection has been the focus of the research com-
munity for a while now [23, 52–54, 57, 58]. However,
none of the existing proposals can play the role of Sybil-
Rank in Figure 1. The reason is that prior schemes either
do not exhibit equivalent accuracy or they incur a pro-
hibitive computational cost. Their key features are doc-
umented in a recent survey [56]. We next compare them
to our proposal.

The decentralized protocols SybilGuard [58] and
SybilLimit [57] infer Sybils based on a large volume of
random walk traces, which leads to anO(

√
mn logn)

(m is the number of edges,n is the number of nodes)
computational cost in a centralized setting. Sybil-
Infer [23] is also built on random walk traces with
O(n(log n)

2
) cost per honest seed, but does not specify

any upper-bound guarantee on false rates [56]. Mo-
haisen et al. [40] propose to use weighted random
walks in SybilLimit. However, they follow the random
walk sampling paradigm instead of our power-iteration
method (§4.2), incurring a cost as high as SybilLimit.

The flow-based scheme GateKeeper [53] improves
over SumUp [52]. It relies on a strong assumption that
requires balanced graphs [56] and costsO(sn logn) (s
is the number of seeds, referred to as ticket sources).

Viswanath et al. [54] propose community detection algo-
rithms such as Mislove’s algorithm [38] to detect Sybils.
However, community detection (CD) algorithms rarely
provide provable guarantees, and Mislove’s CD algo-
rithm costsO(n2). Compared to the above schemes,
SybilRank achieves equivalent or higher accuracy (ana-
lytically), but it is computationally more efficient, i.e.,it
hasO(n log n) cost irrespective of the number of seeds.

Moreover, SybilRank addresses important limitations
of existing social-graph-based defenses [54]. First,
SybilRank leverages its efficient support for multiple
trust seeds to reduce the false positives resulting from the
existence of multiple non-Sybil communities. Second, it
enables very flexible seed selection (any non-Sybil node
can be a seed), which makes it harder for attackers to
target the seeds. In addition, SybilRank’s effectiveness
decreases only moderately as the Sybil’s distance from
the trust seeds decreases (§6.5).

Zhao et al.’s [61] BotGraph detects spam webmail
user-bots by leveraging the fact that they are highly cor-
related in terms of the IP address of their controllers.
The same mechanism can be used in social graphs to
uncover Sybils that form tight-knit communities. Tan-
gentially, Yang et al. [55] recently analyzed a sample of
660K Sybils in the RenRen OSN, and found that they do
not form tight-knit communities. Regardless, SybilRank
and the schemes in [23, 53, 54, 58] rely on the assump-
tion that the connectivity between Sybils and non-Sybil
users is limited and are not very sensitive to the number
of Sybils or the inter-Sybil connectivity.

Sybil-resilient systems [27, 36, 37, 42, 44, 46–48, 59]
leverage application-specific knowledge to effectively
mitigate Sybils, e.g., to limit the number of votes col-
lected from Sybil users [52]. However, a Sybil-resilient
design optimized for an application may not be applica-
ble to other systems, while a social-graph-based Sybil
inference mechanism can be applied to any application
that binds its users to OSN accounts.

3 Models, Assumptions, and Goals
We now introduce our system and threat model, and our
design assumptions and goals.

3.1 System and threat model
We consider bilateral social relationships and model an
OSN as anundirected graphG = (V,E), where each
node inV corresponds to a user in the network, and each
edge inE corresponds to a bilateral social relationship.
In the social graphG, there aren = |V | nodes,m = |E|
undirected edges, and a nodev has a degree ofdeg(v).
We assume that the OSN provider, e.g., Tuenti, has ac-
cess to the entire social graph.

In our threat model, attackers can launch Sybil at-
tacks [21,26] by creating many fake identities. Like ex-
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Figure 2: Non-Sybil region, Sybil region, and attack edges in an
OSN under a Sybil attack. All Sybils created by malicious users
are placed into the Sybil region. The Sybil collective may not be
well connected.

isting work [23,57,58], we divide the node setV into two
disjoint setsH andS, representing non-Sybil and Sybil
users respectively, as shown in Figure2. We denote the
non-Sybil regionGH as the subgraph induced by the non-
Sybil user setH , which includes all non-Sybil users and
the links among them. Similarly, theSybil region GS is
the subgraph induced byS. The non-Sybil and the Sybil
regions are connected byg attack edges between Sybils
and non-Sybil users.

3.2 Assumptions
We make the following assumptions.

Social graph. The social graph is undirected. The non-
Sybil regionGH is well connected and non-bipartite.
In this case, random walks on the graph can be mod-
eled as an irreducible and aperiodic Markov chain [16].
This Markov chain is guaranteed to converge to a station-
ary distribution in which the landing probability on each
node after sufficient steps is proportional to its degree.

Limited attack edges. We assume that Sybils estab-
lish a limited number of attack edges due to the difficulty
of soliciting and maintaining reciprocal social relation-
ships. Although previous studies [17, 19] suggest that
fake identities can befriend others, a recent study shows
that most of their connections are established with other
fakes [43]. SybilRank is designed for large scale attacks,
where fake accounts are crafted and maintained at a low
cost, and are thus unable to befriend many real users.
Furthermore, SybilRank can be deployed over a social
graph that includes only strong-relationship edges. For
instance, Google+ may consider only social connections
between users that appear in mutually close circles.

The limited attack edges result in a sparse cut be-
tween the non-Sybil and the Sybil region. Since the well-
connected non-Sybil region is unlikely to have such a
sparse cut [58], there should be a significant difference
between the mixing time of the non-Sybil regionGH

and the entire graphG [16]. A graph’s mixing time is
the maximum number of steps that a random walk needs
to make so that the probability of landing at each node
reaches the stationary distribution [16]. As in previous
work [23, 57, 58], we start with the assumption that the
non-Sybil regionGH is fast mixing, i.e., its mixing time
is O(log n), and discuss the scenarios where the non-

Sybil region mixes slower in§4.2.3.

Attack edge distribution. To make our analysis
tractable, we assume that Sybils randomly attach attack
edges to non-Sybils. A more effective attack strategy
against a social-graph-based Sybil defense is to establish
attack edges close to the trust seeds. We refer to this at-
tack as atargeted attack. We experimentally study how
SybilRank performs under the targeted attack in§ 6.5.

3.3 Goals
SybilRank aims to aid OSNs in identifying highly sus-
picious accounts by ranking users. In principle, Sybil-
Rank can be used to defend against malicious accounts
that are created on a large scale and at a low per-account
cost for purposes, such as rating manipulation (e.g., with
Facebook “likes”), spam, and crawls. Our design has the
following main goals:

Effectiveness. The system should mostly rank nodes
that are Sybils lower than non-Sybils (low false posi-
tives), while limiting the number of non-Sybils ranked
below Sybils (low false negatives). It should be robust
under various attack strategies. A very high portion of
the nodes at the bottom of the ranked list should be fake.
The portion of fakes can decrease as we go up the list.

Efficiency. The system should have a low computation
cost. It should be able to handle large social networks
with commodity machines, so that OSN providers can
deploy it on their existing clusters.

4 Design
We now describe the design of SybilRank. We first pro-
vide an overview of the approach and proceed with a de-
tailed description of each component.

4.1 Overview
SybilRank relies on the observation that anearly-
terminated random walk [56] starting from a non-Sybil
node in a social network has a higher degree-normalized
(divided by the degree) landing probability to land at a
non-Sybil node than a Sybil node. Intuitively, this obser-
vation holds because the limited number of attack edges
forms a narrow passage from the non-Sybil region to the
Sybil region in a social network. When a random walk
is sufficiently long, it has a uniform degree-normalized
probability of landing at any node, a property referred
to as the convergence of a random walk [16]. However,
a shortened random walk originating from a non-Sybil
node tends to stay within the non-Sybil region of the net-
work, as the walk is unlikely to traverse one of the rela-
tively few attack edges.

Our key insight is to rank nodes in a social graph ac-
cording to the degree-normalized probability of a short
random walk that starts from a non-Sybil node to land
on them. We screen out low-ranked nodes as potential
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fake users. A further novelty of our approach is that
we use power iteration [34], a standard technique to effi-
ciently calculate the landing probability of random walks
in large graphs. This is in contrast to prior work that used
a large number of random walk traces [23,40,56–58] ob-
tained at a high computational cost. For ease of exposi-
tion, we refer to the probability of the random walk to
land on a node as the node’strust.

As shown in Figure3, SybilRank unveils users that
are suspected to be Sybils after three stages. In Stage
I, throughw = O(log n) power iterations (§4.2), trust
flows from known non-Sybil nodes (trust seeds) and
spreads over the entire network with a bias towards the
non-Sybil region. In Stage II, SybilRank ranks nodes
based on their degree-normalized trust. In the final stage,
SybilRank assigns portions of fake nodes in the intervals
of the ranked list. This enables OSNs to focus their man-
ual inspection efforts or to regulate the frequency with
which they send CAPTCHAs to suspected users.

We next describe each stage in detail.

Figure 3: SybilRank detects Sybils in three stages. Black users
are Sybils. Darker nodes obtain less trust after trust propagation.

4.2 Propagating trust
Power iteration involves successive matrix multiplica-
tions where each element of the matrix represents the
random walk transition probability from one node to
a neighbor node. Each iteration computes the land-
ing probability distribution over all nodes as the random
walk proceeds by one step.

4.2.1 Early-terminated random walks

We terminate the power iterations afterO(log n) steps.
The number of iterations needed to reach the stationary
distribution is equal to the graph’s mixing time. In an
undirected graph, if a random walk’s transition proba-
bility to a neighbor node is uniformly distributed, the
landing probability on each node remains proportional
to its degree after reaching the stationary distribution.
SybilRank exploits the mixing time difference between
the non-Sybil regionGH and the entire graphG to dis-

tinguish Sybils from non-Sybils. The intuition is that
if we seed all trust in the non-Sybil region, then trust
can flow into the Sybil region only via the limited num-
ber of attack edges. If we terminate the power iteration
early before it converges globally, non-Sybil users will
obtain higher trust than that in the stationary distribution,
whereas the reverse holds for Sybils.

Trust propagation via power iteration. We define
T (i)(v) as the trust value on nodev afteri iterations. Ini-
tially, the total trust, denoted asTG (TG > 0), is evenly
distributed onK (K > 0) trust seeds̃v1, ṽ2, . . . , ṽK :

T (0)(v) =

{

TG

K
if nodev is one of theK trust seeds

0 else

Seeding trust on multiple nodes makes SybilRank ro-
bust to seed selection errors, as incorrectly designating a
node that is Sybil or close to Sybils as a seed causes only
a small fraction of the total trust to be initialized in the
Sybil region.

During each power iteration, a node first evenly dis-
tributes its trust to its neighbors. It then collects trust
distributed by its neighbors and updates its own trust ac-
cordingly. The process is shown below. Note that the
total amount of trustTG remains unchanged.

T (i)(v) =
∑

(u,v)∈E

T (i−1)(u)

deg(u)

Early termination. With sufficiently many power it-
erations, the trust vector converges to the stationary dis-
tribution: limi→∞ T (i)(v) = deg(v)

2m × TG [16]. How-
ever, SybilRank terminates the power iteration afterw =
O(log n) steps, thus before convergence. This num-
ber of iterations is sufficient to reach an approximately
uniform distribution of degree-normalized trust over the
fast-mixing non-Sybil region, but limits the trust escap-
ing to the Sybil region.

Alternative use of power iteration. We note that
power iteration is also used by the trust inference
mechanisms PageRank, EigenTrust, and TrustRank [22,
30, 33, 45], where it is executed until convergence to
the stationary distribution of the complete graph [34].
At each step and with a constant probability, PageR-
ank’s random walks jump to random users, and Eigen-
Trust/TrustRank’s walks jump to trust seeds. Eigen-
Trust/TrustRank is personalized PageRank with a cus-
tomized reset distribution over a particular set of seeds.

SybilRank’s random walks do not jump to random
users, because this would allow Sybils to receive trust
in each iteration. Besides, SybilRank’s random walks do
not jump to the trust seeds, because this would assign
high trust to Sybils that are close to the trust seeds (§6.3).
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Figure 4: Trust propagation through power iterations.

In addition, we do not seek to improve the Sybil re-
silience of power-iteration-based trust inference mecha-
nisms by enforcing early termination. This is because
with their implicit directed connections to random nodes
(PageRank) and trust seeds (EigenTrust and TrustRank),
the mixing time of their modified graphs decreases sig-
nificantly. A formal analysis on the convergence of ran-
dom walks on these graphs is documented in [34]. Em-
pirical reports show that EigenTrust only takes 10 iter-
ations to converge on a 1000-node graph [33]. There-
fore, early termination afterO(log n) steps cannot im-
prove those schemes.

Example. Figure4 illustrates the process of our trust
propagation. In this example, we initially seedTG = 648
on the non-Sybil nodesC andD. We do not normal-
ize TG to 1 for ease of exposition. After four power
iterations, all non-Sybil nodes{A,B,C,D,E} obtain
higher degree-normalized trust than any of the Sybils
{F,G,H, I}. However, as shown in Figure4(c), if we
let the power iteration converge (more than50 iterations),
the Sybils have similar trust as the non-Sybil nodes, and
each node’s trust is only proportional to its degree.

4.2.2 Coping with the multi-community structure

Existing social-graph-based defenses are sensitive to the
multi-community structure in the non-Sybil region [54].
Due to the limited connectivity between communities,
they may misclassify non-Sybils that do not belong to
the communities of the trust seeds as Sybils.

Distributing seeds among communities. Sybil-
Rank intends to reach a uniform distribution of degree-
normalized trust among the non-Sybil region, which is
independent of the location of the non-Sybil seeds. Thus,
any set of non-Sybil users are eligible for the trust seeds.
Seeding trust on Sybils would degrade SybilRank’s ef-
fectiveness as the initial trust on the Sybil seeds is not
bounded by the limited attack edges. OSN providers can
easily identify non-Sybil users to seed trust by manually
inspecting a few users. SybilRank works with an arbi-
trary number of non-Sybil seeds regardless of their lo-
cations. In contrast, the seed selection is complicated
for previous trust inference schemes (§4.2.1) and Sybil
defenses such as SumUp [52] because they have to guar-
antee that the seed(s) are “far” from Sybils.

We leverage SybilRank’s support for multiple seeds
to improve its performance in OSNs that have a multi-
community structure. The key idea is to distribute seeds
among the communities. Thus, at initialization we dis-
tribute trust in such a manner that the non-Sybil users
are not starved of trust even if the inter-community con-
nectivity is weak. We validate this design choice with
simulations in§6.4, where SybilRank maintains a high
detection accuracy in synthetic graphs with high-level
community structure.

Inspecting random users for trust seeds to cover most
of communities in the non-Sybil region would require
a prohibitive manual inspection workload, as indicated
by the Coupon Collector’s Problem [39]. Instead, we
apply an efficient community detection but not Sybil-
resilient algorithm to obtain an estimation of the com-
munity structure [18], and then seed trust on non-Sybil
users in each major community.

Estimating the multi-community structure. We use
the Louvain method [18], which can efficiently detect
communities. This method iteratively groups closely
connected communities together to improve the parti-
tion modularity. In each iteration, every node represents
a community, and well-connected neighbor nodes are
combined into the same community. The graph is re-
constructed at the end of each iteration by converting the
resulting communities to nodes and adding links that are
weighted by the inter-community connectivity. Each it-
eration has a computational cost linear to the number of
edges in the corresponding graph and a small number of
iterations are typically required. In addition, this method
can be parallelized on commodity machines [60].

As illustrated in Figure5, in each identified commu-
nity we inspect a small set of random nodes (∼100 in
total for the 11-million-node Tuenti social network) and
only seed trust at the nodes that pass the verification.

Community detection algorithms have been proposed
to directly detect Sybils [54]. They seek a partition of a
graph that has dense intra-community connectivity and
weak inter-community connectivity. For instance, the
Louvain method searches for a partition with high mod-
ularity [18]. Thus, Sybils that are not well connected
among each other may be classified as non-Sybils be-
longing to nearby non-Sybil communities. In contrast,
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Figure 5: Distributing seeds into multiple communities. The Sybil
seed candidates (black) cannot pass the manual inspection.

by placing seeds in communities SybilRank is able to
uncover subsets of Sybils within Louvain-detected com-
munities, as shown in our Tuenti deployment (§7.2).

4.2.3 Sensitivity to the mixing time

Although for analytical tractability, we assume that the
non-Sybil region is fast mixing as in previous work [23,
53, 57], SybilRank’s effectiveness does not rely on the
absolute value of the non-Sybil region’s mixing time. In-
stead, it only requires that the graphG containing both
Sybils and non-Sybils has a longer mixing time than
the non-Sybil regionGH . Under this condition, the
early-terminated power iteration yields a gap between the
degree-normalized trust of non-Sybils and Sybils.

Ideally, the number of iterations that SybilRank per-
forms is set equal to the mixing time of the non-Sybil
region. Previous Sybil defenses [23,57] assume that the
mixing time of social networks isO(log n). However,
measurement studies [25,41] show that the mixing time
of some social networks is longer than expected. It is
unclear whether this increase derives from a large coeffi-
cient in front of the termlogn, or the possibility that the
mixing time of social networks is notO(log n).

In SybilRank we simply useO(log n) power itera-
tions. If the mixing time of the non-Sybil region is larger
than this value, the trust that escapes to the Sybil region is
further limited. However, we also run the risk of starving
the non-Sybil users that are not well-connected to seeds.
This risk is mitigated by placing seeds in many commu-
nities and by dispersing multiple seeds in each commu-
nity (§4.2.2), thereby ensuring that the trust is initiated
somewhere close to those non-Sybil users.

4.3 Ranking by degree-normalized trust

After w = O(log n) power iterations, SybilRank ranks
nodes by their degree-normalized trust. A nodev’s

degree-normalized trust is defined as:T̂v = T (w)(v)
deg(v) . We

rank nodes by degree-normalized trust for the following
two reasons.

Eliminating the node degree bias. This design gives
each non-Sybil node almost identical degree-normalized
trust. It reduces false positives from low-degree non-
Sybil nodes and false negatives from high-degree Sybils.
This is because afterO(log n) power iterations, the trust

distribution in the non-Sybil region approximates the sta-
tionary distribution in that region, i.e., the amount of trust
on each non-Sybil node is proportional to its degree.

The removal of the degree bias simplifies the
Sybil/non-Sybil classification, i.e., all non-Sybil users
are supposed to belong to the same class with an almost
identical degree-normalized trust. This is in contrast to
prior trust inference schemes [30,33,45] that attempt to
differentiate between Sybils and non-Sybils with highly
variable trust scores.

Bounding highly-ranked Sybils. The degree normal-
ization step ensures that the number of Sybils ranked
higher than the non-Sybil nodes isO(log n) per attack
edge, as we explain in§4.6.

4.4 Annotating the ranked list
SybilRank relies on the limited attack edges to distin-
guish Sybils. It may give high rankings to the Sybils that
obtain many social links to non-Sybil users, and consider
them as non-Sybil users. This is true for all social-graph-
based defenses. It may result in even the top and bottom
intervals of the ranked list to comprise a non-negligible
portion of fake and real accounts, respectively. Thus, an
OSN cannot simply identify a pivot in the ranked list be-
low which all nodes are fake, and it still has to rely on
manual inspection.

At the same time, OSNs have limited resources for
manual inspection. To aid OSNs to adjust their inspec-
tion focus, we annotate intervals in the ranked list with
fake portions. In particular, we sample random users in
each interval of a particular size and report a portion of
fakes after manual inspection. With these annotations,
OSNs can decide where on the ranked list to assign their
limited human verifiers. The annotations can also be
used to regulate the frequency of CAPTCHAs and other
challenges sent to the suspected users. Moreover, the an-
notations can help OSNs to decide on accounts that do
not exhibit sufficient evidence on whether they are fake.

4.5 Computational cost
SybilRank’s computational cost isO(n logn). This is
because each power iteration costsO(n), and we iterate
O(logn) times. The cost for ranking the nodes accord-
ing to their degree-normalized trust is alsoO(n logn).
The cost for estimating communities isO(m), because
each iteration in Louvain method has a computational
cost linear to the number of edges and the graph shrinks
rapidly with only a few iterations. Since the node de-
gree in OSNs is always limited, the community estima-
tion costsO(n). Thus the overall computational cost is
O(n logn), irrespective of the number of trust seeds.

4.6 Security Guarantee
We now discuss SybilRank’s security guarantee under
the assumption that the attack edges are randomly es-
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tablished between non-Sybils and Sybils. Although our
system does not depend on the absolute mixing time of
the non-Sybil region (§4.2.3), our analysis assumes that
the non-Sybil region is fast-mixing. Due to space limi-
tations we only present the conclusion and its high-level
intuition, and refer the reader to our technical report [20]
for the complete proof. We use the notation in§3.1.

Theorem 1. When an attacker randomly establishes g
attack edges in a fast mixing social network, the total
number of Sybils that rank higher than non-Sybils is
O(g logn).

After early termination, the trust distribution in the en-
tire graphG has not reached its stationary distribution.
Since trust propagation starts from the non-Sybil region,
the Sybil region (on the aggregate) gets only a fraction
f < 1 of the trust it should obtain in the stationary distri-
bution. On the other hand, as the total trust is conserved
in the entire graph, the non-Sybil region obtains an ag-
gregate amount of trust that isc (c > 1) times higher
than in the stationary distribution. Further, since the
non-Sybil region is well connected, each non-Sybil node
obtains approximately identical degree-normalized trust,
i.e., c × TG

2m , where TG

2m is a node’s degree-normalized
trust in the stationary distribution (§4.2).

The amount of degree-normalized trust obtained by
each Sybil depends on how Sybils connect to each other.
However, since the aggregate amount of trust of the Sybil
region is bounded, on average, each Sybil obtainsf× TG

2m
degree-normalized trust, which is less than that of a non-
Sybil node. We are able to show that at mostO(log n)
Sybils per attack edge obtain higher degree-normalized
trust than non-Sybil nodes [20]. It is worth noting that
SybilRank is able to provide this guarantee even when it
uses an arbitrary number of trust seeds.

5 MapReduce Implementation
We now briefly describe how we implement SybilRank
using the Hadoop [1] MapReduce [24] parallel comput-
ing framework. This implementation enables an OSN
provider to process social network graphs with hundreds
of millions of users on a cluster of commodity machines.

We divide the entire graph into multiple partitions so
that each of them fits into the hardware of a commod-
ity machine. The complexity of SybilRank is dominated
by the first two stages (Figure3): trust propagation and
node ranking. Together they haveO(n logn) complex-
ity. For the trust propagation stage, we observe that trust
splitting and trust aggregation at each iteration are inher-
ently parallelizable. Therefore, we treat each iteration as
a MapReduce job, and create multiple map tasks to split
trust and multiple reduce tasks to aggregate trust simul-
taneously. For the node ranking stage, we use Hadoop’s

built-in sorting feature.

Efficiency. We evaluate the efficiency of our prototype
on an Amazon EC2 cluster to process very large-scale
synthetic graphs with hundreds of millions of nodes. The
cluster consists of 11 m1.large instances, one of which
serves as the master and the other 10 as slaves.

We generate very large synthetic graphs based on the
scale-free model as in§6.1. The synthetic graphs are gen-
erated with exponentially increasing sizes from 10M to
160M nodes. SybilRank performs successfully on each
graph with logn power iterations. The total execution
time includes two parts: a) the time to seed trust and par-
tition the graph during initialization; and b) the time to
execute power iterations to propagate trust and to rank
the final results. The latter dominates the total execution
time, which increases almost linearly with the size of the
social graphs (see [20]). For the largest graph (160M
nodes), our prototype finishes in less than 33 hours. This
result suggests that SybilRank can process very large so-
cial graphs using a few commodity machines.

6 Sybil Ranking Evaluation
In this section, we perform a comparative evaluation of
SybilRank’s ability to provide a meaningful ranking of
nodes to uncover Sybils. We first compare SybilRank
against other approaches in terms of its effectiveness
in assigning low ranking to Sybils. We then examine
the SybilRank’s component that copes with the multi-
community structure, and we study the resilience of our
approach to attacks that target the seeds. For a fair com-
parison, we do not use SybilRank’s component for cop-
ing with the multi-community structure except for§6.4.

6.1 Simulation setup

Compared approaches. We compare SybilRank (SR)
against the state-of-the-art social-graph-based Sybil de-
fenses, i.e., SybilLimit (SL) [57], SybilInfer (SI) [23],
Mislove’s community detection [38] (CD), and Gate-
Keeper (GK) [53]. Importantly, we also compare to
EigenTrust (ET) [33], which uses power iteration to as-
sign trust.

Datasets. The non-Sybil regions of the simulated so-
cial graphs, which comprise exclusively non-Sybils, are
samples of several popular social networks (Table1).
The Facebook graph [29] is a connected component sam-
pled via the “forest fire” sampling method [35]. The
synthetic graph is generated using Barabasi’s scale-free
model [15]. The rest of the graphs [3] have been widely
used to study social graph properties and to evaluate re-
cent Sybil defense mechanisms [41,54].

Attack strategies. We create a5K-node Sybil region
that connects to a non-Sybil region through a varying
number of random attack edges. We choose this large
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number of Sybils to stress-test each scheme. To inves-
tigate the schemes’ robustness to the formation of the
Sybil collective, we include two representative Sybil re-
gion structures: regular random graphs and scale-free
graphs [15]. We call the first attackregular attack: each
Sybil establishes connections tod random Sybils. We re-
fer to the second attack as ascale-free attack: each Sybil
preferentially connects tod Sybils upon its arrival, with
the probability of connecting to a Sybil proportional to
the Sybil’s degree. We setd = 4 in both attacks.

Social Nodes Edges Clustering Diameter
Network Coefficient

Facebook 10, 000 40, 013 0.2332 17

ca-AstroPh 18, 772 198, 080 0.3158 14

ca-HepTh 9, 877 25, 985 0.2734 18

Synthetic 10, 000 39, 399 0.0018 7

wiki-Vote 7, 115 100, 736 0.1250 7

soc-Epinions 10, 000 222, 077 0.0946 6

soc-Slashdot 10, 000 153, 404 0.0582 4

email-Enron 10, 000 105, 343 0.1159 6

Table 1: Social graphs used in our experiments. The last three
graphs are 10K-node BFS samples.

Performance metrics. Our evaluation is based on a
framework [54] that reduces defense schemes to a gen-
eral model: producing a trust-based node ranking. The
conversion for SybilLimit, SybilInfer, and CD is docu-
mented in [54]. For GateKeeper, we rank nodes by the
number of tickets that each node obtains. For EigenTrust,
we rank nodes according to their trust scores.

We use three metrics to compare the node ranking: the
area under the Receiver Operating Characteristic (ROC)
curve [31], the false positive rates, and the false nega-
tive rates. The ROC curve exhibits the change of the true
positive rate with the false positive rate as a pivot point
moves along the ranked list: a node below the pivot point
in the ranked list is determined to be a Sybil; if the node
is actually a non-Sybil, we have a false positive. The
area under the ROC curve measures the overall quality of
the ranking, i.e., the probability that a random non-Sybil
node is ranked higher than a random Sybil. It ranges
from 0 to 1, with 0.5 indicating a random ranking. An
effective Sybil detection scheme should achieve a value
> 0.5. Given a node ranked list, sliding the pivot point
regulates the trade-off between the two false rates. We
set the pivot point based on a fixed value for one false
rate and compute the other false rate. We set the fixed
false rate equal to 20%. In the real world, OSNs do not
need a pivot point because none of the defenses so far
can yield a binary Sybil/non-Sybil classifier with an ac-
ceptable false positive rate.

Trust seed selection.For a fair comparison, we strive to
use the same trust seeds for all schemes in each simula-
tion on each social network. For schemes that use a sin-
gle seed, we randomly pick a node from the top-10 non-

Sybil nodes that have the highest degree. For schemes
supporting multiple seeds at one run, i.e., SybilRank,
EigenTrust, and GateKeeper, we use 50 trust seeds. One
seed is the same top-10 degree node as the one used in
the single-seed schemes, and the other 49 seeds are ran-
domly chosen from the non-Sybil nodes.

Other simulation settings. We performlogn power
iterations for SybilRank, wheren is the size of the social
graph. We run EigenTrust until convergence with a reset
probability 0.15, as in [33]. For each attack scenario, we
average the results over 100 runs.

6.2 Ranking Quality Comparison
To compare the Sybil defense schemes, we start with
a few attack edges and increase the number to a suffi-
ciently large value such that the detection accuracy of
each scheme degrades significantly. We show represen-
tative simulation results in Figure6 and refer the reader
to our technical report for the complete results [20]. As
can be seen, when the number of attack edges is small,
most of the schemes perform well and Sybils can be dis-
tinguished from non-Sybils by connectivity.

SybilRank. SybilRank outperforms all other schemes.
It achieves the highest value of the area under the ROC
curve and the lowest false positive and false negative
rates. For the Facebook graph under the regular attack,
even if the5K-node Sybil cluster obtains1500 attack
edges, a non-Sybil node has a probability of70% to rank
higher than a random Sybil as indicated by the value of
the area under the ROC curve.

SybilLimit. SybilLimit outperforms most other
schemes, but it performs worse than SybilRank. We
believe that this is due to the different use of random
walks, i.e., SybilLimit uses random walk traces, while
SybilRank uses the power-iteration-computed landing
probability. SybilLimit’s security guarantee only limits
the Sybils accepted by the verifier’s (trust seed’s) ran-
dom walks that never cross any attack edge to the Sybil
region [56]. However, the accepted Sybils cannot be
bounded if a verifier’s random walk enters into the Sybil
region. In contrast, SybilRank allows trust to escape to
the Sybil region, but does not accept a Sybil unless it gets
higher degree-normalized trust than non-Sybil users.

GateKeeper. It performs worse than both SybilRank
and SybilLimit, although it bounds the accepted Sybils
to O(log g) per attack edge, whereg is the total number
of attack edges. This is because this bound comes from a
strong assumption that does not always hold in real social
networks: with high probability, a breadth-first search
starting from a non-Sybil user and visiting at mostn/2
nodes covers a large fraction of non-Sybil users [56].

SybilInfer. We observe a steep fall in the area under
the ROC curve for SybilInfer when the number of at-
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Figure 6: We depict the area under the ROC curve, the false positive rate, and the false negative rate with respect to the number of attack
edges under the regular attack and the scale-free attack forvarious Sybil detection schemes in the Facebook and the scale-free synthetic
graphs. In the ROC curve figures (a and d), a higher curve indicates a more effective scheme. In the false rate figures (b and c), a lower
curve indicates a more effective scheme. SR stands for SybilRank; CD for the community detection algorithm, GK for GateK eeper; SI for
SybilInfer; ET for EigenTrust; and SL for SybilLimit.

tack edges is close to500 in Facebook under the regular
attack. We suspect that this sharp performance degrada-
tion is due to the fact that SybilInfer uses the Metropolis-
Hastings (MH) algorithm to sample the non-Sybil node
set [23]. However, it remains unclear when the sampling
converges, although Danezis et al. provide an empirical
estimation and terminate the sampling afterO(n log n)
steps. If the Sybils obtain many attack edges and become
hard to be detected,O(n logn) steps may not suffice to
reach the convergence of the MH sampling and therefore,
the detection accuracy is likely to degrade.

Mislove’s CD. It underperforms under the regular at-
tack, with<0.2 under the ROC curve area (Figure6(a)).
It interestingly becomes effective under the scale-free at-
tack in the synthetic graph (Figure6(d)). This signifi-
cant performance difference is due to the greedy search
for the local community, which is sensitive to the graph
topology and cannot provide a false rate bound [56].

Although Mislove’s CD algorithm was intended to be
used with one seed, it can support multiple seeds at the
same cost: by initializing the local community search
with those seeds. In§6.4 we show that this extension
can improve its performance to some extent.

EigenTrust. EigenTrust improves over PageRank [45],
and uses the same basic mechanism as TrustRank [30].
We can see that in Figure6(a)EigenTrust mostly outper-
forms previously proposed Sybil defenses. However, it
has at least 20% higher false positive and negative rates
than SybilRank in most of the attack scenarios.

6.3 Comparison with EigenTrust
EigenTrust is more related to SybilRank because it also
uses power iteration. By further investigating EigenTrust
we reveal the importance of SybilRank’s two main dif-
ferentiating characteristics: a) removal of degree bias
(§4.3); and b) early termination and not jumping back
to trust seeds (§4.2.1).

Impact of the connectivity of the Sybil region. We
examine how the connection density within the Sybil re-
gion impacts the node ranking generated by EigenTrust
and SybilRank. To do so, we vary the number of edges
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Figure 7: Normalized area under the ROC curve as a function of
the number of edges connecting to other Sybils.

each Sybil has with other Sybils from4 to 40 under a
regular attack on the Facebook graph. We refer to such
edges asnon-attack.

Figure 7 shows thenormalized area under the ROC
curve, which is computed by dividing the area under the
ROC curve for each attack scenario with the baseline
case where each Sybil has only4 non-attack edges. As
can be seen in Figure7, with EigenTrust, the value of
the area under the ROC curve decreases when the con-
nections within the Sybil region become dense (the nor-
malized area under the ROC curve is always less than
1). This result is because in EigenTrust a node that has
many incoming links or is pointed to by other highly-
ranked nodes is typically ranked high [33, 45]. A ma-
licious user can simply create dense connections within
the Sybil region to boost the ranks of selected Sybils.
Therefore, denser Sybil connections lower EigenTrust’s
values of the area under the ROC curve, indicating that
more Sybils are ranked higher than non-Sybils.

On the contrary with SybilRank, due to the removal
of degree bias, high-degree Sybils do not benefit. In-
stead, SybilRank’s performance improves as the connec-
tions among Sybils become denser. This is because it ex-
ploits the sparse cut between the Sybil and the non-Sybil
region, which the addition of Sybil connections makes
even sparser (it lowers the conductance).

Impact of the distance from trust seeds. Eigen-
Trust’s trust distribution is sensitive to the locations of
the seeds because its random walks jump back to them.
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Figure 8: Trust distribution with respect to the average distance
to seeds in the synthetic graph under the regular attack with10000
attack edges.

Figure8 compares the distribution ofdegree-normalized
trust generated by EigenTrust and SybilRank with re-
spect to a node’s average shortest hop distance from the
trust seeds. We simulate a regular attack in the syn-
thetic graph with10K attack edges, and select5 seeds
for both EigenTrust and SybilRank. The total trust is set
to 2m. As shown in Figure8(a), EigenTrust tends to al-
locate high degree-normalized trust to nodes close to the
seeds. Nodes relatively farther from the seeds get sub-
stantially lower trust. In fact, the degree-normalized trust
distribution in EigenTrust has a “heavy” tail. Among
the10K non-Sybil nodes, more than9.4K have degree-
normalized trust lower than2. As we zoom into the tail,
this large set of non-Sybil users and Sybils have indistin-
guishable degree-normalized trust .

Figure8(b) shows that unlike EigenTrust, SybilRank
assigns roughly the same degree-normalized trust to each
non-Sybil node, while keeping a distinguishable gap be-
tween non-Sybils and Sybils. This empirically validates
our observation that the degree-normalized trust is ap-
proximately uniformly distributed in the non-Sybil re-
gion afterO(log n) power iterations (§4.3).

6.4 Coping with multiple communities
As discussed in§4.2.2, we distribute seeds among com-
munities to cope with the multi-community structure in
the non-Sybil region. We illustrate this with simulations
on synthetic graphs. The simulations also include Mis-
love’s CD and EigenTrust, which can be initialized with
multiple seeds at no additional computational cost. We
do not include GateKeeper because it uses random walks
to seek seeds (ticket sources), thus we do not fully con-
trol the placement of seeds among the communities.

Similar to the simulation scenarios in [54], we set up
a non-Sybil region consisting of 5 scale-free synthetic
communities, each of which has 2000 nodes with an av-
erage degree of 10. We designate one community as the
core of the social graph. The other 4 communities do
not have any connections to each other, but connect to
the graph core via only 500 edges. This process builds
a non-Sybil region where multiple communities connect
to the core community of the graph via limited links.

We contrast the following two seed selection strate-
gies: a) all 50 seeds are confined to the core community;
and b) the seeds are distributed among all the non-Sybil
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Figure 9: Comparing SybilRank, EigenTrust and Mislove’s CD
in a multi-community graph.

communities, each of which has 10 seeds. As shown in
Figure 9, seed selection strategy (b) improves the de-
tection accuracy for all schemes. Wide seed coverage
in the non-Sybil region offsets the impact of its multi-
community structure: the resulting ranking is mostly de-
termined by the sparse cut between the non-Sybil region
and the Sybil region. In Figure9, we see that SybilRank
maintains the highest accuracy for each of the seed place-
ment strategies due to the disadvantages of EigenTrust
and Mislove’s CD mentioned in§6.3and§6.2.

6.5 Resilience to seed-targeting attacks
Last, we study how various schemes perform under tar-
geted attacks. In these attacks, sophisticated attackers
may obtain partial or full knowledge about the OSN and
discover the locations of the trust seeds. They can then
establish attack edges to nodes close to the seeds.

We simulate the targeted attack in the Facebook graph.
The 5K-node Sybil region forms a regular attack struc-
ture, and has 200 attack edges connecting to the non-
Sybil region. Instead of being completely randomly dis-
tributed, those 200 attack edges are established by ran-
domly connecting to thek non-Sybil nodes with the
shortest distance from the trust seed. For schemes sup-
porting multiple seeds, we target the attack edges to the
highest-degree trust seed. We varyk from 1K to 10K.
A smallerk signifies a shorter average distance between
Sybils and seeds.

As shown in Figure10, when attack edges are at-
tached close to the seed, all schemes’ performance de-
grades, while SybilRank keeps the most stable perfor-
mance across a wide range ofk values. This is because
SybilRank does not assign excessive trust to nodes that
are close to the seeds (§6.3). However, SybilRank’s per-
formance still degrades whenk is small. This is because
these closely targeted attacks force SybilRank to “leak”
a fraction of trust in the Sybil region during early power
iterations. Thus, its detection accuracy reduces as Sybils
may gain higher trust than non-Sybils.

7 Real-world Deployment
We now discuss the deployment of our system on a snap-
shot of Tuenti’s complete social friendship graph, which
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Figure 10: Detection effectiveness under the attacks targeting the
k non-Sybils with the shortest distance to the seed.

was obtained in August 2011. Due to the sheer volume
of users, it would be infeasible for us to manually in-
spect whether each user is a Sybil. Thus, we are unable
to evaluate SybilRank with the same metrics as in the
simulations (§6), such as the area under the ROC curve,
the false negative rate and the false positive rate. Instead,
we attempt to determine the portion of fake users at vary-
ing segments of the ranked list. We do so by manually
inspecting a user sample in each particular interval in the
ranked list (§4.4). Due to the practical constraints and the
limited availability of human verifiers, we do not deploy
the other Sybil defenses on Tuenti.

Pre-processing. We observe that in Tuenti some fake
Tuenti accounts are well-maintained and have extremely
high degree. They may introduce many attack edges if
they connect to real users. At the same time, brand new
real users always have weak connectivity to others due to
the limited time they have been in the OSN, resulting in
false positives. To reduce the impact of these two factors,
we perform pre-processing before applying SybilRank:
we prune the edges on extremely-high-degree nodes and
defer the consideration of very recent users (see [20]).

Communities in Tuenti. The complete Tuenti social
graph has 1,421,367,504 edges and 11,291,486 nodes,
among which 11,216,357 nodes form a Giant Connected
Component (GCC). Our analysis focuses on the GCC.
With the Louvain method, we found 595 communities,
among which 25 large communities contain more than
100K nodes. We inspected 4 nodes in each community
and designated as SybilRank trust seeds the nodes that
pass the manual verification.

7.1 Validating the mixing time assumptions
As discussed in§3.2, SybilRank relies on the mixing
time gap between the non-Sybil region and the entire
graph. Since we seed trust in each large community, the
trust propagation is mainly determined by those commu-
nities. To this end, we investigate the 25 large communi-
ties identified by the Louvain method. As shown in§7.2,
fake accounts are embedded in each community. We then
measure the mixing time gap between each community
and its non-Sybil part.

We measure the mixing time using its definition, i.e.,
the maximum necessary walk length to achieve a given
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Figure 11: Contrasting the mean length of random walks from
Sybils and from random users in each community.

variation distance [39] from the stationary distribution.
Due to Tuenti’s large population, it is difficult to remove
all Sybils in order to measure the mixing time of the non-
Sybil part in each community. Therefore, our measure-
ment approximates the mixing time gap. We do so by
contrasting the mean length of random walks from ran-
dom users and from the Sybils that are captured by Sybil-
Rank in each community.

We hypothesize that due to the majority of users in
Tuenti being non-Sybil, if the Sybils are weakly con-
nected to the majority, given a total variation distance,
the random walks from Sybils need to be longer than
that from average users. In such a case, the Sybils’ ran-
dom walk length can approximate the mixing time of the
entire community, and we designate the length of ran-
dom walks from average users as the mixing time of the
non-Sybil part. Since the average users may include hid-
den Sybils, using their walk length only overestimates
the mixing time of the non-Sybil part.

We select1000 random users and100 confirmed
Sybils in each community. The total variation distance is
set equal to0.01. As shown in Figure11, the mean length
of random walks from the random users in each commu-
nity is small (mostly< 100), while the mean Sybil walk
length is much longer. This indicates that the Sybils con-
nect to the majority users with a limited number of edges,
which makes their needed walk length longer. This fact
demonstrates that social-graph-based defenses can be ef-
fective for our real OSN graph. In addition, recall that in
SybilRank we have placed multiple random seeds in each
community, which facilitates the convergence of the trust
propagation. The power iterations that SybilRank needs
are even less than the random walk length in Figure11.

7.2 Detecting Fakes in Tuenti

Manually inspecting the ranked list. We run Sybil-
Rank on the complete Tuenti social graph. We inspected
2K users at the bottom of the resulting ranked list, and
all of them were fake (Sybils). We further examined the
ranked list by inspecting the first lowest-ranked one mil-
lion users. We randomly selected 100 users out of each
50K-user interval for inspection. As shown in Figure12,
the 100% fake portion was maintained at the first 50K-
user interval, but the fake portion gradually decreased as
we went up the list. Up to the first 200K lowest-ranked
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Figure 12: Sybil distribution over the lowest 650K users on the
ranked list (intervals are numbered from the bottom).

users, around 90% are fake, as opposed to the∼5% hit
rate of Tuenti’s current abuse-report-based method. This
suggests an 18-fold increase in the efficiency with which
Tuenti can process suspected accounts.

We also observe that above the 200K lowest-ranked
users, the portion of fakes decreases abruptly from
∼90% to∼50%, and then∼10%. This is because fake
accounts that have established many social links to real
users can be ranked high. This reveals that SybilRank’s
limitation lies in the open nature of OSNs, i.e., the ease
at which some fake accounts can befriend real users.

Although we have sampled users for inspection un-
til the lowest 1 million users, due to confidentiality rea-
sons we report the exact portions of fake users until the
lowest 650K users. Above the lowest 650K, we obtain
even lower portions of fakes, which subsequently stabi-
lize. One can sample above the point in which the por-
tion of fakes stabilizes to infer the portion of fakes in
the complete Tuenti network. We have also obtained a
more accurate estimate of the portion of fakes in the net-
work by uniformly sampling over the complete network.
This allows us to determine how many fake accounts are
not captured by SybilRank. Again, we cannot reveal this
statistic, as we are bound by confidentiality.

The portion of fakes we report is directly related to
precision [32], which is a performance metric used in
Collaborative Filtering. It is the ratio of relevant items
over the topθ highest ranked items in terms of relevance.
The results in Figure12reflect a precision as high as 90%
among the first 200K lowest-ranked users (see [20]).

Formation of the Sybil collective. We showed above
that SybilRank achieves an almost 100% portion of fakes
in the first50K lowest-ranked users. We now study the
social connections among those50K users. We found
that fakes in Tuenti are rarely isolated from each other
and that real world Sybils exhibit various formations
(see [20]). We observed three large connected compo-
nents that manifest a simple tree-like connection pattern
between nodes of similar degree. This indicates that
those accounts may be automatically crafted for spam,
rating manipulation, and other attacks on a large scale.

In addition, those50K users do not form a single con-
nected component. Instead they form many separate con-

nected clusters. Presumably this is due to the fact that the
attackers behind those fake accounts are not centrally co-
ordinated. We also investigate the degree of those50K
users. 80% of these users have no more than 10 friends,
while there are hundreds among these Sybils that have
more than 100 friends. This indicates that the node de-
gree is not a reliable metric to detect fake accounts due
to its large variance among fake users.

Sybils in large communities. SybilRank leverages the
community structure to properly seed trust. It is much
more accurate than just determining if an entire commu-
nity is fake. Among the50K lowest-ranked users, we
found that part of them are embedded in the 25 large
communities (see [20]). For example, each top-10 largest
community has hundreds of Sybils. This indicates that
SybilRank detects fake accounts even in large communi-
ties that mostly consist of non-Sybil users.

7.3 Discussion
With SybilRank, Tuenti needs∼570 man hours to go
over the 200K lowest ranked users and discover∼180K
fake accounts. With its current abuse-report-based
method, which has only∼5% hit rate, and assuming
all these fakes are reported, Tuenti would need∼10,300
hours. By executing SybilRank periodically, e.g., ev-
ery month, we expect Tuenti to remain able to efficiently
identify a substantial number of fake accounts.

Our study pin-pointed 200K suspicious accounts after
a total of 20 hours of SybilRank and community estima-
tion processing. Those accounts can be verified by one
full-time (8h) employee in∼70 days. This compares fa-
vorably to the feature-based detection mechanism used
by Yang et al. [55], which unveiled in real time 100K
fakes in the 120M-user RenRen, over 6 months.

Yang et al. [55] reported that 70% of their de-
tected fake nodes do not have any connections to other
fakes. However, unlike RenRen, Tuenti is invitation-
only. Thus, a fake account is at least connected to its
inviter when created. As a result, the number of isolated
accounts is small (<70K) compared to the number of the
fake accounts detectable by SybilRank. In addition, we
found that Sybils in Tuenti do form dense connections
among themselves, which as we show in§6.3further en-
ables SybilRank to uncover Sybils. Last, we note that
most detected fake accounts were spammers [12].

8 Conclusion
Large scale social online services place immense atten-
tion to the experience of their user base, and the mar-
ketability of their user profiles and the social graph. In
this context, they face a significant challenge by the ex-
istence and continuous creation of fake user accounts,
which dilutes the advertising value of their network and
annoys legitimate users. To this end, we have proposed
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SybilRank, an effective and efficient fake account in-
ference scheme, which allows OSNs to rank accounts
according to their perceived likelihood of being fake.
Therefore, this work represents a significant step towards
practical Sybil defense: it enables an OSN to focus its ex-
pensive manual inspection efforts, as well as to correctly
target existing countermeasures, such as CAPTCHAs.
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