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Abstract customer’s resources by making him pay for online ad
Users increasingly rely on the trustworthiness of theCliCKS or impressions from or to fake profiles. Fake ac-
information exposed on Online Social Networks (OSNs).coUNts can also be used to acquire users’ private contact
In addition, OSN providers base their business models ofists [17]. Sybils can use the *+1” button to manipulate
the marketability of this information. However, OSNs G00gle search resultd]] or to pollute location crowd-
suffer from abuse in the form of the creation of fake ac-SOUrcing resultsg]. Furthermore, fake accounts can be
counts, which do not correspond to real humans. FakedS€d t0 access personal user informatidr] gnd per-
can introduce spam, manipulate online rating, or exploifo'™M large-scale crawls over social graphg][
knowledge extracted from the network. OSN operatorsThe challenge. Due to the multitude of the reasons
currently expend significant resources to detect, manubehind their creationt@.1), real OSN Sybils manifest
ally verify, and shut down fake accounts. Tuenti, thenumerous and diverse profile features and activity pat-
largest OSN in Spain, dedicates 14 full-time employeeserns. Thus, automated Sybil detection (e.g., Machine-
in that task alone, incurring a significant monetary cost.| earning-based) does not yield the desirable accuracy
Such atask has yet to be successfully automated becaug®.?). As a result, adversaries can cheaply create fake
of the difficulty in reliably capturing the diverse behavior accounts that are able to evade detectibg.[ At the
of fake and real OSN profiles. same time, although the research community has exten-
We introduce a new tool in the hands of OSN opera-sively discussed social-graph-based Sybil defen2gs [
tors, which we calSybilRank . It relies on social graph 52-54,57,58], there is little evidence of wide industrial
properties to rank users according to their perceived likeadoption due to their shortcomings in terms of effective-
lihood of being fake (Sybils). SybilRank is computation- ness and efficiency§2.4). Instead, OSNs employ time-
ally efficient and can scale to graphs with hundreds ofconsuming manual account verification, driven by user
millions of nodes, as demonstrated by our Hadoop proreports on abusive accounts. However, only a small frac-
totype. We deployed SybilRank in Tuenti’s operation tion of the inspected accounts are indeed fake, signifying
center. We found that90% of the 200K accounts that inefficient use of human labo§2.3).
SybilRank designated as most likely to be fake, actually |f 3n OSN provider can detect Sybil nodes in its sys-
warranted suspension. On the other hand, with Tuenti'sem effectively, it can improve the experience of its users
current user-report-based approach onB% of the in-  and their perception of the service by stemming annoy-
spected accounts are indeed fake. ing spam messages and invitations. It can also increase
1 Introduction the _mark(_etability of its user ba;e and it; social gra_ph. In
. ] ] ) addition, it can enable other online services or distridute
The surge in popularity of online social network- gystems to treat a user's online social network identity as

ing (OSN) services such as Facebook, Twitter, Digg.an authentic digital identity, a vision foreseen by recent
LinkedIn, Google+, and Tuenti has been accompanied byorts such as Facebook Conneit [

an increased interest in attacking and manipulating them.
Due to their open nature, they are particularly vulnerabled

to the Sybil attack28], under which a malicious user can multi-million-user OSN to pick up accounts that are very

create multiple fake OSN accounts. likely to be Sybils?” The answer can help an OSN
The problem. It has been reported that 1.5 million stem malicious activities in its network. For example,
fake or compromised Facebook accounts were on salg can enable human verifiers to focus on likely-to-be-
during February 20107]. Fake (Sybil) OSN accounts fake accounts. It can also guide the OSN in send-
can be used for various purposé€s{, 9]. For instance, ing CAPTCHA [14] challenges to suspicious accounts,
they enable spammers to abuse an OSN’s messaging sy&hile running a lower risk to annoy legitimate users.

tem to post spam2g, 51], or waste an OSN advertising Our solution. We present the desigf4), implementa-

; o S _ tion (§5), and evaluation$,57,§5) of SybilRank. Sybil-
Part of Q. Cao’s work was conducted while interning with Tatéca Rank is a Sybil inference scheme customized for OSNs
Research.

M. Sirivianos is currently with the Cyprus University of Tewlogy. whose social relationships are bidirectional.

We therefore aim to answer the question: “can we
esign a social-graph-based mechanism that enables a



Our design is based on the same assumption as in pr& Background and Related Work

vious work on social-graph-based defens8 $2-54,  \ye have conducted a survey with Tuerd] fo under-

57,58]: that OSN Sybils have a disproportionately small stan the activities of fake accounts in the real world, the
number of connections to non-Sybil users. D'ﬁerently’importance of the problem for them, and what counter-
our system achieves a significantly higher detection acyyeasures they currently employ. In the rest, we discuss

curacy at a substantially lower computational cost. It can, findings and prior OSN Sybil defense proposals.
also be implemented in a parallel computing framework,

e.g., MapReduce2d], enabling the inference of Sybils 2.1 Fake accounts in the real world

in OSNs with hundreds of millions of users. Fake accounts are created for profitable malicious activ-
Social-graph-based solutions uncover Sybils from thetjes, such as spamming, click-fraud, malware distribu-
perspective of already known non-Sybil nodésug  tion, and identity fraudq,12]. Some fakes are created to
seeds). Unlike [57] and [53], SybilRank’s computational  increase the visibility of niche content, forum posts, and
cost does not increase with the number of trust seeds ¥yn pages by manipulating votes or view coui9].
uses ¢4.5. This facilitates the use of multiple seeds to People also create fake profiles for social reasons.
increase the_systgm's robu_stness to seed selection errofyase include friendly pranks, stalking, cyberbullying,
such as designating a Sybil as a seed. It also allows thg,q concealing a real identity to bypass real-life con-
OSN to cope with the multi-community structure of 0n- gyraints p|. Many fake accounts are also created for so-

line social graphsq4] (§4.2.2. cial online gamesq).
We show that SybilRank outperforms existing ap-

proaches23,33,38,53,57]. In our experiments, itdetects 2.2 Feature-based approaches

Sybils with atleast 20% lower false positive and negativerne |arge number of distinct reasons for the creation of
rates £6) than. the second-best contendc_er in most of th‘?SybiI accounts@, 7, 9] results in numerous and diverse
attack scenarios. We also deployed SybilRank on Tuentimajicious behaviors manifested as profile features and
the leading OSN in Spair§ 7). Almost 100% and 90% of = gctivity patterns. Automated feature-based Sybil detec-
the 50K and 200K accounfts_, respectwe_ly, that SybllRanI_gion [55 (e.g., Machine-Learning-based) suffers from
designated as most suspicious, were indeed fake. Thigigh false negative and positive rates due to the large
compares very favorably to the5% hit rate of Tuenti's  yariety and unpredictability of legitimate and malicious

current abuse-report-based approach. OSN users’ behaviors. This is reminiscent of how ML
Our contributions. In summary, this work makes the has not been very effective in intrusion detectidf][
following contributions: High false positives in particular pose a major obstacle

e We re-formulate the problem of Sybil detection in in the deployment of automated methods, as real users
OSNs. We observe that due to the high false positivesespond very negatively to erroneous suspension of their
of binary Sybil/non-Sybil classifiers, manual inspectionaccounts 10]. To make matters worse, attackers can al-
needs to be part of the decision process for suspending amays adapt their behavior to evade detection by auto-
account. Consequently, our aim is to efficiently derive amated classifiers. Boshmaf et al9 recently showed
quality ranking, in which a substantial portion of Sybils that the automated Facebook Immune Systé6j \vas
ranks low. This enables the OSN to focus its manual in-able to detect only 20% of the fakes they deployed, and
spection efforts towards the end of the list, where it isalmost all the detected accounts were flagged by users.
more likely to encounter Sybils. Moreover, our ranking )

can inform the OSN on whether to challenge suspicioug-3 Human-in-the-loop counter-measures

users with CAPTCHAs. In response to the inapplicability of automated account
e The design of SybilRank, an effective Sybil-likelihood suspension, OSNs employ CAPTCHA] [and photo-
ranking scheme for OSN users based on the landbased social authenticatiohd to rate-limit suspected

ing probability of short random walks. We efficiently users, or manually inspect the features of accounts re-
compute this landing probability using early terminatedported as abusive (flagged) by other usé#%1, 55].

power iteration. In addition, SybilRank copes with the The manual inspection involves matching profile pho-
multi-community structure of social graph§4 using  tos to the age or address, understanding natural language
multiple seeds at no additional computational cost. Wein posts, examining the friends of a user, €t@][ The
thoroughly compare SybilRank with existing Sybil de- inspectors also use simple tools to parse activity and IP
tection schemes. statistics of suspicious accounts. However, these tasks
e We deployed SybilRank on Tuenti, an OSN with 11M require human intelligence and intuition, rendering them
users. Our system has allowed Tuenti operations to dedard to automate and scale. In addition, flagged accounts
tect in the same time period 18 times more fake accountBave by definition already caused annoyance to some
than their current process. users. Therefore, the need arises for a method that en-



N/ 24 : However, community detection (CD) algorithms rarely

User Report| provide provable guarantees, and Mislove's CD algo-
Q} = — rithm costsO(n?). Compared to the above schemes,

Social Relationship Suspended Viswanath et al.$4] propose community detection algo-
— | sypiiRank Human Verifiers| | =g rithms such as Mislove’s algorithn3@] to detect Sybils.

Va \ SybilRank achieves equivalent or higher accuracy (ana-

Mitigation Mechanisms

User Profiles Feature-based - o . .. L.
m | Machine Loamming G lytically), but it is computationally more efficient, i.et,

hasO(nlogn) cost irrespective of the number of seeds.
Moreover, SybilRank addresses important limitations
of existing social-graph-based defenségl][ First,
SybilRank leverages its efficient support for multiple
ables human verifiers to focus on accounts that are veryrust seeds to reduce the false positives resulting from the
likely to be fake and to disable them in a timely manner. existence of multiple non-Sybil communities. Second, it
Tuenti receives on average 12,000 reports regardingnables very flexible seed selection (any non-Sybil node
abusive accounts and 4,000 reports for violating photosan be a seed), which makes it harder for attackers to
per day. An employee can review an average of 250 tdarget the seeds. In addition, SybilRank’s effectiveness
350 reports in an hour. Among those reported suspiciougecreases only moderately as the Sybil’s distance from
accounts, only~5% are indeed fakelp]. On average, the trust seeds decreasg8.).
Tuenti’s manual inspection team, which consists of 14 Zhao et al’s $1] BotGraph detects spam webmail
employees, deletes 800 to 1500 fake accounts per day. user-bots by leveraging the fact that they are highly cor-
Our solution can be a component of the overall frame+elated in terms of the IP address of their controllers.
work employed by OSN providers to ensure the healthThe same mechanism can be used in social graphs to
of their user base (Figur#). It is a proactive method uncover Sybils that form tight-knit communities. Tan-
that can uncover fakes even before they interact with reagentially, Yang et al.§5] recently analyzed a sample of
users. It complements ML- and user-report-based meth660K Sybils in the RenRen OSN, and found that they do
ods. The users that these methods designate as suspit form tight-knit communities. Regardless, SybilRank
cious are typically challenged in the form of CAPTCHAs and the schemes 128, 53,54, 58] rely on the assump-

Figure 1: SybilRank as a part of an OSN’s Sybil defense toolchain.

or are manually inspected. tion that the connectivity between Sybils and non-Sybil
) users is limited and are not very sensitive to the number
2.4 Social-graph-based approaches of Sybils or the inter-Sybil connectivity.

Sybil detection has been the focus of the research com- Sybil-resilient systems2[7, 36, 37, 42, 44, 46-48, 59|
munity for a while now p3,52-54, 57,58]. However, leverage application-specific knowledge to effectively
none of the existing proposals can play therole of Sybil-  mitigate Sybils, e.g., to limit the number of votes col-
Rankin Figure 1. The reason is that prior schemes eitherlected from Sybil users5p]. However, a Sybil-resilient
do not exhibit equivalent accuracy or they incur a pro-design optimized for an application may not be applica-
hibitive computational cost. Their key features are doc-ble to other systems, while a social-graph-based Sybil
umented in a recent surve§q. We next compare them inference mechanism can be applied to any application
to our proposal. that binds its users to OSN accounts.

The decentralized protocols SybilGuar88] and )
SybilLimit [57] infer Sybils based on a large volume of 3 Models, Assumptions, and Goals
random walk traces, which leads to &{/mnlogn)  We now introduce our system and threat model, and our
(m is the number of edges, is the number of nodes) design assumptions and goals.
computational cost in a centralized setting.  Sybil-
Infer [23] is also built on random walk traces with 3-1 System and threat model
O(n(logn)*) cost per honest seed, but does not specifyWe consider bilateral social relationships and model an
any upper-bound guarantee on false ratg.[ Mo- OSN as arundirected graphG = (V| E), where each
haisen et al. 40] propose to use weighted random node inV corresponds to a user in the network, and each
walks in SybilLimit. However, they follow the random edge inE corresponds to a bilateral social relationship.
walk sampling paradigm instead of our power-iterationIn the social grapld-, there are: = |V| nodesyn = |E|
method §4.2), incurring a cost as high as SybilLimit. undirected edges, and a nodéas a degree afeg(v).

The flow-based scheme GateKeepBB|[improves We assume that the OSN provider, e.g., Tuenti, has ac-
over SumUp 52]. It relies on a strong assumption that cess to the entire social graph.
requires balanced graphsf] and costsO(snlogn) (s In our threat model, attackers can launch Sybil at-
is the number of seeds, referred to as ticket sourcesjacks P1,26] by creating many fake identities. Like ex-



Non-Sybil Region (Gy) -~ Sybil Region (Gs) Sybil region mixes slower if4.2.3

Attack edge distribution. To make our analysis
tractable, we assume that Sybils randomly attach attack
edges to non-Sybils. A more effective attack strategy
against a social-graph-based Sybil defense is to establish
O Trust Seeds O Non-Sybil Users @ Sybils attack edges close to the trust seeds. We refer to this at-
Figure 2: Non-Syhil region, Sybil region, and attack edges inan  t5ck as aargeted attack. We experimentally study how

OSN under a Sybil attack. All Sybils created by malicious uses .
are placed into the Sybil region. The Sybil collective may nobe SybilRank performs under the targeted attack é15.

well connected.

3.3 Goals
isting work [23,57,58], we divide the node sét intotwo  gypjlRank aims to aid OSNs in identifying highly sus-
disjoint setsH and S, representing non-Sybil and Sybil picious accounts by ranking users. In principle, Sybil-
users respectively, as shown in Fig&reWe denote the  Rank can be used to defend against malicious accounts
non-Sybil region 1 as the subgraph induced by the non- that are created on a large scale and at a low per-account
Sybil user sef, which includes all non-Sybil users and cost for purposes, such as rating manipulation (e.g., with

the links among them. Similarly, tHybil region Gs is  Facebook “likes”), spam, and crawls. Our design has the
the subgraph induced ly. The non-Sybil and the Sybil - fg|lowing main goals:

regions are connected lgyattack edges between Sybils
and non-Sybil users.

Effectiveness. The system should mostly rank nodes
that are Sybils lower than non-Sybils (low false posi-
3.2 Assumptions tives), while limiting the number of non-Sybils ranked
We make the following assumptions. below Syl_3|ls (low false nega_ltlves). It sho_uld be r_obust
_ i ) ) under various attack strategies. A very high portion of
Social graph. The social graph is undirected. The NON- ¢ o des at the bottom of the ranked list should be fake.

Sybil regionGyy is well connected and non-bipartite. 1o hortion of fakes can decrease as we go up the list.
In this case, random walks on the graph can be mod-

eled as an irreducible and aperiodic Markov chaij] ~ Efficiency. The system should have a low computation
This Markov chain is guaranteed to converge to a station€0St- 1t should be able to handle large social networks
ary distribution in which the landing probability on each With commodity machines, so that OSN providers can

node after sufficient steps is proportional to its degree. d€PIOY it on their existing clusters.

Limited attack edges. We assume that Sybils estab- 4 Design

lish a limited number of attack edges due to the difficulty\ne now describe the design of SybilRank. We first pro-
of soliciting and maintaining reciprocal social relation- y;qe an overview of the approach and proceed with a de-
ships. Although previous studied?, 19 suggest that  t5jjed description of each component.
fake identities can befriend others, a recent study shows )
that most of their connections are established with othef-1  Overview
fakes B3]. SybilRank is designed for large scale attacks,SybilRank relies on the observation that aarly-
where fake accounts are crafted and maintained at a lowerminated random walk §6] starting from a non-Sybil
cost, and are thus unable to befriend many real usersiode in a social network has a higher degree-normalized
Furthermore, SybilRank can be deployed over a socia{divided by the degree) landing probability to land at a
graph that includes only strong-relationship edges. Fonon-Sybil node than a Sybil node. Intuitively, this obser-
instance, Google+ may consider only social connectiongation holds because the limited number of attack edges
between users that appear in mutually close circles.  forms a narrow passage from the non-Sybil region to the
The limited attack edges result in a sparse cut beSybil region in a social network. When a random walk
tween the non-Sybil and the Sybil region. Since the well-is sufficiently long, it has a uniform degree-normalized
connected non-Sybil region is unlikely to have such aprobability of landing at any node, a property referred
sparse cutgg], there should be a significant difference to as the convergence of a random wdlk][ However,
between the mixing time of the non-Sybil regidfy;  a shortened random walk originating from a non-Sybil
and the entire graplir [16]. A graph’smixing timeis  node tends to stay within the non-Sybil region of the net-
the maximum number of steps that a random walk needsiork, as the walk is unlikely to traverse one of the rela-
to make so that the probability of landing at each nodetively few attack edges.
reaches the stationary distributiobg]. As in previous Our key insight is to rank nodes in a social graph ac-
work [23,57,58], we start with the assumption that the cording to the degree-normalized probability of a short
non-Sybil regionGy is fast mixing, i.e., its mixing time  random walk that starts from a non-Sybil node to land
is O(logn), and discuss the scenarios where the nonen them. We screen out low-ranked nodes as potential



fake users. A further novelty of our approach is thattinguish Sybils from non-Sybils. The intuition is that
we use power iteratior8f], a standard technique to effi- if we seed all trust in the non-Sybil region, then trust
ciently calculate the landing probability of random walks can flow into the Sybil region only via the limited num-
in large graphs. This is in contrast to prior work that usedber of attack edges. If we terminate the power iteration
a large number of random walk trac@8[40,56-58] ob-  early before it converges globally, non-Sybil users will
tained at a high computational cost. For ease of exposiebtain higher trust than that in the stationary distribotio
tion, we refer to the probability of the random walk to whereas the reverse holds for Sybils.

land on a ”Od,e as the noda’gst. ) Trust propagation via power iteration. We define
As shown in Figure3, SybilRank unveils users that 1)) as the trust value on nodeafter: iterations. Ini-

are suspected to be Sybils aftgr thrge stages. In Staq&ny' the total trust, denoted & (T > 0), is evenly
[, throughw = O(logn) power iterations §4.2), trust distributed onk (K > 0) trust seeds, s, ..., ix:
flows from known non-Sybil nodes (trust seeds) and

spreads over the entire network with a bias towards the ©) Te  ifnodew is one of theK trust seeds
non-Sybil region. In Stage I, SybilRank ranks nodes?" (V) = { 16 else

based on their degree-normalized trust. In the final stage,

SybilRank assigns portions of fake nodes in the intervals - Seeding trust on multiple nodes makes SybilRank ro-
of the ranked list. This enables OSNs to focus their mantyst to seed selection errors, as incorrectly designating a
ual inspection efforts or to regulate the frequency withnode that is Sybil or close to Sybils as a seed causes only
which they send CAPTCHAs to suspected users. a small fraction of the total trust to be initialized in the

We next describe each stage in detail. Sybil region.

During each power iteration, a node first evenly dis-
tributes its trust to its neighbors. It then collects trust
distributed by its neighbors and updates its own trust ac-
cordingly. The process is shown below. Note that the
total amount of trusf; remains unchanged.

Propagating trust via ) oo e
O(log n) power iterations

J1

TOm = 3 761 ()

(u,v)EE deg(u)

degree-normalized trust

igh Early termination.  With sufficiently many power it-
Annotating the ranked list o i 1 is-
Stage 11| Annotad N on ot ke 5 m;,;| ............ "| eratlc.)ns, the trust vector con;/eizg)es to the stationary dis
I e ! tribution: lim; o 70 (v) = <22 x T [16]. How-
Figure 3: SybilRank detects Syhils in three stages. Black users ever, SybilRank terminates the power iteration after
are Sybils. Darker nodes obtain less trust after trust propaation. O(logn) steps, thus before convergence. This num-
ber of iterations is sufficient to reach an approximately
4.2 Propagating trust uniform .distribution (_)f degree-norma}lized trust over the
fast-mixing non-Sybil region, but limits the trust escap-

ieng to the Sybil region.

| |
| |
| |
| |
| |
| |
| N
! Stage I Ranking nodes based on D 0oo0o0o0l!
I X X XK X ] }
|
| |
| |
| |
| |
| |
| |
|

Power iteration involves successive matrix multiplica-
tions where each element of the matrix represents th
random walk transition probability from one node to Alternative use of power iteration. ~We note that
a neighbor node. Each iteration computes the landPower iteration is also used by the trust inference
ing probability distribution over all nodes as the randommechanisms PageRank, EigenTrust, and TrustRaak [

walk proceeds by one step. 30, 33, 45|, where it is executed until convergence to
_ the stationary distribution of the complete graf3][
4.2.1 Early-terminated random walks At each step and with a constant probability, PageR-

We terminate the power iterations aft@flogn) steps. ank’s random walks jump to random users, and Eigen-
The number of iterations needed to reach the stationaryrust/TrustRank’s walks jump to trust seeds. Eigen-
distribution is equal to the graph’s mixing time. In an Trust/TrustRank is personalized PageRank with a cus-
undirected graph, if a random walk’s transition proba-tomized reset distribution over a particular set of seeds.
bility to a neighbor node is uniformly distributed, the  SybilRank’s random walks do not jump to random
landing probability on each node remains proportionalusers, because this would allow Sybils to receive trust
to its degree after reaching the stationary distributionin each iteration. Besides, SybilRank’s random walks do
SybilRank exploits the mixing time difference between not jump to the trust seeds, because this would assign
the non-Sybil regiorG;; and the entire grapty to dis-  high trust to Sybils that are close to the trust segds3.



O Trust Seeds O Non-Sybil Users © Sybils
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(a) Initialization (b) After 4 power iterations (c) Stationary distribution

Figure 4: Trust propagation through power iterations.

In addition, we do not seek to improve the Sybil re- We leverage SybilRank’s support for multiple seeds
silience of power-iteration-based trust inference mechato improve its performance in OSNs that have a multi-
nisms by enforcing early termination. This is becausecommunity structure. The key idea is to distribute seeds
with their implicit directed connections to random nodesamong the communities. Thus, at initialization we dis-
(PageRank) and trust seeds (EigenTrust and TrustRankyjbute trust in such a manner that the non-Sybil users
the mixing time of their modified graphs decreases sig-are not starved of trust even if the inter-community con-
nificantly. A formal analysis on the convergence of ran-nectivity is weak. We validate this design choice with
dom walks on these graphs is documented3d].[Em-  simulations in§6.4, where SybilRank maintains a high
pirical reports show that EigenTrust only takes 10 iter-detection accuracy in synthetic graphs with high-level
ations to converge on a 1000-node grap8[] There- community structure.
fore, early termination afte®(logn) steps cannot im- Inspecting random users for trust seeds to cover most
prove those schemes. of communities in the non-Sybil region would require

Example. Figure4 illustrates the process of our trust & prohibitive manual inspection workload, as indicated
propagation. In this example, we initially sed = 648 Py the Coupon Collector's Problen3]. Instead, we
on the non-Sybil node€’ and D. We do not normal- apply an efflcllent Commun|ty detef:tlon but not Sybil-
ize T to 1 for ease of exposition. After four power reS|I|.ent algorithm to obtain an estimation of the com-
iterations, all non-Sybil node$A, B, C, D, E} obtain ~ Munity structure 1.8], and ther] seed trust on non-Sybil
higher degree-normalized trust than any of the Sybilg!Sers in each major community.

{F,G,H,I}. However, as shown in Figudc), if we  Estimating the multi-community structure. We use

let the power iteration converge (more thidriterations),  the Louvain method8], which can efficiently detect
the Sybils have similar trust as the non-Sybil nodes, angdommunities. This method iteratively groups closely
each node’s trust is only proportional to its degree. connected communities together to improve the parti-
. . . . tion modularity. In each iteration, every node represents
4.2.2 Coping with the multi-community structure a community, and well-connected neighbor nodes are
Existing social-graph-based defenses are sensitive to theymbined into the same community. The graph is re-
multi-community structure in the non-Sybil regio®4.  constructed at the end of each iteration by converting the
Due to the limited connectivity between communities, resylting communities to nodes and adding links that are
they may misclassify non-Sybils that do not belong toyeighted by the inter-community connectivity. Each it-
the communities of the trust seeds as Sybils. eration has a computational cost linear to the number of
Distributing seeds among communities.  Sybil- ~ edges in the corresponding graph and a small number of
Rank intends to reach a uniform distribution of degree-iterations are typically required. In addition, this medho
normalized trust among the non-Sybil region, which iscan be parallelized on commodity machinég]|
independent of the location of the non-Sybil seeds. Thus, As illustrated in Figures, in each identified commu-
any set of non-Sybil users are eligible for the trust seedshity we inspect a small set of random nodeslQ0 in
Seeding trust on Sybils would degrade SybilRank’s ef-total for the 11-million-node Tuenti social network) and
fectiveness as the initial trust on the Sybil seeds is noonly seed trust at the nodes that pass the verification.
bounded by the limited attack edges. OSN providers can Community detection algorithms have been proposed
easily identify non-Sybil users to seed trust by manuallyto directly detect Sybilsg4]. They seek a partition of a
inspecting a few users. SybilRank works with an arbi-graph that has dense intra-community connectivity and
trary number of non-Sybil seeds regardless of their lo-weak inter-community connectivity. For instance, the
cations. In contrast, the seed selection is complicatedlouvain method searches for a partition with high mod-
for previous trust inference schemeg.Q.l) and Sybil  ularity [18]. Thus, Sybils that are not well connected
defenses such as SumUg?] because they have to guar- among each other may be classified as non-Sybils be-
antee that the seed(s) are “far” from Sybils. longing to nearby non-Sybil communities. In contrast,



Non-Sybil region distribution in the non-Sybil region approximates the sta-
tionary distribution in that region, i.e., the amount ofsru

Syloil_fggij:n on each non-Sybil node is proportional to its degree.
;ﬂf ) 8 ) The removal of the degree bias simplifies the
- ’,_‘,"' Sybil/non-Sybil classification, i.e., all non-Sybil users
are supposed to belong to the same class with an almost
8 Seed candidates identical degree-normalized trust. This is in contrast to
Figure 5: Distributing seeds into multiple communities. The Sybil  prior trust inference scheme3(, 33, 45| that attempt to
seed candidates (black) cannot pass the manual inspection. differentiate between Sybils and non-Sybils with highly

by placing seeds in communities SybilRank is able tovarlable trust scores.

uncover subsets of Sybils within Louvain-detected com-Bounding highly-ranked Sybils. The degree normal-

munities, as shown in our Tuenti deploymeit.Q). ization step ensures that the number of Sybils ranked
higher than the non-Sybil nodes ¥logn) per attack
4.2.3 Sensitivity to the mixing time edge, as we explain it4.6.

Although for analytical tractability, we assume that the 4 4 Annotating the ranked list
non-Sybil region is fast mixing as in previous wotX3]
53,57], SybilRank’s effectiveness does not rely on the
absolute value of the non-Sybil region’s mixing time. In-
stead, it only requires that the graghcontaining both

SybilRank relies on the limited attack edges to distin-
guish Sybils. It may give high rankings to the Sybils that
obtain many social links to non-Sybil users, and consider
) . - . them as non-Sybil users. This is true for all social-graph-
Sybils and non-Sybils has a longer mixing time thanbased defenses. It may resultin even the top and bottom

the non-Sybil regionGy. Under this condition, the . : : -
. ; . . intervals of the ranked list to comprise a non-negligible
early-terminated power iteration yields a gap betweenthe . .
. . : portion of fake and real accounts, respectively. Thus, an
degree-normalized trust of non-Sybils and Sybils.

. . ; OSN cannot simply identify a pivot in the ranked list be-
Ideally, the number of iterations that SybilRank per-,\, \yhich all nodes are fake, and it still has to rely on
forms is set equal to the mixing time of the non-Sybil manual inspection

region. Previous Sybil defense2357] assume that the At the same time, OSNs have limited resources for

mixing time of sogl_al networrl‘<s 'Qrslogﬁ)' However, 1 anual inspection. To aid OSNS to adjust their inspec-
measurement studie23, 41] show that the mixing time _ tion focus, we annotate intervals in the ranked list with

of some social ne'varks IS Ionge_r than expected. It 'Sake portions. In particular, we sample random users in
unclear whether this increase derives from a large Coeméach interval of a particular size and report a portion of
cientin front of the termog n, or the possibility thatthe 5 o5 after manual inspection. With these annotations,
mixing time of social networks is na#(logn). OSNs can decide where on the ranked list to assign their
_In SybilRank we simply us&(logn) power itera- |imited human verifiers. The annotations can also be
tions. If the mixing time of the non-Sybil regionis larger |,caq to regulate the frequency of CAPTCHAs and other
than this value, the trust that escapes to the Sybil region iéhallenges sent to the suspected users. Moreover, the an-
further limited. However, we also run the risk of starving .,siations can help OSNs to decide on accounts that do

the non-Sybil users that are not well-connected to seeds, exhibit sufficient evidence on whether they are fake.
This risk is mitigated by placing seeds in many commu-

nities and by dispersing multiple seeds in each commu4.5 Computational cost

nity (§4.2.9, thereby ensuring that the trust is initiated SybilRank’s computational cost i©(nlogn). This is
somewhere close to those non-Sybil users. because each power iteration coét&:), and we iterate

i . O(logn) times. The cost for ranking the nodes accord-
4.3 Ranking by degree-normalized trust ing to their degree-normalized trust is alé{n logn).
After w = O(logn) power iterations, SybilRank ranks The cost for estimating communities(m), because
nodes by their degree-normalized trust. A nade  each iteration in Louvain method has a computational
degree-normalized trust is defined d%:= 7™ @) \we  costlinear to the number of edges and the graph shrinks

deg(v)

rank nodes by degree-normalized trust for the following'@Pidly with only a few iterations. Since the node de-
WO reasons. gree in OSNs is always limited, the community estima-

o ] ) ) ] tion costsO(n). Thus the overall computational cost is
Eliminating the node degree bias. This design gives ;100 1), irrespective of the number of trust seeds.
each non-Sybil node almost identical degree-normalized

trust. It reduces false positives from low-degree non4.6 Security Guarantee
Sybil nodes and false negatives from high-degree SybilsWe now discuss SybilRank’s security guarantee under
This is because aft€p(log n) power iterations, the trust the assumption that the attack edges are randomly es-



tablished between non-Sybils and Sybils. Although ourbuilt-in sorting feature.

system does not depend on the absolute mixing time Officiency. We evaluate the efficiency of our prototype
the non-Sybil region§4.2.3, our analysis assumes that ,, oy Amazon EC2 cluster to process very large-scale
the non-Sybil region is fast-mixing. Due to space limi- gy yihetic graphs with hundreds of millions of nodes. The
tations we only present the conclusion and its high-leve,, ster consists of 11 m1.large instances, one of which
intuition, and refer the reader to our techmcal repdd serves as the master and the other 10 as slaves.

for the complete proof. We use the notatior§&11 We generate very large synthetic graphs based on the
scale-free model as 6.1 The synthetic graphs are gen-
erated with exponentially increasing sizes from 10M to
160M nodes. SybilRank performs successfully on each
graph withlogn power iterations. The total execution
time includes two parts: a) the time to seed trust and par-
tition the graph during initialization; and b) the time to

. . . ..~ execute power iterations to propagate trust and to rank
tire graphG: has not reached its stationary distribution. the final results. The latter dominates the total execution

Since trust propagation starts from the non-Sybil reglon’time, which increases almost linearly with the size of the

the Sybil region (on the aggregate) gets only a fraction_
f < 1ofthe trustit should obtain in the stationary distri- social graphs (see2f]). For the largest graph (160M

bution. On the other hand, as the total trust is conserveHOdes)’ our prototype finishes in less than 33 hours. This

in the entire graph, the non-Syhil region obtains an ag_result suggests that SybilRank can process very large so-

gregate amount of trust that is(c > 1) times higher cial graphs using a few commodity machines.
than in the stationary distribution. Further, since theg Sybil Ranking Evaluation
non-Sybil region is well connected, each non-Sybil node

obtains approximately identical degree-normalized Irustlsn tthISR Self,t'oné).‘ll.\ie Ferform da compara}tlv? Tvalukgtlon fOf
ie., c x 22, whereZ< is a node’s degree-normalized ybriRank's ability to provide a meaningtul ranking o

trust in the stationarynaistributior§4.2). nodes to uncover Sybils. We first compare SybilRank

. . against other approaches in terms of its effectiveness
The amount of degree-normalized trust obtained by 9 P

. . in assigning low ranking to Sybils. We then examine
each Sybil depends on how Sybils connect to each Othe{he SybilRank's component that copes with the multi-

However, since the aggregate amount of trust of the Syblcommunity structure, and we study the resilience of our

1 i i i G
regionis bound_ed, on average, E.}aCh Sybil obtﬁm% approach to attacks that target the seeds. For a fair com-
degree-normalized trust, which is less than that of a non-

Sybil node. We are able to show that at m6giog n) par|3(3[rr\],t\r/1ve dOI?.Ot use Sy.?”R?nkts compon?nt f(ir cop-
Sybils per attack edge obtain higher degree-normalizeH1g w e multi-community structure except 6.4
trust than non-Sybil node®(]. It is worth noting that 6.1 Simulation setup

SybilRank is able to provide this guarantee even when it

Theorem 1. When an attacker randomly establishes ¢
attack edges in a fast mixing social network, the total
number of Sybils that rank higher than non-Sybils is
O(glogn).

After early termination, the trust distribution in the en-

uses an arbitrary number of trust seeds. Compared approaches. We compare SybilRank (SR)
against the state-of-the-art social-graph-based Sybil de
5 MapReduce Implementation fenses, i.e., SybilLimit (SL)§7], Sybilinfer (SI) [23],

. . . . Mislove’s community detection3g8] (CD), and Gate-
We now briefly describe how we implement SybilRank Keeper (GK) p3. Importantly, we also compare to

gsing the Hadooplﬂ.MapReduceiB‘}] parallel comput- EigenTrust (ET) 83|, which uses power iteration to as-
ing framework. This implementation enables an OSNSign trust

provider to process social network graphs with hundreds _ _ _
of millions of users on a cluster of commodity machines.Datasets. The non-Sybil regions of the simulated so-
We divide the entire graph into multiple partitions so ¢i@ graphs, which comprise exclusively non-Sybils, are
that each of them fits into the hardware of a commod-S@mples of several popular social networks (Tabjle
ity machine. The complexity of SybilRank is dominated | "€ Facebook grapl2g]is a connected component sam-

by the first two stages (Figui: trust propagation and Pled via the “forest fire” sampling method%tﬂ,. The
node ranking. Together they ha&n log n) complex- synthetic graph is generated using Barabasi’s scale-free

ity. For the trust propagation stage, we observe that trusi0del [L5]. The rest of the graphs[ have been widely
splitting and trust aggregation at each iteration are inher!S€d to study social graph properties and to evaluate re-
ently parallelizable. Therefore, we treat each iteration a CeNt Sybil defense mechanisnds54].

a MapReduce job, and create multiple map tasks to spliAttack strategies. We create &K -node Sybil region
trust and multiple reduce tasks to aggregate trust simulthat connects to a non-Sybil region through a varying
taneously. For the node ranking stage, we use Hadoopisumber of random attack edges. We choose this large



number of Sybils to stress-test each scheme. To invesSybil nodes that have the highest degree. For schemes
tigate the schemes’ robustness to the formation of thesupporting multiple seeds at one run, i.e., SybilRank,
Sybil collective, we include two representative Sybil re- EigenTrust, and GateKeeper, we use 50 trust seeds. One
gion structures: regular random graphs and scale-freseed is the same top-10 degree node as the one used in
graphs L5]. We call the first attackegular attack: each  the single-seed schemes, and the other 49 seeds are ran-
Sybil establishes connectionsd@andom Sybils. We re- domly chosen from the non-Sybil nodes.

fer to the second attack aseale-free attack: each Sybil
preferentially connects t@ Sybils upon its arrival, with
the probability of connecting to a Sybil proportional to
the Sybil's degree. We sdt= 4 in both attacks.

Other simulation settings. We performlogn power
iterations for SybilRank, where s the size of the social
graph. We run EigenTrust until convergence with a reset
probability 0.15, as in 33]. For each attack scenario, we
average the results over 100 runs.

Social Nodes Edges Clustering | Diameter

Network Coefficient 6.2 Ranking Quality Comparison
Facebook | 10,000 | 40,013 0.2332 17 he Svbil def h ith
ca-AstroPh | 18.772 | 198,080 | 0.3158 14 To compare the Sybi efense schemes, we start witf
ca-HepTh | 9,877 | 25,985 0.2734 18 a few attack edges and increase the number to a suffi-

Synthetic 10,000 | 39,399 0.0018
wiki-Vote 7,115 100, 736 0.1250

7 ciently large value such that the detection accuracy of
7
soc-Epinions | 10,000 | 222,077 0.0946 6
4
6

each scheme degrades significantly. We show represen-
tative simulation results in Figui@and refer the reader
to our technical report for the complete resuB€][ As
can be seen, when the number of attack edges is small,
Table 1: Social graphs used in our experiments. The last three  most of the schemes perform well and Sybils can be dis-
graphs are 10K-node BFS samples. . . . L

tinguished from non-Sybils by connectivity.

Performance metrics. Our evaluation is based on @ gypjrank. SybilRank outperforms all other schemes.
framework 4] that reduces defense schemes t0 @ geng achieves the highest value of the area under the ROC
eral model: producing a trust-based node ranking. Th,,.e and the lowest false positive and false negative
conversion for SybilLimit, Sybilinfer, and CD is docu- 5405 For the Facebook graph under the regular attack,
mented in _54]' For GateKeeper, we _rank node_s by the gye f the5K-node Sybil cluster obtains500 attack
number of tickets that each node obtains. For ElgenTruslédgeS’ a non-Sybil node has a probability e to rank

we rank nodes according to their trust scores. higher than a random Sybil as indicated by the value of
We use three metrics to compare the node ranking: th‘t:he area under the ROC curve

area under the Receiver Operating Characteristic (ROC% o o

curve B1], the false positive rates, and the false nega->YPilLimit. — SybilLimit outperforms most other
tive rates. The ROC curve exhibits the change of the tru$Chemes, but it performs worse than SybilRank. We
positive rate with the false positive rate as a pivot pointP€lieve that this is due to the different use of random
moves along the ranked list: a node below the pivot pointValks, i.e., SybilLimit uses random walk traces, while
in the ranked list is determined to be a Sybil; if the nodeSYPilRank uses the power-iteration-computed landing
is actually a non-Sybil, we have a false positive. Theprobabn_lty. SybilLimit’s secunty_ guarantee only limits
area under the ROC curve measures the overall quality d€ SYbils accepted by the verifiers (trust seed's) ran-
the ranking, i.e., the probability that a random non-Sybildom walks that never cross any attack edge to the Sybil
node is ranked higher than a random Sybil. It ranged®9ion B€l. However, the accepted Sybils cannot be
from 0 to 1, with 0.5 indicating a random ranking. An bou_nded if a verifier’s random walk enters into the Sybil
effective Sybil detection scheme should achieve a valu&€9ion. In contrast, SybilRank allows trust to escape to
> 0.5. Given a node ranked list, sliding the pivot point the Sybil region, butdoes notaccept a Sybil unless it gets
regulates the trade-off between the two false rates. wgigher degree-normalized trust than non-Sybil users.
set the pivot point based on a fixed value for one falseGateKeeper. It performs worse than both SybilRank
rate and compute the other false rate. We set the fixednd SybilLimit, although it bounds the accepted Sybils
false rate equal to 20%. In the real world, OSNs do notto O(log g) per attack edge, whekgis the total number
need a pivot point because none of the defenses so farf attack edges. This is because this bound comes from a
can yield a binary Sybil/non-Sybil classifier with an ac- strong assumption that does not always hold in real social
ceptable false positive rate. networks: with high probability, a breadth-first search
Trust seed selection.For a fair comparison, we strive to Starting from a non-Sybil user and visiting at mest

use the same trust seeds for all schemes in each simul3des covers a large fraction of non-Sybil us&@.[

tion on each social network. For schemes that use a sirsybilinfer. \We observe a steep fall in the area under
gle seed, we randomly pick a node from the top-10 nonthe ROC curve for Sybilinfer when the number of at-

soc-Slashdot | 10,000 | 153,404 0.0582
email-Enron | 10,000 | 105,343 0.1159
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Figure 6: We depict the area under the ROC curve, the false positive r&, and the false negative rate with respect to the number of ttck
edges under the regular attack and the scale-free attack fovarious Sybil detection schemes in the Facebook and the sedree synthetic
graphs. In the ROC curve figures (a and d), a higher curve indiates a more effective scheme. In the false rate figures (b ang, @ lower
curve indicates a more effective scheme. SR stands for SyRénk; CD for the community detection algorithm, GK for GateK eeper; Sl for
Sybillnfer; ET for EigenTrust; and SL for SybilLimit.

tack edges is close t&)0 in Facebook under the regular 16
attack. We suspect that this sharp performance degrada-
tion is due to the fact that Sybillnfer uses the Metropolis-
Hastings (MH) algorithm to sample the non-Sybil node
set R3]. However, it remains unclear when the sampling
converges, although Danezis et al. provide an empirical
estimation and terminate the sampling aff&m logn)

—e—1000 attack edges/SR
5} —4—500 attack edges/SR
——100 attack edges/SR
4=+ -100 attack edges/ET
-4 -500 attack edges/ET
| - @ -1000 attack edges/ET,

Normalized area
under the ROC curve

steps. If the Sybils obtain many attack edges and become 0.9 :é"""’;-‘-'-—*s_-:-‘_-'t555§555:5553555§55:§
hard to be detecte 1 steps may not suffice to 5 10 15 20 25 30 35 40
hth GD(” (;%r?) I\/IHp Iy d theref Number of non—attack edges per Sybil
reac € convergence orthe sampiing an ere oreFigure 7: Normalized area under the ROC curve as a function of

the detection accuracy is likely to degrade. the number of edges connecting to other Sybils.

Mislove’s CD. It underperforms under the regular at-
tack, with<0.2 under the ROC curve area (Fig6i@). each Sybil has with other Sybils fromto 40 under a
It interestingly becomes effective under the scale-free atregular attack on the Facebook graph. We refer to such
tack in the synthetic graph (Figug{d)). This signifi- €dges ason-attack.
cant performance difference is due to the greedy search Figure 7 shows thenormalized area under the ROC
for the local community, which is sensitive to the graph curve, which is computed by dividing the area under the
topology and cannot provide a false rate bous®].[ ROC curve for each attack scenario with the baseline
Although Mislove’s CD algorithm was intended to be case where each Sybil has orlyron-attack edges. As
used with one seed, it can support multiple seeds at thean be seen in Figurg with EigenTrust, the value of
same cost: by initializing the local community searchthe area under the ROC curve decreases when the con-
with those seeds. 1686.4 we show that this extension nections within the Sybil region become dense (the nor-
can improve its performance to some extent. malized area under the ROC curve is always less than
1). This result is because in EigenTrust a node that has
many incoming links or is pointed to by other highly-
ranked nodes is typically ranked higB3 45. A ma-
lJicious user can simply create dense connections within
e Sybil region to boost the ranks of selected Sybils.
herefore, denser Sybil connections lower EigenTrust’s
values of the area under the ROC curve, indicating that
6.3 Comparison with EigenTrust more Sybils are ranked higher than non-Sybils.

EigenTrust is more related to SybilRank because it also On the contrary with SybilRank, due to the removal
uses power iteration. By further investigating EigenTrustof degree bias, high-degree Sybils do not benefit. In-
we reveal the importance of SybilRank’s two main dif- stead, SybilRank’s performance improves as the connec-
ferentiating characteristics: a) removal of degree biagions among Sybils become denser. This is because it ex-

(§4.3; and b) early termination and not jumping back Ploits the sparse cut between the Sybil and the non-Sybil
to trust seeds;@.2.1). region, which the addition of Sybil connections makes

even sparser (it lowers the conductance).

EigenTrust. EigenTrustimproves over PageRad],
and uses the same basic mechanism as TrustRhk [
We can see that in FiguB{a)EigenTrust mostly outper-
forms previously proposed Sybil defenses. However, i
has at least 20% higher false positive and negative rate
than SybilRank in most of the attack scenarios.

Impact of the connectivity of the Sybil region. We
examine how the connection density within the Sybil re-Impact of the distance from trust seeds. Eigen-
gion impacts the node ranking generated by EigenTrustrust’s trust distribution is sensitive to the locations of
and SybilRank. To do so, we vary the number of edgeghe seeds because its random walks jump back to them.
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Figure 8: Trust distribution with respect to the average distance
to seeds in the synthetic graph under the regular attack with.0000 % 1000 2000 3000 2000 5000
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; ot ; ; Figure 9: Comparing SybilRank, EigenTrust and Mislove’s CD
Figure8 compares the distribution olegree-normalized ;= mult-community graph.

trust generated by EigenTrust and SybilRank with re-

spect to a node’s average shortest hop distance from thsommunities, each of which has 10 seeds. As shown in
trust seeds. We simulate a regular attack in the synfigure 9, seed selection strategy (b) improves the de-
thetic graph withl0K attack edges, and seleéttseeds tection accuracy for all schemes. Wide seed coverage
for both EigenTrust and SybilRank. The total trust is setin the non-Sybil region offsets the impact of its multi-
to 2m. As shown in Figuré(a), EigenTrust tends to al- community structure: the resulting ranking is mostly de-
locate high degree-normalized trust to nodes close to thgermined by the sparse cut between the non-Sybil region
seeds. Nodes relatively farther from the seeds get sukand the Sybil region. In Figur@ we see that SybilRank
stantially lower trust. In fact, the degree-normalizedtru maintains the highest accuracy for each of the seed place-
distribution in EigenTrust has a “heavy” tail. Among ment strategies due to the disadvantages of EigenTrust
the 10K non-Sybil nodes, more than4 K have degree- and Mislove’s CD mentioned i§6.3and§6.2
normalized trust lower tha?. As we zoom into the tail, - ]
this large set of non-Sybil users and Sybils have indistin8-5 Resilience to seed-targeting attacks
guishable degree-normalized trust . Last, we study how various schemes perform under tar-
Figure 8(b) shows that unlike EigenTrust, SybilRank geted attacks. In these attacks, sophisticated attackers
assigns roughly the same degree-normalized trust to eaghay obtain partial or full knowledge about the OSN and
non-Sybil node, while keeping a distinguishable gap bediscover the locations of the trust seeds. They can then
tween non-Sybils and Sybils. This empirically validatesestablish attack edges to nodes close to the seeds.
our observation that the degree-normalized trust is ap- We simulate the targeted attack in the Facebook graph.
proximately uniformly distributed in the non-Sybil re- The 5K-node Sybil region forms a regular attack struc-
gion afterO(log n) power iterationsg4.3). ture, and has 200 attack edges connecting to the non-
) i ) . Sybil region. Instead of being completely randomly dis-
6.4 Coping with multiple communities tributed, those 200 attack edges are established by ran-
As discussed i34.2.2 we distribute seeds among com- domly connecting to thé: non-Sybil nodes with the
munities to cope with the multi-community structure in shortest distance from the trust seed. For schemes sup-
the non-Sybil region. We illustrate this with simulations porting multiple seeds, we target the attack edges to the
on synthetic graphs. The simulations also include Mis-highest-degree trust seed. We varyrom 1K to 10K.
love’s CD and EigenTrust, which can be initialized with A smallerk signifies a shorter average distance between
multiple seeds at no additional computational cost. WeSybils and seeds.
do notinclude GateKeeper because it uses random walks As shown in FigurelO, when attack edges are at-
to seek seeds (ticket sources), thus we do not fully contached close to the seed, all schemes’ performance de-
trol the placement of seeds among the communities.  grades, while SybilRank keeps the most stable perfor-
Similar to the simulation scenarios ir54], we set up  mance across a wide range/ofialues. This is because
a non-Sybil region consisting of 5 scale-free syntheticSybilRank does not assign excessive trust to nodes that
communities, each of which has 2000 nodes with an avare close to the seed$6(3). However, SybilRank’s per-
erage degree of 10. We designate one community as thfermance still degrades whénis small. This is because
core of the social graph. The other 4 communities dathese closely targeted attacks force SybilRank to “leak”
not have any connections to each other, but connect ta fraction of trust in the Sybil region during early power
the graph core via only 500 edges. This process buildgterations. Thus, its detection accuracy reduces as Sybils
a non-Sybil region where multiple communities connectmay gain higher trust than non-Sybils.
to the core community of the graph via limited links.
We contrast the following two seed selection strate-/ Real-world Deployment
gies: a) all 50 seeds are confined to the core communityye now discuss the deployment of our system on a snap-
and b) the seeds are distributed among all the non-Syb#ghot of Tuenti’'s complete social friendship graph, which
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Figure 11: Contrasting the mean length of random walks from

Figure 10: Detection effectiveness under the attacks targeting the ~ SYPils and from random users in each community.

k non-Sybils with the shortest distance to the seed. o ) ) o )
variation distanced9| from the stationary distribution.

was obtained in August 2011. Due to the sheer voluméue to Tuenti’s large population, it is difficult to remove
of users, it would be infeasible for us to manually in- all Sybils in order to measure the mixing time of the non-
spect whether each user is a Sybil. Thus, we are unablgybil part in each community. Therefore, our measure-
to evaluate SybilRank with the same metrics as in thement approximates the mixing time gap. We do so by
simulations ¢6), such as the area under the ROC curve contrasting the mean length of random walks from ran-
the false negative rate and the false positive rate. Insteadiom users and from the Sybils that are captured by Sybil-
we attempt to determine the portion of fake users at varyRank in each community.

ing segments of the ranked list. We do so by manually we hypothesize that due to the majority of users in
inspecting a user sample in each particular interval in theryenti being non-Sybil, if the Sybils are weakly con-
ranked list §4.4). Due to the practical constraints and the nected to the majority, given a total variation distance,
limited availability of human verifiers, we do not deploy the random walks from Sybils need to be longer than
the other Sybil defenses on Tuenti. that from average users. In such a case, the Sybils’ ran-
Pre-processing. We observe that in Tuenti some fake dom walk length can approximate the mixing time of the
Tuenti accounts are well-maintained and have extremelgntire community, and we designate the length of ran-
high degree. They may introduce many attack edges iflom walks from average users as the mixing time of the
they connect to real users. At the same time, brand newon-Sybil part. Since the average users may include hid-
real users always have weak connectivity to others due téen Sybils, using their walk length only overestimates
the limited time they have been in the OSN, resulting inthe mixing time of the non-Sybil part.

false positives. To reduce the impact of these two factors, We select1000 random users and00 confirmed

we perform pre-processing before applying SybilRank:Sybils in each community. The total variation distance is
we prune the edges on extremely-high-degree nodes arf¢t equal t®.01. As shownin Figurd 1, the mean length
defer the consideration of very recent users (s2@) [ of random walks from the random users in each commu-
Communities in Tuenti. The complete Tuenti social MY IS small (mostly< 100), while the mean Sybil walk

graph has 1,421,367,504 edges and 11,291,486 nodégngth is much longer. This indicates that the Sybils con-

among which 11,216,357 nodes form a Giant Connected€ctto the majority users with a limited number of edges,

Component (GCC). Our analysis focuses on the GCthich makes their needed walk length longer. This fact

With the Louvain method, we found 595 communities, demonstrates that social-graph-based defenses can be ef-

among which 25 large communities contain more than ch_ve for our real OSN graph. _In addition, recall that in
ybilRank we have placed multiple random seeds in each

100K nodes. We inspected 4 nodes in each communit . . "
and designated as SybilRank trust seeds the nodes th Qmmunity, which facilitates the convergence of the trust

pass the manual verification. propagation. The power iterations that SypiIRa}nk needs
are even less than the random walk length in Fidiire
7.1 Validating the mixing time assumptions
As discussed 3.2, SybilRank relies on the mixing
time gap between the non-Sybil region and the entirdManually inspecting the ranked list. We run Sybil-
graph. Since we seed trust in each large community, th&®ank on the complete Tuenti social graph. We inspected
trust propagation is mainly determined by those commu=2K users at the bottom of the resulting ranked list, and
nities. To this end, we investigate the 25 large communiall of them were fake (Sybils). We further examined the
ties identified by the Louvain method. As showrfin2, ranked list by inspecting the first lowest-ranked one mil-
fake accounts are embedded in each community. We thelion users. We randomly selected 100 users out of each
measure the mixing time gap between each communit$OK-user interval for inspection. As shown in Figu2
and its non-Sybil part. the 100% fake portion was maintained at the first 50K-
We measure the mixing time using its definition, i.e., user interval, but the fake portion gradually decreased as
the maximum necessary walk length to achieve a giverwe went up the list. Up to the first 200K lowest-ranked

7.2 Detecting Fakes in Tuenti
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nected clusters. Presumably this is due to the fact that the
attackers behind those fake accounts are not centrally co-
ordinated. We also investigate the degree of thgHe

users. 80% of these users have no more than 10 friends,
while there are hundreds among these Sybils that have
more than 100 friends. This indicates that the node de-
gree is not a reliable metric to detect fake accounts due

Portion of fakes

1 2 3 4 5 6 7 8 9 10 11 12 13 H :
50K-node intervals in the ranked list to its Iarge variance among fake users.

Figure 12: Sybil distribution over the lowest 650K users on the  Sybils in large communities. SybilRank leverages the
ranked list (intervals are numbered from the bottom). community structure to properly seed trust. It is much

users, around 90% are fake, as opposed to-5% hit more accurate than just determining if an entire commu-

rate of Tuenti's current abuse-report-based method. Thi%Ilty is fake. Among th&0K lowest-ranked users, we

suggests an 18-fold increase in the efficiency with which ound th"# part of them are embedded in the 25 large
Tuenti can process suspected accounts. communities (se€0]). For example, each top-10 largest
ommunity has hundreds of Sybils. This indicates that

We also observe that above the 200K lowest-ranke . . :
. ybilRank detects fake accounts even in large communi-
users, the portion of fakes decreases abruptly fron). X .
ies that mostly consist of non-Sybil users.

~90% to~50%, and thern-10%. This is because fake
accounts that have established many social links to reat.3 Discussion

users can be ranked high. This reveals that SybiIRank’%ith SybilRank, Tuenti needs-570 man hours to go

Ilmltapon lies in the open nature of O$Ns, i.e., the €aS€ o the 200K lowest ranked users and discovaBOK
at which some fake accounts can befriend real users.

fake accounts. With its current abuse-report-based

_ Although we have sampled users for inspection Unyneihad, which has only-5% hit rate, and assuming
til the lowest 1 million users, due to confidentiality rea-

X -9 all these fakes are reported, Tuenti would nedd,300
sons we report the exact portions of fake users until thg,, .« By executing SybilRank periodically, e.g., ev-
lowest 650K users. Above the lowest 650K, we obtaingy month, we expect Tuenti to remain able to efficiently
even lower portions of fakes, which subsequently Stab"ldentify a substantial number of fake accounts.
I|_ze. One can Sa”_‘P'e abO\_/e the point n which the PO our study pin-pointed 200K suspicious accounts after
tion of fakes stabilizes to infer the portion of fakes in ;.o\ 0t 50 hours of SybilRank and community estima-
the complete Tuenti network. We have also obtained Rion processing. Those accounts can be verified by one

more accurate estimate of the portion of fakes in the nety | +ime (8h) employee in-70 days. This compares fa-
WO.I‘k by uniformly sampl!ng over the complete network. vorably to the feature-based detection mechanism used
This allows us to determine how many fake accounts ar%y Yang et al. §5], which unveiled in real time 100K

not captured by SybilRank. Again, we cannot reveal thisfakes in the 120M-user RenRen. over 6 months

statistic, as_we are bound by conﬁd_ent@ality. Yang et al. 55| reported that 70% of their de-
The portion of fakes we report is directly related 10 yo 404 fake nodes do not have any connections to other
precison [32]' Wh'c,h IS a performa_nce metric us_ed N fakes. However, unlike RenRen, Tuenti is invitation-
Collaborative Fllterlng. Itis _the ratio of relevant items only. Thus, a fake account is at least connected to its
overthe top? h'gheSt ranked items n .terms OT relevance. inviter when created. As a result, the number of isolated
The results in Figur&2reflect a precision as high as 90% accounts is smalk70K) compared to the number of the
among the first 200K lowest-ranked users ()] fake accounts detectable by SybilRank. In addition, we
Formation of the Sybil collective. We showed above found that Sybils in Tuenti do form dense connections
that SybilRank achieves an almost 100% portion of fakesamong themselves, which as we show@n3further en-
in the first50 K lowest-ranked users. We now study the ables SybilRank to uncover Sybils. Last, we note that
social connections among thoseK users. We found most detected fake accounts were spamnieds [
that fakes in Tuenti are rarely isolated from each other )
and that real world Sybils exhibit various formations 8 ~Conclusion
(see R0O)). We observed three large connected compo-arge scale social online services place immense atten-
nents that manifest a simple tree-like connection pattertion to the experience of their user base, and the mar-
between nodes of similar degree. This indicates thaketability of their user profiles and the social graph. In
those accounts may be automatically crafted for spamthis context, they face a significant challenge by the ex-
rating manipulation, and other attacks on a large scale. istence and continuous creation of fake user accounts,
In addition, thos&0 K users do not form a single con- which dilutes the advertising value of their network and
nected component. Instead they form many separate co@nnoys legitimate users. To this end, we have proposed
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SybilRank, an effective and efficient fake account in-[25)
ference scheme, which allows OSNs to rank accounts
according to their perceived likelihood of being fake. [26]
Therefore, this work represents a significant step toward&”!
practical Sybil defense: it enables an OSN to focus its exfeg
pensive manual inspection efforts, as well as to correctl3f29]
target existing countermeasures, such as CAPTCHAs.
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