
CORFU: A Shared Log Design for Flash Clusters

Mahesh Balakrishnan§, Dahlia Malkhi§, Vijayan Prabhakaran§

Ted Wobber§, Michael Wei‡, John D. Davis§

§ Microsoft Research Silicon Valley ‡ University of California, San Diego

Abstract
CORFU1 organizes a cluster of flash devices as a single,
shared log that can be accessed concurrently by multiple
clients over the network. The CORFU shared log makes
it easy to build distributed applications that require
strong consistency at high speeds, such as databases,
transactional key-value stores, replicated state machines,
and metadata services. CORFU can be viewed as a dis-
tributed SSD, providing advantages over conventional
SSDs such as distributed wear-leveling, network lo-
cality, fault tolerance, incremental scalability and geo-
distribution. A single CORFU instance can support up to
200K appends/sec, while reads scale linearly with clus-
ter size. Importantly, CORFU is designed to work di-
rectly over network-attached flash devices, slashing cost,
power consumption and latency by eliminating storage
servers.

1 Introduction
Traditionally, system designers have been forced to
choose between performance and safety when building
large-scale storage systems. Flash storage has the poten-
tial to dramatically alter this trade-off, providing persis-
tence as well as high throughput and low latency. The
advent of commodity flash drives creates new opportu-
nities in the data center, enabling new designs that are
impractical on disk or RAM infrastructure.

In this paper, we posit that flash storage opens the door
to shared log designs within data centers, where hun-
dreds of client machines append to the tail of a single
log and read from its body concurrently. A shared log
is a powerful and versatile primitive for ensuring strong
consistency in the presence of failures and asynchrony.
It can play many roles in a distributed system: a con-
sensus engine for consistent replication; a transaction ar-
bitrator [13, 22, 25] for isolation and atomicity; an exe-
cution history for replica creation, consistent snapshots,

1CORFU stands for Clusters of Raw Flash Units, and also for an
island near Paxos in Greece.

and geo-distribution [16]; and even a primary data store
that leverages fast appends on underlying media. Flash
is an ideal medium for implementing a scalable shared
log, supporting fast, contention-free random reads to the
body of the log and fast sequential writes to its tail.

One simple option for implementing a flash-based
shared log is to outfit a high-end server with an expensive
PCI-e SSD (e.g., Fusion-io [2]), replicating it to handle
failures and scale read throughput. However, the result-
ing log is limited in append throughput by the bandwidth
of a single server. In addition, interposing bulky, general-
purpose servers between the network and flash can cre-
ate performance bottlenecks, leaving bandwidth under-
utilized, and can also offset the power benefits of flash.
In contrast, clusters of small flash units have been shown
to be balanced, power-efficient and incrementally scal-
able [5]. Required is a distributed implementation of a
shared log that can operate over such clusters.

Accordingly, we present CORFU, a shared log ab-
straction implemented over a cluster of flash units. In
CORFU, each position in the shared log is mapped to a
set of flash pages on different flash units. This map is
maintained – consistently and compactly – at the clients.
To read a particular position in the shared log, a client
uses its local copy of this map to determine a correspond-
ing physical flash page, and then directly issues a read
to the flash unit storing that page. To append data, a
client first determines the next available position in the
shared log – using a sequencer node as an optimization
for avoiding contention with other appending clients –
and then writes data directly to the set of physical flash
pages mapped to that position.

CORFU’s client-centric design has two objectives.
First, it ensures that the append throughput of the log is
not a function of the bandwidth of any single flash unit.
Instead, clients can append data to the log as fast as the
sequencer can assign them 64-bit tokens, i.e., new posi-
tions in the log. Our current user-space sequencer runs
at 200K tokens/s; assuming 4KB entries and two-way
replication, this is sufficient to saturate the write band-
width of a cluster of 50 Intel X25-V [1] drives, which in
turn can support a million random 4KB reads/sec. Es-

sentially, CORFU’s design decouples ordering from I/O,
extracting parallelism from the cluster for appends while
providing single-copy semantics for the shared log.

Second, placing functionality at the clients reduces the
complexity, cost, latency and power consumption of the
flash units. In fact, CORFU can operate over SSDs that
are attached directly to the network, eliminating general-
purpose storage servers from the critical path. In a par-
allel effort outside the scope of this paper, we have pro-
totyped a network-attached flash unit on an FPGA plat-
form; when used with the CORFU stack, this custom
hardware provides the same throughput as a server-based
flash unit while using an order of magnitude less power
and providing 33% lower latency on reads. Over a clus-
ter of such flash units, CORFU’s logging design acts as
a distributed SSD, implementing functionality found in-
side conventional SSDs – such as wear-leveling – at clus-
ter scale.

To realize these benefits of a client-centric design,
CORFU needs to handle failures efficiently. When flash
units fail, clients must move consistently to a new map
from log positions to flash pages. CORFU achieves this
via a reconfiguration mechanism (patterned after Vertical
Paxos [17]) capable of restoring availability within tens
of milliseconds on drive failures. A challenging failure
mode peculiar to a client-centric design involves ‘holes’
in the log; a client can obtain a log position from the se-
quencer for an append and then crash without complet-
ing the write to that position. To handle such situations,
CORFU provides a fast hole-filling primitive that allows
other clients to complete an unfinished append (or mark
the log position as junk) within a millisecond.

CORFU’s target applications are infrastructure layers
that use the shared log to implement high-level inter-
faces. In this paper, we present two such applications.
CORFU-Store is a key-value store that supports atomic
multi-key puts and gets, fast consistent checkpointing
and low-latency geo-distribution; these are properties
that are difficult to achieve on conventional partitioned
key-value stores. CORFU-SMR is a state machine repli-
cation library where replicas propose commands by ap-
pending to the log and execute commands by playing
the log. In addition to these, we are currently building
a database, a virtual disk layer, and a reliable multicast
mechanism over CORFU.

We evaluate a CORFU implementation on a cluster of
32 Intel X25-V drives attached to servers, showing that it
saturates the aggregate storage bandwidth of the cluster
at speeds of 400K 4KB reads per second and nearly 200K
4KB appends per second over the network. We also
evaluate CORFU running over an FPGA-based network-
attached flash unit, showing that it performs end-to-end
reads under 0.5 ms and cross-rack mirrored appends un-
der 1 ms. We show that CORFU is capable of recov-

ering from holes within a millisecond, and from crashed
drives within 30 ms. Finally, we show that CORFU-Store
provides atomic operations at the speed of the log (40K
10-key multi-gets/s and 20K 10-key multi-puts/s, with
4KB values), and that CORFU-SMR runs at 70K 512-
byte commands/s with 10 state machine replicas.

To summarize the contributions of this paper: we pro-
pose the first complete design and implementation of a
shared log abstraction over a flash cluster. This is also
the first distributed, shared log design where maximum
append throughput is not a function of any single node’s
I/O bandwidth. We describe low-latency fault-tolerance
mechanisms for recovering from flash unit crashes and
holes in the log. We present designs for a strongly con-
sistent key-value store and a state machine replication
library that use CORFU. Finally, we evaluate CORFU
throughput, latency, fault-tolerance and application per-
formance on a 32-drive cluster of server-attached SSDs
as well as an FPGA-based network-attached SSD.

2 Motivation

As stated earlier, the key insight in this paper is that flash
storage is an ideal medium for shared log designs. The
primary argument is that flash provides fast, contention-
free random reads, which enables designs where hun-
dreds of clients can concurrently access a shared log.
However, the CORFU design of a shared, distributed log
makes sense for other reasons, as well. We first offer a
quick primer on the properties of flash storage, and then
expand on the rationale for a shared, distributed log.

Flash is read and written in increments of pages (typ-
ically of size 4KB). Before a page can be overwritten, it
must be erased; erasures can only occur at the granular-
ity of multi-page blocks (of size 256KB). Significantly,
flash wears out or ages; as a page is erased and overwrit-
ten, it becomes less reliable and is eventually unusable.
From a performance standpoint, overwriting a randomly
selected flash page requires the surrounding block to un-
dergo an erase operation in the critical path, resulting in
poor random write speeds.

At the level of a single drive, these problems are
masked from applications by the Flash Translation Layer
(FTL) within an SSD. SSDs implement a logical address
space over raw flash, mapping logical addresses to phys-
ical flash pages. Since flash chips within an SSD cannot
be easily replaced, the primary goal of the FTL is wear-
leveling: ensuring that all flash chips in the drive age, and
expire, in unison. FTLs also speed up random writes by
maintaining a free pool of extra, pre-erased blocks; how-
ever, sequential writes are still significantly faster. Ad-
ditionally, the OS can trim logical addresses on an SSD,
allowing the FTL to reclaim and reuse physical pages.

As a result of these properties, the best data structure
for a single flash device is a log; it is always best to write
sequentially to flash. One reason is performance; ran-
dom writes are slower than sequential writes both on raw
flash and SSDs (as explained above). Depending on the
design of the FTL, random writes can also cause signif-
icantly greater wear-out than sequential writes. Accord-
ingly, almost all single-machine filesystems or databases
designed for flash storage implement a log-structured de-
sign within each device; for example, FAWN [5] orga-
nizes each of its individual drives as a log.

CORFU extends this theme by organizing an entire
cluster of flash drives as a single log. This log is dis-
tributed across multiple drives and shared by multiple
clients. We now explain the rationale for these two de-
sign decisions.

The case for a shared log: We stated earlier that a
shared log is a powerful building block for distributed
applications that require strong consistency. We now ex-
pand on this point by describing the different ways in
which applications can use a fast, flash-based shared log.
By ‘shared’, we mean that multiple clients can read and
append to the log concurrently over the network, regard-
less of how the log is implemented.

Historically, shared log designs have appeared in a
diverse array of systems. QuickSilver [13, 22] and
Camelot [25] used shared logs for failure atomicity and
node recovery. LBRM [14] uses shared logs for recov-
ery from multicast packet loss. Shared logs are also
used in distributed storage systems for consistent remote
mirroring [16]. In such systems, CORFU can replace
disk-based shared logs, providing higher throughput and
lower latency.

However, a flash-based shared log also enables new
applications that are infeasible on disk-based infrastruc-
ture. For instance, Hyder [7] is a recently proposed high-
performance database designed around a flash-based
shared log, where servers speculatively execute transac-
tions by appending them to the shared log and then us-
ing log order to decide commit/abort status. In fact, Hy-
der was the original motivating application for CORFU
and is currently being implemented over our code base.
While the original Hyder paper included a brief design
for a flash-based shared log, this was never implemented;
later in this paper, we describe how – and why – CORFU
departs significantly from the Hyder proposal.

Interestingly, a shared log can also be used as a con-
sensus engine, providing functionality identical to con-
sensus protocols such as Paxos (a fact hinted at by the
name of our system). Used in this manner, CORFU
provides a fast, fault-tolerant service for imposing and
durably storing a total order on events in a distributed
system. From this perspective, CORFU can be used as
a drop-in replacement for disk-based Paxos implemen-

tations, leveraging flash storage to provide better perfor-
mance.

The case for a distributed log: Existing flash-based
storage systems scale capacity and throughput by par-
titioning data across multiple, independent logs, each of
which resides on a single flash drive. In a partitioned sys-
tem, a total order no longer exists on all updates, making
it difficult to support operations such as consistent snap-
shots and atomic updates across partitions. Strongly con-
sistent operations are usually limited in size and scope
to a single partition. The high throughput/size ratio of
flash results in smaller drives, exacerbating this prob-
lem. Even if all the data involved in an atomic update
miraculously resides on the same fine-grained partition,
the throughput of updates on that data is limited by the
I/O capacity of the primary server of the partition.

Specific to flash storage, other problems arise when
a system is partitioned into individual per-SSD logs. In
particular, the age distribution of the drives in the clus-
ter is tightly coupled to the observed workload; skewed
workloads can age drives at different rates, resulting in
unpredictable reliability and performance. For example,
a range of key-value pairs can become slower and less re-
liable than the rest of the key-value store if one of them
frequently overwritten. Additionally, striping data across
SSDs of different ages can bottleneck performance at the
oldest SSD in the stripe. Further, administrative policies
may require all drives to be replaced together, in which
case even wear-out is preferred. Conversely, specific pat-
terns of uneven wear-out may be preferred, to allow the
oldest subset of drives to be replaced periodically.

A distributed log solves these problems by spread-
ing writes across the cluster in controlled fashion, de-
coupling the age distribution of drives from the ob-
served workload; in effect, it implements distributed
wear-leveling. In addition, the entire cluster still func-
tions as a single log; as we show later, this makes it
possible to implement strongly consistent operations at
cluster scale.

Partitioning is ultimately necessary for achieving
scale; we do not contend this point. However, modern
systems choose to create very fine-grained partitions, at
the level of a single drive or a single array attached to a
server. CORFU instead allows an entire cluster to act as
a single, coarse-grained partition.

3 Design and Implementation

The setting for CORFU is a data center with a large num-
ber of application servers (which we call clients) and a
cluster of flash units (see Figure 1). Our goal is to pro-
vide applications running on the clients with a shared log
abstraction implemented over the flash cluster.

Cluster of Network-Attached Flash Units

0 1 2 3 4 5 6 7 8 - - - - - - -

Each log position is mapped
to flash pages in the cluster

Append Read

Clients access flash units
directly over the network
via the Corfu library

Application

Corfu Library

 Database
 Key-Value Store
 Replicated State Machine
 Metadata Service
 Virtual Disk
…

Figure 1: CORFU presents applications running on
clients with the abstraction of a shared log, implemented
over a cluster of flash units by a client-side library.

Our design for this shared log abstraction is driven by a
single imperative: to keep flash units as simple, inexpen-
sive and power-efficient as possible. We achieve this goal
by placing all CORFU functionality at the clients and
treating flash units as passive storage devices. CORFU
clients read and write directly to the address space of
each flash unit, coordinating with each other to ensure
single-copy semantics for the shared log. Individual flash
units do not initiate communication, are unaware of other
flash units, and do not participate actively in replication
protocols. CORFU does require specific functionality
from flash units, which we discuss shortly.

Accordingly, CORFU is implemented as a client-side
library that exposes a simple API to applications, shown
in Figure 2. The append interface adds an entry to the
log and returns its position. The read interface accepts
a position in the log and returns the entry at that posi-
tion. If no entry exists at that position, an error code is
returned. The application can perform garbage collection
using trim, which indicates to CORFU that no valid data
exists at a specific log position. Lastly, the application
can fill a position with junk, ensuring that it cannot be
updated in future with a valid value.

CORFU’s task of implementing a shared log abstrac-
tion with this API over a cluster of flash units – each of
which exposes a separate address space – involves three
functions:

• A mapping function from logical positions in the
log to flash pages on the cluster of flash units.

• A tail-finding mechanism for finding the next

append(b) Append an entry b and return
the log position ` it occupies

read(`) Return entry at log position `
trim(`) Indicate that no valid data exists

at log position `
fill(`) Fill log position ` with junk

Figure 2: API exposed by CORFU to applications

available logical position on the log for new data.

• A replication protocol to write a log entry consis-
tently on multiple flash pages.

These three functions – combined with the ability of
clients to read and write directly to the address space of
each flash unit – are sufficient to support a shared log
abstraction. To read data at a specific log position, the
client-side library uses the mapping function to find the
appropriate flash page, and then directly issues a read to
the device where the flash page is located. To append
data, a client finds the tail position of the log, maps it
to a set of flash pages, and then initiates the replication
protocol that issues writes to the appropriate devices.

Accordingly, the primary challenges in CORFU re-
volve around implementing these three functions in an
efficient and fault-tolerant manner. Crucially, these
functions have to provide single-copy semantics for the
shared log even when flash units fail and clients crash.

In this section, we first describe the assumptions made
by CORFU about each flash unit. We then describe
CORFU’s implementation of the three functions de-
scribed above.

3.1 Flash Unit Requirements
The most basic requirement of a flash unit is that it sup-
port reads and writes on an address space of fixed-size
pages. We use the term ‘flash page’ to refer to a page
on this address space; however, the flash unit is free to
expose a logical address space where logical pages are
mapped internally to physical flash pages, as a conven-
tional SSD does. The flash unit is expected to detect and
re-map bad blocks in this address space.

To provide single-copy semantics for the shared
log, CORFU requires ‘write-once’ semantics on the
flash unit’s address space. Reads on pages that have
not yet been written should return an error code (er-
ror unwritten). Writes on pages that have already
been written should also return an error code (er-
ror overwritten). In addition to reads and writes, flash
units are also required to expose a trim command, allow-
ing clients to indicate that the flash page is not in use
anymore.

0 1 2 3 4 5 . . 40K
40K
+1

F0

0

2

...

40K-2

F1

1

3

...

40K-1

0 – 40K

•F0 0:20K
•F1 0:20K

40K – 80K

•F2 0:20K
•F3 0:20K

F2

40K

40K+2

...

80K-2

F3

40K+1

40K+3

...

80K-1

Example Projection 
Range [0 – 40K) is
mapped to F0 and F1.
Range [40K – 80K) is
mapped to F2 and F3.

Figure 3: Example projection that maps different ranges
of the shared log onto flash unit extents.

In addition, flash units are required to support a ‘seal’
command. Each incoming message to a flash unit is
tagged with an epoch number. When a particular epoch
number is sealed at a flash unit, it must reject all subse-
quent messages sent with an epoch equal or lower to the
sealed epoch. In addition, the flash unit is expected to
send back an acknowledgment for the seal command to
the sealing entity, including the highest page offset that
has been written on its address space thus far.

These requirements – write-once semantics and seal-
ing – are sufficient to ensure CORFU correctness. They
are also enough to ensure efficient appends and reads.
However, for efficient garbage collection on general-
purpose workloads (in terms of network/storage band-
width and flash erase cycles), CORFU requires that the
flash unit expose an infinite address space. We explain
this last requirement in detail when we discuss garbage
collection and the implementation of flash units.

3.2 Mapping in CORFU

Each CORFU client maintains a local, read-only replica
of a data structure called a projection that carves the
log into disjoint ranges. Each such range is mapped to
a list of extents within the address spaces of individual
flash units. Figure 3 shows an example projection, where
range [0, 40K) is mapped to extents on units F0 and F1,
while [40K, 80K) is mapped to extents on F2 and F3.

Within each range in the log, positions are mapped to
flash pages in the corresponding list of extents via a sim-
ple, deterministic function. The default function used is

round-robin: in the example in Figure 3, log position 0
is mapped to F0 : 0, position 1 is mapped to F1 : 0, po-
sition 2 back to F0 : 1, and so on. Any function can be
used as long as it is deterministic given a list of extents
and a log position. The example above maps each log
position to a single flash page; for replication, each ex-
tent is associated with a replica set of flash units rather
than just one unit. For example, for two-way replica-
tion the extent F0 : 0 : 20K would be replaced by
F0/F

′
0 : 0 : 20K and the extent F1 : 0 : 20K would

be replaced by F1/F1 : 0 : 20K.
Accordingly, to map a log position to a set of flash

pages, the client first consults its projection to determine
the right list of extents for that position; in Figure 3, posi-
tion 45K in the log maps to extents on units F2 to F3. It
then computes the log position relative to the start of the
range; in the example, this is 5K. Using this relative log
position, it applies the deterministic function on the list
of extents to determine the flash pages to use. With the
round-robin function and the example projection above,
the resulting page would be F2 : 2500.

By mapping log positions to flash pages, a projection
essentially provides a logical address space implemented
over a cluster of flash units. Clients can read or write to
positions in this address space by using the projection to
determine the flash pages to access. Since CORFU or-
ganizes this address space as a log (using a tail-finding
mechanism which we describe shortly), clients end up
writing only to the last range of positions in the projec-
tion ([40K, 80K) in the example); we call this the active
range in the projection.

3.2.1 Changing the mapping

In a sense, projections are similar to classical views. All
operations on flash units – reads, writes, trims – are is-
sued by clients within the context of a single projection.
When some event occurs that necessitates a change in the
mapping – for example, when a flash unit fails, or when
the tail of the log moves past the current active range –
a new projection has to be installed on all clients in the
system. In effect, each client observes a totally ordered
sequence of projections as the position-to-page mapping
evolves over time; we call a projection’s position in this
sequence its epoch. When an operation executes in the
context of a projection, all the messages it generates are
tagged with the projection’s epoch.

As with conventional view change protocols, all par-
ticipants – in this case, the CORFU clients – must move
consistently to a new projection when a change occurs.
The new projection should correctly reflect all activity
that was successfully completed in any previous projec-
tion; i.e., reads must reflect writes and trims that com-
pleted in older projections. Further, any activity in-flight

during the view change must be aborted and retried in the
new projection.

To achieve these properties, CORFU uses a simple,
auxiliary-driven reconfiguration protocol. The auxiliary
is a durably stored sequence of projections in the system,
where the position of the projection in the sequence is
equivalent to its epoch. Clients can read the ith entry
in the auxiliary (getting an error if no such entry exists),
or write the ith entry (getting an error if an entry already
exists at that position). The auxiliary can be implemented
in multiple ways: on a conventional disk volume, as a
Paxos state machine, or even as a CORFU instance with
a static, never-changing projection.

Auxiliary-driven reconfiguration involves two distinct
steps:

1. Sealing the current projection: When a client Cr

decides to reconfigure the system from the current pro-
jection Pi to a new projection Pi+1, it first seals Pi; this
involves sending a seal command to a subset of the flash
units in Pi. A flash unit in Pi has to be sealed only if
a log position mapped to one of its flash pages by Pi is
no longer mapped to the same page by Pi+1. In prac-
tice, this means that only a small subset of flash units
have to be sealed, depending on the reason for reconfig-
uration. Sealing ensures that flash units will reject in-
flight messages – writes as well as reads – sent to them
in the context of the sealed projection. When clients re-
ceive these rejections, they realize that the current pro-
jection has been sealed, and wait for a new projection to
be installed; if this does not happen, they time out and
initiate reconfiguration on their own. The reconfiguring
client Cr receives back acknowledgements to the seal
command from the flash units, which include the high-
est offsets written on those flash units thus far. Using
this information, it can determine the highest log position
reached in the sealed projection; this is useful in certain
reconfiguration scenarios.

2. Writing the new projection at the auxiliary:
Once the reconfiguring client Cr has successfully sealed
the current projection Pi, it attempts to write the new
projection Pi+1 at the (i+1)th position in the auxiliary.
If some other client has already written to that position,
client Cr aborts its own reconfiguration, reads the exist-
ing projection at position (i + 1) in the auxiliary, and
uses it as its new current projection. As a result, mul-
tiple clients can initiate reconfiguration simultaneously,
but only one of them succeeds in proposing the new pro-
jection.

Projections – and the ability to move consistently be-
tween them – offer a versatile mechanism for CORFU
to deal with dynamism. Figure 4 shows an example se-
quence of projections. In Figure 4(A), range [0, 40K)
in the log is mapped to the two flash unit mirrored pairs
F0/F1 and F2/F3, while range [40K, 80K) is mapped

(A) (C)

(B)

(D)

0 – 40K

•F0/F1 0:20K
•F2/F3 0:20K

40K – 80K

•F4/F5 0:20K
•F6/F7 0:20K

0 – 40K

•F0/F1 0:20K
•F2/F3 0:20K

40K – 80K

•F4/F5 0:20K
•F7/F8 0:20K

0 – 40K

•F0/F1 0:20K
•F2/F3 0:20K

40K – 50K

•F4/F5 0:5K
•F7 0:5K

50K – 80K

•F4/F5 5K:20K
•F7/F8 5K:20K

0 – 40K

•F0/F1 0:20K
•F2/F3 0:20K

40K – 80K

•F4/F5 0:20K
•F7/F8 0:20K

80K -
120K

•F9/F10 0:20K
•F11/F12 0:20K

Figure 4: Sequence of projections: When F6 fails in (A)
with the log tail at 50K, clients move to (B) in order to
replace F6 with F8 for new appends. Once old data on F6

is rebuilt, F8 is used in (C) for reads on old data as well.
When the log tail goes past 80K, clients add capacity by
moving to (D).

to F4/F5 and F6/F7. When F6 fails with the log tail at
position 50K, CORFU moves to projection (B) immedi-
ately, replacing F6 with F8 for new appends beyond the
current tail of the log, while servicing reads in the log
range [40K, 50K) with the remaining mirror F7.

Once F6 is completely rebuilt on F8 (by copying
entries from F7), the system moves to projection (C),
where F8 is now used to service all reads in the range
[40K, 80K). Eventually, the log tail moves past 80K,
and the system again reconfigures, adding a new range
in projection (D) to service reads and writes past 80K.

3.3 Finding the tail in CORFU
Thus far, we described the machinery used by CORFU
to map log positions to sets of flash pages. This allows
clients to read or write any position in a logical address
space. To treat this address space as an appendable log,
clients must be able to find the tail of the log and write to
it.

One possible solution is to allow clients to contend
for positions. In this case, when a CORFU instance is
started, every client that wishes to append data will try
to concurrently write to position 0. One client will win,
while the rest fail; these clients then try again on posi-
tion 1, and so on. This approach provides log semantics
if only one write is allowed to ‘win’ on each position;

i.e., complete successfully with the guarantee that any
subsequent read on the position returns the value writ-
ten, until the position is trimmed. We call this property
safety-under-contention.

In the absence of replication, this property is satisfied
trivially by the flash unit’s write-once semantics. When
each position is replicated on multiple flash pages, it is
still possible to provide this property; in fact, the repli-
cation protocol used in CORFU (that we describe next)
does so. However, it is clear that such an approach will
result in poor performance when there are hundreds of
clients concurrently attempting appends to the log.

To eliminate such contention at the tail of the log,
CORFU uses a dedicated sequencer that assigns clients
‘tokens’, corresponding to empty log positions. The se-
quencer can be thought of as a simple networked counter.
To append data, a client first goes to the sequencer, which
returns its current value and increments itself. The client
has now reserved a position in the log and can write to it
without contention from other clients.

Importantly, the sequencer does not represent a single
point of failure; it is merely an optimization to reduce
contention in the system and is not required for either
safety or progress. For fast recovery from sequencer fail-
ure, we store the identity of the current sequencer in the
projection and use reconfiguration to change sequencers.
The counter of the new sequencer is determined using the
highest page written on each flash unit, which is returned
by the flash unit in response to the seal command during
reconfiguration.

However, CORFU’s sequencer-based approach does
introduce a new failure mode, since ‘holes’ can appear
in the log when clients obtain tokens and then fail to use
them immediately due to crashes or slowdowns. Holes
can cripple applications that consume the log in strict or-
der, such as state machine replication or transaction pro-
cessing, since no progress can be made until the status of
the hole is resolved. Given that a large system is likely
to have a few malfunctioning clients at any given time,
holes can severely disrupt application performance. A
simple solution is to have other clients fill holes aggres-
sively with a reserved ‘junk’ value. To prevent aggres-
sive hole-filling from burning up flash cycles and net-
work bandwidth, flash units can be junk-aware, simply
updating internal meta-data to mark an address as filled
with junk instead of writing an actual value to the flash.

Note that filling holes reintroduces contention for log
positions: if a client is merely late in using a reserved to-
ken and has not really crashed, it could end up competing
with another client trying to fill the position with junk,
which is equivalent to two clients concurrently writing
to the same position. In other words, the sequencer is an
optimization that removes contention for log positions in
the common case, but does not eliminate it entirely.

3.4 Replication in CORFU

Once a client reserves a new position in the log via the
sequencer, it maps this position to a replica set of flash
pages in the cluster using the current projection. At this
point, it has to write data at these flash pages over the
network. The protocol used to write to the set of flash
pages has to provide two properties. First, it has to pro-
vide the safety-under-contention property described ear-
lier: when multiple clients write to the replica set for
a log position, reading clients should observe a single
value. Second, it has to provide durability: written data
must be visible to reads only after it has sufficient fault
tolerance (i.e., reached f + 1 replicas). Given the rela-
tively high cost of flash, we require a solution that toler-
ates f failures with just f + 1 replicas; as a result, data
must be visible to reads only after it reaches all replicas.

One approach is to have the client write in parallel to
the flash units in the set, and wait for all of them to re-
spond before acknowledging the completion of the ap-
pend to the application. Unfortunately, when appending
clients contend for a log position, different values can be
written on different replicas, making it difficult to sat-
isfy the safety-under-contention property. Also, satisfy-
ing the durability property with parallel writes requires
the reading client to access all replicas to determine if a
write has completed or not.

Instead, CORFU uses a simple chaining protocol (es-
sentially, a client-driven variant of Chain Replication
[28]) to achieve the safety-under-contention and durabil-
ity properties. When a client wants to write to a replica
set of flash pages, it updates them in a deterministic or-
der, waiting for each flash unit to respond before mov-
ing to the next one. The write is successfully completed
when the last flash unit in the chain is updated. As a
result, if two clients attempt to concurrently update the
same replica set of flash pages, one of them will arrive
second at the first unit of the chain and receive an er-
ror overwrite. This ensures safety-under-contention.

To read from the replica set, clients have two options.
If they are unaware of whether the log position was suc-
cessfully written to or not (for example, when replay-
ing the log after a power failure), they are required to go
to the last unit of the chain. If the last unit has not yet
been updated, it will return an error unwritten. This en-
sures the durability property. Alternatively, if the read-
ing client knows already that the log position has been
successfully written to (for example, via an out-of-band
notification by the writing client), it can go to any replica
in the chain for better read performance.

By efficiently handling contention, chained appends
allow a client to rapidly fill holes left in the log by other
clients that crashed midway through an append. To fill
holes, the client starts by checking the first unit of the

chain to determine if a valid value exists in the prefix
of the chain. If such a value exists, the client walks
down the chain to find the first unwritten replica, and
then ‘completes’ the append by copying over the value
to the remaining unwritten replicas in chain order. Al-
ternatively, if the first unit of the chain is unwritten, the
client writes the junk value to all the replicas in chain or-
der. CORFU exposes this fast hole filling functionality
to applications via a fill interface. Applications can use
this primitive as aggressively as required, depending on
their sensitivity to holes in the shared log.

Reconfiguration and Replication: How does this
replication protocol interact with the reconfiguration
mechanism described in Section 3.2.1? We first define
a chain property: the replica chain for a log position in a
projection has a written prefix storing a single value and
an unwritten suffix. A completed write corresponds to a
chain with a full-length prefix and a zero-length suffix.

When the system reconfigures from one projection to
another, the replica chain for a position can change from
one ordered set of flash pages to another. Trivially, the
new replica chain is required to satisfy the chain prop-
erty. Further, we impose two conditions on the transition:
if the old chain had a prefix of non-zero length, the new
chain must have one as well with the same value. If the
old chain had a zero-length suffix, the new chain must
have one too. Lastly, to prevent split-brain scenarios, we
require that at least one flash unit in the old replica set be
sealed in the old projection’s epoch.

To meet these requirements, our current implementa-
tion follows the protocol described earlier in Figure 4 for
flash unit failures. The system first reconfigures to a new
chain without the failed replica. It then prepares a new
replica by copying over the completed value on each po-
sition, filling any holes it encounters in the process. Once
the new replica is ready, the system reconfigures again to
add it to the end of the replica chain.

Relationship to Paxos: Each chain of flash units in
CORFU can be viewed as a single consensus engine,
providing (as Paxos does) an ordered sequence of state
machine replication (SMR) commands. In conventional
SMR implemented using Paxos, the throughput of the
system is typically scaled by partitioning the system
across multiple instances, effectively splitting the single
stream of totally ordered commands into many unrelated
streams. Conversely, CORFU scales SMR throughput by
partitioning over time, not space; the consensus deci-
sion on each successive log entry is handled by a dif-
ferent replica chain. Stitching these multiple command
streams together is the job of the projection, which is
determined by a separate, auxiliary-driven consensus en-
gine, as described earlier. In a separate report, we ex-
amine the foundational differences between Paxos and
CORFU in more detail [19].

3.5 Garbage Collection

CORFU provides the abstraction of an infinitely grow-
ing log to applications. The application does not have
to move data around in the address space of the log to
free up space. All it is required to do is use the trim
interface to inform CORFU when individual log posi-
tions are no longer in use. As a result, CORFU makes it
easy for developers to build applications over the shared
log without worrying about garbage collection strategies.
An implication of this approach is that as the application
appends to the log and trims positions selectively, the ad-
dress space of the log can become increasingly sparse.

Accordingly, CORFU has to efficiently support a
sparse address space for the shared log. The solution is
a two-level mapping. As described before, CORFU uses
projections to map from a single infinite address space to
individual extents on each flash unit. Each flash-unit then
maps a sparse 64-bit address space, broken into extents,
onto the physical set of pages. The flash unit has to main-
tain a hash-map from 64-bit addresses to the physical ad-
dress space of the flash. In fact, this is a relatively minor
departure from the functionality implemented by mod-
ern SSDs, which often employ page-level maps from a
fixed-size logical address space to a slightly larger phys-
ical address space.

Crucially, a projection is a range-to-range mapping,
and hence it is quite concise. Despite this, it is possible
that an adversarial workload can result in bloated projec-
tions; for instance, if each range in the projection has a
single valid entry that is never trimmed, the mapping for
that range has to be retained in the projection for perpe-
tuity.

Even for such adversarial workloads, it is easy to
bound the size of the projection tightly by introducing
a small amount of proactive data movement across flash
units in order to merge consecutive ranges in the projec-
tion. For instance, we estimate that adding 0.1% writes
to the system can keep the projection under 25 MB on
a 1 TB cluster for an adversarial workload. In practice,
we do not expect projections to exceed 10s of KBs for
conventional workloads; this is borne out by our expe-
rience building applications over CORFU. In any case,
handling multi-MB projections is not difficult, since they
are static data structures that can be indexed efficiently.
Additionally, new projections can be written as deltas to
the auxiliary.

3.6 Flash Unit Implementations

Flash units can be viewed as conventional SSDs with net-
work interfaces, supporting reads, writes and trims on an
address space. Recall that flash units have to meet three
major requirements: write-once semantics, a seal capa-

bility, and an infinite address space.
Of these, the seal capability is simple: the flash unit

maintains an epoch number cur sealed epoch and rejects
all messages tagged with equal or lower epochs, sending
back an error badepoch error code. When a seal com-
mand arrives with a new epoch to seal, the flash unit
first flushes all ongoing operations and then updates its
cur sealed epoch. It then responds to the seal command
with cur highest offset, the highest address written in the
address space it exposes; this is required for reconfigura-
tion, as explained previously.

The infinite address space is essentially just a hash-
map from 64-bit virtual addresses to the physical address
space of the flash. With respect to write-once semantics,
an address is considered unwritten if it does not exist in
the hash-map. When an address is written to the first
time, an entry is created in the hash-map pointing the vir-
tual address to a valid physical address. Each hash-map
entry also has a bit indicating whether the address has
been trimmed or not, which is set by the trim command.

Accordingly, a read succeeds if the address exists in
the hash-map and does not have the trim bit set. It returns
error trimmed if the trim bit is set, and error unwritten if
the address does not exist in the hash-map. A write to an
address that exists in the hash-map returns error trimmed
if the trim bit is set and error overwritten if it is not. If
the address is not in the hash-map, the write succeeds.

To eventually remove trimmed addresses from the
hash-map, the flash unit also maintains a watermark be-
fore which no unwritten addresses exist, and removes
trimmed addresses from the hash-map that are lower than
the watermark. Reads and writes to addresses before
the watermark that are not in the hash-map return error-
trimmed immediately. If the address is in the hash-map,
reads succeed while writes return error overwritten.

The flash unit also efficiently supports fill operations
that write junk by treating such writes differently from
first-class writes. Junk writes are initially treated as
conventional writes, either succeeding or returning er-
ror overwritten or error trimmed as appropriate. How-
ever, instead of writing to the flash or SSD, the flash unit
points the hash-map entry to a special address reserved
for junk; this ensures that flash cycles and capacity is not
wasted. Also, once the hash-map is updated, the entry is
immediately trimmed in the scope of the same operation.
This removes the need for clients to explicitly track and
trim junk in the log.

Currently, we have built two flash unit instantiations:
Server+SSD: this consists of conventional SATA SSDs
attached to servers with network interfaces. The
server accepts CORFU commands over the network
from clients and implements the functionality described
above, issuing reads and writes to the fixed-size address
space of the SSD as required.

FPGA+SSD: an FPGA with a SATA SSD attached to
it, prototyped using the Beehive [27] architecture on the
BEE3 hardware platform [10]. The FPGA includes a net-
work interface to talk to clients and SATA ports to con-
nect to the SSD. A variant under development runs over
raw flash chips, implementing FTL functionality on the
FPGA itself.

4 CORFU Applications

We are currently prototyping several applications over
CORFU. Two such applications that we have im-
plemented are CORFU-Store, a key-value store, and
CORFU-SMR, an implementation of State Machine
Replication [23].

CORFU-Store: This is a key-value store that sup-
ports a number of properties that are difficult to achieve
on partitioned stores, including atomic multi-key puts
and gets, distributed snapshots, geo-distribution and dis-
tributed rollback/replay. In CORFU-Store, a map-service
(which can be replicated) maintains a mapping from
keys to shared log offsets. To atomically put multiple
keys, clients must first append the key-value pairs to the
CORFU log, append a commit record and then send the
commit record to the map-service. To atomically get
multiple keys, clients must query the map-service for
the latest key-offset mappings, and then perform CORFU
reads on the returned offsets. This protocol ensures lin-
earizability for single-key puts and gets, as well as atom-
icity for multi-key puts and gets.

CORFU-Store’s shared log design makes it easy to
take consistent point-in-time snapshots across the entire
key space, simply by playing the shared log up to some
position. The key-value store can be geo-distributed
asynchronously by copying the log, ensuring that the
mirror is always at some prior snapshot of the system,
with bounded lag. Additionally, CORFU-Store ensures
even wear-out across the cluster despite highly skewed
write workloads.

CORFU-SMR: Earlier, we noted that CORFU pro-
vides the same functionality as Paxos. Accordingly,
CORFU is ideal for implementing replicated state ma-
chines. Each SMR server simply plays the log forward
to receive the next command to execute. It proposes new
commands into the state machine by appending them to
the log. The ability to do fast queries on the body of the
log means that the log entries can also include the data
being executed over, obviating the need for each SMR
server to store state persistently.

In our current implementation, each SMR server plays
the log forward by issuing reads to the log. This ap-
proach can stress the shared log: with N SMR servers
running at T commands/sec, the CORFU log will see

N ∗ T reads/sec. However, we retained this design since
we did not bottleneck at the shared log in our experi-
ments; instead, we were limited by the ability of each
SMR server to receive and process commands. In the fu-
ture, we expect to explore different approaches to playing
the log forward, perhaps by having dedicated machines
multicast the contents of the log out to all SMR servers.

Other Applications: As mentioned previously, we
are implementing the Hyder database [7] over CORFU.
One application in the works is a shared block device
that exposes a conventional fixed-size address space; this
can then be used to expose multiple, independent virtual
disks to client VMs [20]. Another application is reliable
multicast, where senders append to a single, channel-
specific log before multicasting. A receiver can detect
lost packets by observing gaps in the sequence of log po-
sitions, and retrieve them from the log.

5 Evaluation

We evaluate CORFU on a cluster of 32 Intel X25V
drives. Our experiment setup consists of two racks;
each rack contains 8 servers (with 2 drives attached to
each server) and 11 clients. Each machine has a 1
Gbps link. Together, the two drives on a server pro-
vide around 40,000 4KB read IOPS; accessed over the
network, each server bottlenecks on the Gigabit link and
gives us around 30,000 4KB read IOPS. Each server runs
two processes, one per SSD, which act as individual flash
units in the distributed system. Currently, the top-of-rack
switches of the two racks are connected to a central 10
Gbps switch; our experiments do not generate more than
8 Gbps of inter-rack traffic. We run two client processes
on each of the client machines, for a total of 44 client
processes.

In all our experiments, we run CORFU with two-way
replication, where appends are mirrored on drives in ei-
ther rack. Reads go from the client to the replica in the
local rack. Accordingly, the total read throughput possi-
ble on our hardware is equal to 2 GB/sec (16 servers X 1
Gbps each) or 500K/sec 4KB reads. Append throughput
is half that number, since appends are mirrored.

Unless otherwise mentioned, our throughput numbers
are obtained by running all 44 client processes against
the entire cluster of 32 drives. We measure throughput at
the clients over a 60-second period during each run.

In addition to this primary deployment of server-
attached SSDs, we also provide some results over the
prototype FPGA+SSD flash unit. In this case, the FPGA
has two SSDs attached to it and emulates a pair of flash
units, and a single CORFU client accesses it over the
network. The FPGA runs at 1 Gbps or roughly 30K
4KB reads/sec. When running at full speed, it consumes

 0

 500

 1000

 1500

 2000

 2500

 3000

Reads Appends Fills

La
te

nc
y

(m
s)

Server:TCP,Flash
Server:TCP,RAM
Server:UDP,RAM
FPGA:UDP,Flash

Figure 5: Latency for CORFU operations on different
flash unit configurations.

around 15W; in contrast, one of our servers consumes
250W. We also experimented with low-power Atom-
based servers, but found them incapable of serving SSD
reads over the network at 1 Gbps.

5.1 End-to-end Latency

We first summarize the end-to-end latency characteris-
tics of CORFU in Figure 5. We show the latency for
read, append and fill operations issued by clients for four
CORFU configurations. The left-most bar for each oper-
ation type (Server:TCP,Flash) shows the latency of the
server-attached flash unit where clients access the flash
unit over TCP/IP when data is durably stored on the
SSD; this represents the configuration of our 32-drive de-
ployment. To illustrate the impact of flash latencies on
this number, we then show (Server:TCP,RAM), in which
the flash unit reads and writes to RAM instead of the
SSD. Third, (Server:UDP,RAM) presents the impact of
the network stack by replacing TCP with UDP between
clients and the flash unit. Lastly, (FPGA:UDP,Flash)
shows end-to-end latency for the FPGA+SSD flash unit,
with the clients communicating with the unit over UDP.

Against these four configurations we evaluate the la-
tency of three operation types. Reads from the client in-
volve a simple request over the network to the flash unit.
Appends involve a token acquisition from the sequencer,
and then a chained append over two flash unit replicas.
Fills involve an initial read on the head of the chain to
check for incomplete appends, and then a chained ap-
pend to two flash unit replicas.

In this context, Figure 5 makes a number of impor-
tant points. First, the latency of the FPGA unit is very
low for all three operations, providing sub-millisecond
appends and fills while satisfying reads within half a mil-
lisecond. This justifies our emphasis on a client-centric

 0
 25
 50
 75

 100

 0 1 2 3 4 5 6 7 8 9 10

%

Latency (ms)

Server Reads

 0
 25
 50
 75

 100

 0 1 2 3 4 5 6 7 8 9 10

%

Latency (ms)

Server Appends

 0
 25
 50
 75

 100

 0 1 2 3 4 5 6 7 8 9 10

%

Latency (ms)

Server Fills

 0
 25
 50
 75

 100

 0 1 2 3 4 5 6 7 8 9 10

%

Latency (ms)

FPGA Reads

 0
 25
 50
 75

 100

 0 1 2 3 4 5 6 7 8 9 10

%

Latency (ms)

FPGA Appends

 0
 25
 50
 75

 100

 0 1 2 3 4 5 6 7 8 9 10

%

Latency (ms)

FPGA Fills

Figure 6: Latency distributions for CORFU operations on 4KB entries.

0K

125K

250K

375K

500K

 4 8 12 16 20 24 28 32
 0

 0.5

 1

 1.5

 2

4K
B

 E
nt

rie
s/

Se
c

G
B

/s
ec

Number of Flash Units

Append Throughput
Read Throughput

Figure 7: Throughput for random reads and appends.

design; eliminating the server from the critical path ap-
pears to have a large impact on latency. Second, the la-
tency to fill a hole in the log is very low; on the FPGA
unit, fills complete within 650 microseconds. CORFU’s
ability to fill holes rapidly is key to realizing the bene-
fits of a client-centric design, since hole-inducing client
crashes can be very frequent in large-scale systems. In
addition, the chained replication scheme that allows fast
fills in CORFU does not impact append latency drasti-
cally; on the FPGA unit, appends complete within 750
microseconds.

5.2 Throughput

We now focus on throughput scalability; these experi-
ments are run on our 32-drive cluster of server-attached
SSDs. To avoid burning out the SSDs in the throughput
experiments, we emulate writes to the SSDs; however,
all reads are served from the SSDs, which have ‘burnt-

in’ address spaces that have been written to completely.
Emulating SSD writes also allows us to test the CORFU
design at speeds exceeding the write bandwidth of our
commodity SSDs.

Figure 7 shows how log throughput for 4KB appends
and reads scales with the number of drives in the sys-
tem. As we add drives to the system, both append and
read throughput scale up proportionally. Ultimately, ap-
pend throughput hits a bottleneck at around 180K ap-
pends/sec; this is the maximum speed of our sequencer
implementation, which is a user-space application run-
ning over TCP/IP. Since we were near the append limit of
our hardware, we did not further optimize our sequencer
implementation.

At such high append throughputs, CORFU can wear
out 1 TB of MLC flash in around 4 months. We believe
that replacing a $3K cluster of flash drives every four
months is acceptable in settings that require strong con-
sistency at high speeds, especially since we see CORFU
as a critical component of larger systems (as a consensus
engine or a metadata service, for example).

5.3 Reconfiguration

Reconfiguration is used extensively in CORFU, to re-
place failed drives, to add capacity to the system, and
to add, remove, or relocate replicas. This makes recon-
figuration latency a crucial metric for our system.

Recall that reconfiguration latency has two compo-
nents: sealing the current configuration, which contacts
a subset of the cluster, and writing the new configuration
to the auxiliary. In our experiments, we conservatively
seal all drives, to provide an upper bound on reconfigu-
ration time; in practice, only a subset needs to be sealed.
Our auxiliary is implemented as a networked file share.

Figure 8 (Left) shows throughput behavior at an ap-
pending and reading client when a flash unit fails. When

0K

5K

10K

15K

20K

25K

 0 5 10 15 20 25 30 35

Th
ro

ug
hp

ut
 (O

ps
/S

ec
)

Time (seconds)

Reads
Appends

Failure

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

%
 o

f R
ec

on
fig

ur
at

io
ns

Latency (ms)

Sealing Latency
Total Latency

 0

 2

 4

 6

 8

 10

 4 8 12 16 20 24 28 32

La
te

nc
y

(m
s)

Number of Flash Units

Sealing Latency

Figure 8: Reconfiguration performance on 32-drive cluster. Left: Appending client waits on failed drive for 1 second
before reconfiguring, while reading client continues to read from alive replica. Middle: Distribution of sealing and
total reconfiguration latency for 32 drives. Right: Scalability of sealing with number of drives.

the error occurs 25 seconds into the experiment, the ap-
pending client’s throughput flat-lines and it waits for a
1-second timeout period before reconfiguring to a pro-
jection that does not have the failed unit. The reading
client, on the other hand, continues reading from the
other replica; when reconfiguration occurs, it receives an
error from the replica indicating that it has a stale, sealed
projection; it then experiences a minor blip in throughput
as it retrieves the latest projection from the auxiliary. The
graph for sequencer failure looks identical to this graph.

Figure 8 (Middle) shows the distribution of the latency
between the start of reconfiguration and its successful
completion on a 32-drive cluster. The median latency
for the sealing step is around 5 ms, while writing to the
auxiliary takes 25 ms more. The slow auxiliary write is
due to overheads in serializing the projection as human-
readable XML and writing it to the network share; im-
plementing the auxiliary as a static CORFU instance and
writing binary data would give us sub-millisecond auxil-
iary writes (but make the system less easy to administer).

Figure 8 (Right) shows how the median sealing latency
scales with the number of drives in the system. Sealing
involves the client contacting all flash units in parallel
and waiting for responses. The auxiliary write step in
reconfiguration is insensitive to system size.

5.4 Applications

We now demonstrate the performance of CORFU-Store
for atomic multi-key operations. Figure 9 (Left) shows
the performance of multi-put operations in CORFU-
Store. On the x-axis, we vary the number of keys up-
dated atomically in each multi-put operation. The bars
in the graph plot the number of multi-puts executed per

second. The line plots the total number of CORFU log
appends resulting as a result of the multi-put operations;
a multi-put involving k keys generates k+1 log appends,
one for each updated key and a final append for the com-
mit record. For small multi-puts involving one or two
keys, we are bottlenecked by the ability of the CORFU-
Store map-service to handle and process incoming com-
mit records; our current implementation bottlenecks at
around 50K single-key commit records per second. As
we add more keys to each multi-put, the number of log
appends generated increases and the CORFU log bot-
tlenecks at around 180K appends/sec. Beyond 4 keys
per multi-put, the log bottleneck determines the number
of multi-puts we push through; for example, we obtain
180K

6 =30K multi-puts involving 5 keys.

Figure 9 (Right) shows performance for atomic multi-
get operations. As we increase the number of keys ac-
cessed by each multi-get, the overall log throughput stays
constant while multi-get throughput decreases. For 4
keys per multi-get, we get a little over 100K multi-gets
per second, resulting in a load of over 400K reads/s on
the CORFU log.

Figure 10 shows the throughput of CORFU-SMR,
the state machine replication library implemented over
CORFU. In this application, each client acts as a state
machine replica, proposing new commands by append-
ing them to the log and executing commands by playing
the log. Each command consists of a 512-byte payload
and 64 bytes of metadata; accordingly, 7 commands can
fit into a single CORFU log entry with batching. In the
experiment, each client generates 7K commands/sec; as
we add clients on the x-axis, the total rate of commands
injected into the system increases by 7K. On the y-axis,
we plot the average rate (with error bars signifying the

 0

 100

 200

 300

 400

 500

 1 2 3 4 5 6 7 8
 0

 100

 200

 300

 400

 500

Th
ou

sa
nd

s o
f M

ul
ti-

G
et

s/
Se

c

Th
ou

sa
nd

s o
f R

ea
ds

/S
ec

of Keys in Multi-Get

Multi-Get Tput
Log Read Tput

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8
 0

 50

 100

 150

 200

 250

Th
ou

sa
nd

s o
f M

ul
ti-

Pu
ts

/S
ec

Th
ou

sa
nd

s o
f A

pp
en

ds
/S

ec

of Keys in Multi-Put

Multi-Put Tput
Log Append Tput

Figure 9: Example CORFU Application: CORFU-Store supports atomic multi-gets and multi-puts at cluster scale.

0K
10K
20K
30K
40K
50K
60K
70K
80K
90K

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C
om

m
an

ds
/S

ec

Replicas

SMR Throughput

Figure 10: Example CORFU Application: CORFU-
SMR supports high-speed state machine replication.

min and max across replicas) at which commands are
executed by each replica. While the system has 10 or
less CORFU-SMR replicas, the rate at which commands
are executed in the system matches the rate at which they
are injected. Beyond 10 replicas, we overload the abil-
ity of a client to execute incoming commands, and hence
throughput flat-lines; this means that clients are now lag-
ging behind while playing the state machine.

6 Related Work
Flash in the Data Center: CORFU’s architecture bor-
rows heavily from the FAWN system [5], which first ar-
gued for clusters of low-power flash units. CORFU’s
network-attached flash units are a natural extension of
the FAWN argument that low-speed CPUs are more
power-efficient; our FPGA implementation consisted of
a ring of 100 MHz cores. While FAWN showed that such

clusters could efficiently support parallelizable work-
loads, our contribution lies in extending the benefits of
such an architecture to strongly consistent applications.

In contrast to the FAWN and CORFU architecture are
PCI-e drives such as Fusion-io [2], which offer up to 10
Gbps of random I/O. Accessing such drives from remote
clients requires a high-end, expensive storage server to
act as a conduit between the network and the drive. The
server is a single point of failure, acts as a bottleneck
for reads and writes, is a power hog, costs as much as
the drive, and is not incrementally scalable. Storage ap-
pliances based on PCI-e drives [3, 4] can solve the first
two issues via replication but not the others. CORFU of-
fers similar performance for an order of magnitude less
power consumption and less than half the cost (our 32-
drive X25-V cluster cost $3K), while offering all the ben-
efits of a distributed solution.

Replicated Data Stores: A traditional design parti-
tions a virtual block drive or a file system onto a col-
lection of independent replica sets. Internally, each ob-
ject (a file or a block) is replicated using primary-backup
mirroring (e.g., [18]) or quorum replication (e.g., [11]).
Mapping each object onto a replica set is done by a cen-
tralized configuration manager (usually implemented as
a replicated state machine). As we explained earlier,
CORFU partitions data across time rather than space. In
addition, CORFU can act as the configuration manager
in such systems, adding a fast source of consistency that
other applications can use for resource and lock manage-
ment. This vital role is is currently played by systems
like Chubby [9] and ZooKeeper [15]. Another type of
effort related to SMR concentrates on high throughput
by allowing reads to proceed from any replica [8, 26].
CORFU faces a similar challenge of learning which ap-
pends have committed in order to read from any replica.

Log-structured Filesystems: All contemporary de-
signs for flash storage borrow heavily from a long line of

log-structured filesystems starting with LFS [21]. Mod-
ern SSDs are testament to the fact that flash is ideally
suited for logging designs, eliminating the traditional
problem with such systems of garbage collection inter-
fering with foreground activity [24]. Zebra [12] and
xFS [6] extended LFS to a distributed setting, striping
logs across a collection of storage servers. Like these
systems, CORFU stripes updates across drives in a log-
structured manner. Unlike them, it implements a single
shared log that can be concurrently accessed by multiple
clients while providing single-copy semantics.

Comparison with Hyder: As mentioned, Hyder was
our original motivating application, and is currently be-
ing implemented over CORFU. The Hyder paper [7] in-
cluded a design outline of a flash-based shared log (we
call this Hyder-Log) that was simulated but not imple-
mented. In fact, the design requirements for CORFU
emerged from discussions with the Hyder authors on
adding fault-tolerance and scalability to their proposal.

CORFU differs from the Hyder-Log design in multi-
ple ways. First, CORFU’s use of an off-path sequencer
ensures that no single flash unit has to process all ap-
pend I/O in the system; in contrast, Hyder-Log funnels
all appends through a primary unit, and accordingly ap-
pend throughput is bounded by the speed of a single unit.
Second, Hyder-Log parallelizes appends by striping in-
dividual entries across units; this forces applications to
use large entry sizes that are multiples of 4KB (typical
flash page granularity). To achieve parallelism without
imposing large entry sizes, CORFU uses projections to
map log positions to units in round-robin fashion.

Finally, our experience with CORFU identified holes
in the log as the most common mode of failure and source
of delays; accordingly, we focused on providing a sub-
millisecond hole-filling primitive that ensures high, sta-
ble log throughput despite client crashes. Hyder-Log suf-
fers from holes as well; it resorts to a heavy recovery pro-
tocol that involves sealing the system and forcing clients
to move to a new view every time a hole has to be filled.
As a result of these differences, CORFU departs exten-
sively in its design from the Hyder-Log proposal.

7 Conclusion

New storage designs are required to unlock the full po-
tential of flash storage. In this paper, we presented
the CORFU system, which organizes a cluster of flash
drives as a single, shared log. CORFU offers single-copy
semantics at cluster-scale speeds, providing a scalable
source of atomicity and durability for distributed sys-
tems. CORFU’s novel client-centric design eliminates
storage servers in favor of simple, efficient and inexpen-
sive flash chips that attach directly to the network.

References
[1] Intel x25-v datasheet. http://www.intel.com/design/

flash/nand/value/technicaldocuments.htm.
[2] Fusion-io. http://www.fusionio.com/, 2011.
[3] Texas memory systems. http://www.ramsan.com/, 2011.
[4] Violin memory. http://www.violin-memory.com/, 2011.
[5] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee,

L. Tan, and V. Vasudevan. FAWN: A Fast Array of Wimpy Nodes.
In SOSP 2009.

[6] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli, and
R. Wang. Serverless Network File Systems. In ACM SIGOPS
Operating Systems Review, volume 29, pages 109–126. ACM,
1995.

[7] P. Bernstein, C. Reid, and S. Das. Hyder – A Transactional
Record Manager for Shared Flash. In CIDR 2011, pages 9–20,
2011.

[8] W. Bolosky, D. Bradshaw, R. Haagens, N. Kusters, and P. Li.
Paxos Replicated State Machines as the Basis of a High-
performance Data Store. In NSDI 2011.

[9] M. Burrows. The Chubby lock service for loosely-coupled dis-
tributed systems. In OSDI 2006.

[10] J. Davis, C. P. Thacker, and C. Chang. BEE3: Revitalizing com-
puter architecture research. In MSR-TR-2009-45.

[11] S. Frølund, A. Merchant, Y. Saito, S. Spence, and A. Veitch. FAB:
Enterprise Storage Systems on a Shoestring. In HotOS 2003.

[12] J. Hartman and J. Ousterhout. The zebra striped network file
system. ACM TOCS, 13(3):274–310, 1995.

[13] R. Haskin, Y. Malachi, and G. Chan. Recovery management in
QuickSilver. ACM TOCS, 6(1):82–108, 1988.

[14] H. Holbrook, S. Singhal, and D. Cheriton. Log-based receiver-
reliable multicast for distributed interactive simulation. ACM
SIGCOMM CCR, 25(4):328–341, 1995.

[15] P. Hunt, M. Konar, F. Junqueira, and B. Reed. Zookeeper: wait-
free coordination for internet-scale systems. In USENIX ATC,
pages 11–11. USENIX Association, 2010.

[16] M. Ji, A. Veitch, J. Wilkes, et al. Seneca: remote mirroring done
write. In USENIX 2003 Annual Technical Conference, 2003.

[17] L. Lamport, D. Malkhi, and L. Zhou. Vertical paxos and primary-
backup replication. In PODC 2009, pages 312–313. ACM, 2009.

[18] E. Lee and C. Thekkath. Petal: Distributed virtual disks. ACM
SIGOPS Operating Systems Review, 30(5):84–92, 1996.

[19] D. Malkhi, M. Balakrishnan, J. D. Davis, V. Prabhakaran, and
T. Wobber. From Paxos to CORFU: A Flash-Speed Shared Log.
ACM SIGOPS Operating Systems Review, 46(1):47–51, 2012.

[20] D. Meyer, G. Aggarwal, B. Cully, G. Lefebvre, M. Feeley,
N. Hutchinson, and A. Warfield. Parallax: Virtual Disks for Vir-
tual Machines. In Eurosys 2008.

[21] M. Rosenblum and J. Ousterhout. The design and implementation
of a log-structured file system. ACM TOCS, 10(1), Feb. 1992.

[22] F. Schmuck and J. Wylie. Experience with transactions in Quick-
Silver. In ACM SIGOPS OSR, volume 25. ACM, 1991.

[23] F. B. Schneider. Implementing fault-tolerant services using
the state machine approach: A tutorial. ACM Comput. Surv.,
22(4):299–319, 1990.

[24] M. Seltzer, K. Smith, H. Balakrishnan, J. Chang, S. McMains,
and V. Padmanabhan. File system logging versus clustering: A
performance comparison. In USENIX ATC 1995.

[25] A. Spector, R. Pausch, and G. Bruell. Camelot: A flexible, dis-
tributed transaction processing system. In Compcon Spring’88.

[26] J. Terrace and M. Freedman. Object storage on CRAQ: High-
throughput chain replication for read-mostly workloads. In
Usenix ATC 2009.

[27] C. P. Thacker. Beehive: A many-core computer for FPGAs. Un-
published Manuscript.

[28] R. van Renesse and F. B. Schneider. Chain replication for sup-
porting high throughput and availability. In OSDI 2004.

