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Abstract

Content distribution networks (CDNs) have started to
adopt hybrid designs, which employ both dedicated edge
servers and resources contributed by clients. Hybrid de-
signs combine many of the advantages of infrastructure-
based and peer-to-peer systems, but they also present
new challenges. This paper identifies reliable client ac-
counting as one such challenge. Operators of hybrid
CDNs are accountable to their customers (i.e., content
providers) for the CDN’s performance. Therefore, they
need to offer reliable quality of service and a detailed ac-
count of content served. Service quality and accurate ac-
counting, however, depend in part on interactions among
untrusted clients. Using the Akamai NetSession client
network in a case study, we demonstrate that a small
number of malicious clients used in a clever attack could
cause significant accounting inaccuracies.

We present a method for providing reliable account-
ing of client interactions in hybrid CDNs. The proposed
method leverages the unique characteristics of hybrid
systems to limit the loss of accounting accuracy and ser-
vice quality caused by faulty or compromised clients. We
also describe RCA, a system that applies this method to
a commercial hybrid content-distribution network. Us-
ing trace-driven simulations, we show that RCA can de-
tect and mitigate a variety of attacks, at the expense of a
moderate increase in logging overhead.

1 Introduction

An increasing number of commercial content-
distribution networks (CDNs) are based on a hy-
brid architecture, which combines peer-to-peer and
infrastructure-based elements. These include, for in-
stance, Velocix [5], LiveSky [35], Pando Networks [4],
Octoshape [3], and PPLive [33]. Even Akamai, the
largest CDN, which was originally purely infrastructure-
based, has recently added peer-assisted technologies like
NetSession [8]. There are good reasons for this trend.
Hybrid architectures combine many of the benefits of
peer-to-peer systems (cost reduction through the use of
client resources, use of local resources, e.g., within a
corporate intranet) with those of infrastructure-based
systems (dedicated backup resources, dependability,
centralized management and control); moreover, by
utilizing both peer and infrastructure resources, hybrids

are able to provide better service than pure peer-to-peer
or infrastructure-based systems. Studies have shown
impressive advantages: the potential bandwidth savings
for the service provider are considerable [21], and hybrid
CDNs can significantly reduce the costs of all parties
involved in the content distribution process, including
the edge ISPs [22].

However, compared to purely infrastructure-based
systems, hybrid architectures face an inherent challenge:
By definition, peer-to-peer communication occurs be-
tween untrusted clients, and therefore cannot be observed
directly by the trusted infrastructure. As a result, faulty
or compromised clients can mishandle peer communica-
tion in ways that are not observable by the infrastructure,
and they can under- or overreport peer interactions. In
principle, a compromised client may be able to censor or
modify content, and inject unauthorized content; it may
refuse, delay, or abort transfers to deny or degrade ser-
vice to other clients; and it may misreport peer transfers
in an attempt to manipulate the accounting for commer-
cial content or services.

In practice, hybrid systems can take measures to mit-
igate this risk. For instance, clients can obtain signed
content hashes from the trusted infrastructure to ver-
ify content received from peers. The infrastructure can
control which clients may peer, in order to make collu-
sion of faulty clients more difficult. Client logs can be
checked and suspicious or inconsistent records excluded
at some cost in logging accuracy. Clients that have re-
peatedly been involved in disputed or aborted transac-
tions can be blacklisted at some risk of blocking legit-
imate clients. Nevertheless, the potential remains for
compromised clients to disrupt service quality and affect
logging accuracy.

There is little evidence of widespread attacks of this
type against hybrid systems today. However, as these
systems become more popular, it is important to under-
stand the risks. Therefore, we have (with permission)
performed a ‘red team’ evaluation of one specific hy-
brid CDN, Akamai’s NetSession system, which has a
large deployment with currently over 24 million clients.
We have identified an attack vector that enables a single
malicious client to report more than 30 GB of fictitious
download activity per hour, an amount that can be further
inflated through a Sybil attack [17].



While this specific vulnerability has been removed,
the underlying challenge remains: a hybrid system’s ac-
counting is based on information from untrusted peers
that is difficult to verify, and a determined attacker could
find other ways to exploit this vulnerability. The chal-
lenge also applies to other commercial hybrid content
delivery systems, not just to NetSession, and may apply
to other types of hybrid systems as well. For example,
CDNs have developed methods for owner-operated net-
work appliances to serve customer content and report on
download activity [23]. Unlike edge servers, which are
part of the CDN’s infrastructure, these appliances are not
under the administration of the CDN. Similarly, certain
network games rely on direct communication and inter-
action between game consoles, with outcomes ultimately
reported to a centralized infrastructure [7]. Hence, we are
interested in a principled approach to reliable accounting
of client interactions.

To address this challenge, we present a method for
providing reliable client accounting in hybrid distributed
systems. Our method uses the infrastructure nodes to es-
tablish reliable facts about the clients, such as an upper
bound on their available resources (which is essential to
limit the effect of Sybil attacks). Moreover, all clients
record a tamper-evident log [20] of their actions and must
periodically upload their log to an infrastructure node;
this severely restricts the ability of malicious clients to
lie without getting caught.

A key feature of our approach is the ability to quar-
antine suspicious clients. Quarantined clients cannot in-
teract with other clients, and their requests are served di-
rectly by the infrastructure; thus, such clients are unable
to misreport their actions or disrupt other clients. A key
insight is that in hybrid systems, quarantining is safe:
if an honest client is accidentally quarantined, its qual-
ity of service does not change, it merely causes a small
amount of extra load on the infrastructure. Thus, the in-
frastructure can afford to err on the side of caution e.g.,
by using anomaly detection techniques with high false-
positive rates, which are difficult for an adversary to es-
cape.

To demonstrate that our approach is effective, we
present RCA, a system that applies our approach to Net-
Session. We report results from a trace-driven evalua-
tion, based on traces from Akamai’s production deploy-
ment. Our results indicate that RCA increases the pro-
tocol overhead from 0.06% without RCA to 0.47% with
RCA, relative to the amount of content served, and it re-
quires clients to maintain approximately 550 bytes of ex-
tra information per MB of downloaded content that must
be uploaded to, and checked by, the infrastructure. We
also show that RCA is effective against a variety of at-
tacks and misbehaviors by malicious clients. In sum-
mary, our contributions are as follows:

A case study of a hybrid content delivery system
based on Akamai NetSession (Section 3);

e A demonstration of an accounting attack on NetSes-
sion (Section 4);

o A method for providing reliable client accounting in
hybrid distributed systems (Section 5);

e RCA, an application of our approach to NetSession
(Section 6); and

e A comprehensive evaluation, based on traces from
NetSession (Section 7).

2 Related work

Hybrid systems: Several studies, e.g., [21, 22], have
predicted considerable benefits for peer-assisted CDN
designs, and measurement studies of commercial peer-
assisted CDNs, such as LiveSky [35] and PPlive [33],
seem to confirm that these benefits are being achieved in
practice. Client misbehavior in peer-to-peer CDNs has
been observed empirically, e.g., collusion among users
of the Maze system [24]. Most existing defenses as-
sume rational clients, who misbehave to increase their
own performance or minimize their cost. Misbehavior of
this type can be prevented with robust incentives; for in-
stance, Dandelion [31] rewards uploads from clients with
virtual currency that can be used to purchase downloads
from other clients or the infrastructure. However, such
incentives are not effective against malicious attacks of
the type we consider in this paper. Dandelion focuses on
preventing freeloading, while RCA considers more gen-
eral Byzantine behavior as well.

Some systems do consider certain types of malicious
behavior. For example, Antfarm [28], which uses cryp-
tographically signed tokens as payment for block down-
loads, can detect forged tokens; [28] also briefly sketches
possible extensions that could mitigate additional at-
tacks, such as double-spending. However, Antfarm does
not use the tokens for reporting, but rather for allocat-
ing the infrastructure’s bandwidth among the different
swarms, and consequently has lower requirements for the
accuracy of reporting. Also, Antfarm’s weapon against
malicious clients is to excise them from the swarm. Un-
like quarantined clients in RCA, excised clients no longer
receive service. Therefore, clients can be excised only in
cases of cryptographically verifiable misbehavior, such
as forged tokens or double-spending.

Accounting mechanisms: Seuken and Parkes [30] ex-
amined the problem of reliable accounting in a decen-
tralized setting with rational peers, and they have shown
that, in this setting, no Sybil-proof accounting mecha-
nism exists. This result does not apply to hybrid sys-
tems because the infrastructure can serve as a central,
trusted monitoring component. Moreover, [30] assumes



that peers are either cooperative or rational, whereas this
paper also considers Byzantine peers.

Accountability: Accountability systems like PeerRe-
view [20] can automatically detect a large subclass of
Byzantine faults and tie them to the identities of specific
faulty nodes. RCA’s tamper-evident log is based on ideas
from PeerReview, but differs from PeerReview in several
ways; for example, RCA is designed to withstand Sybil
attacks, and takes advantage of a central infrastructure in
order to reduce overhead. Also, RCA’s focus is on reli-
able accounting rather than fault detection.

Defenses against Sybil attacks: Douceur’s original pa-
per on the Sybil attack [17] suggests resource testing as
a possible defense, and subsequent work has explored a
variety of solutions for different types of resources, such
as distinct physical locations [ 10], money [25], and social
relationships with honest users [36,37]. Our approach is
perhaps closest to Tarzan [18], which uses IP addresses
to identify instances of Sybil identities. Another ap-
proach relies on certification authorities, as in [6]. Certi-
fication is unsuitable for systems like NetSession, which
seek to keep the registration process simple to encourage
adoption.

Anomaly detection: RCA includes anomaly detec-
tion [13] and benefits in this regard from decades of re-
search, e.g., on intrusion-detection systems [15]. How-
ever, when applied by itself, anomaly detection faces
limitations in a security context [9], because an adversary
may be able to avoid detection by shifting the system’s
workload gradually, e.g., in a frog-boiling attack [12]. To
guard against such attacks, RCA complements anomaly
detection with tamper-evident logs as well as consistency
and invariant checks, which do not rely on assumptions
about the system’s workload.

3 Case study: Akamai NetSession

To provide some context for our discussion of reliable ac-
counting in hybrid systems, we first describe the design
of a concrete hybrid system: Akamai NetSession.

3.1 The NetSession system

The NetSession system is a peer-assisted content deliv-
ery network (CDN) operated by Akamai. Like Aka-
mai’s more widely known infrastructure-based service,
NetSession’s primary function is to accept content, such
as software packages or videos, from a number of con-
tent providers, and to deliver that content to a potentially
large number of users. While the infrastructure-based
service delivers the content exclusively from a number
of edge servers that are operated by Akamai, NetSession
additionally leverages peer-to-peer transfers between the
user nodes, or clients. Content can be downloaded from
the edge servers, the peers, or a mixture of both.

Clients

uly g
Edge servers

Control plane servers

Figure 1: Overview of the NetSession system. Control
connections are shown as dotted lines.

To use NetSession, users must install the NetSession
client software on their machines. The NetSession soft-
ware can maintain links to other clients and communi-
cates with a number of control plane servers, which co-
ordinate the connections between the clients (Figure 1).
Once installed, the client can be reused for future down-
loads, and it offers an API to local applications. The
client also provides a GUI for monitoring download
progress, as well as a set of controls for enabling or
disabling uploads to peers. Clients are identified by a
GUID, which is chosen at random during installation
and does not contain personally identifiable information.
Since each client periodically connects to the control
plane, we can use the number of such connections to esti-
mate the number of clients in the system. During Novem-
ber 2011, the control plane registered connections from
more than 24 million distinct GUIDs.

3.2 Why a hybrid architecture?

Historically, most CDNs have either been infrastructure-
based, such as Akamai and Limelight [2], or peer-to-
peer, such as PPLive [33], Joost [1], or BitTorrent [14].
Both architectures have their own advantages and dis-
advantages. The key advantage of peer-to-peer systems
is their scalability and independence of infrastructure;
infrastructure-based CDNs can only scale by provision-
ing additional infrastructure resources, which can be ex-
pensive. The key advantage of infrastructure-based sys-
tems is their predictable quality of service; the service
provided by peer-to-peer systems, on the other hand, can
be inconsistent [34], because end-user machines are of-
ten resource-constrained and unreliable.

Hybrid systems seem like an attractive design point
because they can combine most of the advantages of both
systems. On the one hand, they can scale and reduce cost
by leveraging resources contributed by the clients; on
the other hand, they can mask glitches and performance
problems by falling back on the infrastructure, which en-
sures good quality of service. In addition, the infrastruc-
ture can be used to solve a variety of technical problems
that tend to plague peer-to-peer systems. For example,
it can serve as a rendezvous point for NAT traversal, it
can perform global optimizations [28], it can provide ex-



tra capacity in the critical initial and final stages of the
download, and it can validate content exchanged among
clients. The infrastructure can also maintain a central
directory, so that, when a client initiates a download, the
infrastructure can immediately suggest a number of peers
that are online, have a compatible NAT type, and are stor-
ing the requested file.

However, to secure hybrid systems, we need to under-
stand whether their specific structure makes them vul-
nerable to new kinds of attacks, and what kinds of de-
fenses may be appropriate for them. In this paper, we
identify a new class of attacks that exploit the infrastruc-
ture’s inability to observe client interactions directly, and
we present a system that can detect and mitigate these
(and other) attacks.

3.3 Operation

We now briefly describe how a peer-assisted download
in NetSession works. When the user of a client c initi-
ates a download, the NetSession software on ¢ sends a
request to the control plane, which returns a set of up
to k peers (currently 40) C' := ¢y, ..., ¢y that are cur-
rently online and have blocks of the requested file. The
list contains only peers that have compatible NATs and
is biased towards peers that are close to c¢. Once c has
received this list, it opens connections to some subset of
C. The control plane also notifies the peers in C, so that
both endpoints can open holes in their local NATS if nec-
essary.

The actual download is done using a swarming proto-
col conceptually similar to the BitTorrent [14] protocol:
the file is broken into fixed-size blocks, clients exchange
bitmasks with their peers to indicate which blocks they
have available, and clients can request ranges of blocks
from each other. Swarming and downloads from edge
servers can proceed concurrently. Each block is veri-
fied against a hash that is obtained from an edge server;
thus, corrupted blocks can be discarded and downloaded
again.

Clients only upload content file blocks to their peers
when three conditions are met: 1) the local client has
previously downloaded the file, 2) the content provider
has enabled swarming for that file, and 3) swarming is
enabled in the client’s local NetSession installation (this
can be changed by the user in a control panel setting).
To avoid inconveniencing the user, NetSession limits the
upload/download ratio, and it ensures that uploads do not
cause resource contention on the local machine.

NetSession downloads are peer-assisted in the sense
that downloading content from peers is helpful but not
required for correctness: even if a client does not receive
a single valid block from its peers (or there are currently
no peers that have the requested content), it can still com-
plete the download using only the edge servers. Never-

theless, it is important to identify faulty and misbehav-
ing clients, since they can degrade the CDN'’s quality of
service. For instance, faulty clients can request an inor-
dinate number of blocks from their peers or send them
corrupted data blocks, which subsequently fail the hash
verification and must be downloaded again. This is not
an issue in infrastructure-based CDNs, where all content
is delivered by the edge servers.

3.4 Logging and reporting

NetSession generates a detailed log to document its per-
formance. Each client regularly reports certain events to
the control plane, including 1) the start and the comple-
tion of a download, 2) its performance during the down-
load, and 3) the number of bytes that it has downloaded
from peers and from the infrastructure. These reports are
logged by the control plane.

The NetSession logs are used internally by Akamai,
e.g., for quality control and to improve system perfor-
mance. However, they also serve another crucial func-
tion. Customers of CDNs expect to have access to the
logs of all downloads of their content; they use these logs
for analytics, i.e., to determine which content is popu-
lar, which clients are downloading the content, and what
level of performance the CDN is providing to the clients.
Since the logs are directly visible to the customer, it is
essential (from the CDN operator’s perspective) that the
logged data is reliable. If the data in the logs were found
to be inaccurate or subject to manipulation by users, this
could undermine the CDN operator’s credibility.

We hypothesize that logging and reporting are key
features of hybrid systems in general, beyond the spe-
cific NetSession system, and perhaps even beyond hybrid
CDNs. By definition, a hybrid system has an infrastruc-
ture component, which must be paid for by some party,
and that party will want an accurate report of what they
are paying for. Hence, attacks on reporting represent a
serious threat to hybrid systems.

4 Attacks on hybrid systems

In this section, we describe attacks on hybrid CDNs, in-
cluding a novel class of inflation attacks on the reporting
system. To demonstrate that existing systems are vulner-
able, we report results from a successful inflation attack
on the NetSession system.

4.1 Threat model

In this paper, we assume that the nodes in the infras-
tructure (such as Akamai’s edge servers) are correct and
fully trusted by the operator. The clients, on the other
hand, are untrusted and can be compromised or fail in
various ways, so we conservatively assume that some
subset of them is controlled by a malicious adversary.



Clients can communicate with infrastructure nodes and
with their peers, but the infrastructure cannot observe di-
rect peer-to-peer communication.

We also assume that the system does not use strong
identities and that membership is open, i.e., any client is
allowed to join the system. In particular, this means that
the adversary can potentially mount a Sybil attack [17]
on the system, e.g., by running multiple instances of the
client software on the same machine.

4.2 Attack vectors

There are two aspects of this model that make reliable
accounting fundamentally difficult. First, the clients are
not fully trusted and could tell lies, suppress informa-
tion, or mishandle the communication with their peers
to deny them service. Second, a (potentially large) frac-
tion of the events that are to be accounted for occur di-
rectly between the clients, where the infrastructure can-
not observe them. Separately, each of these challenges
would be easy to handle: if the clients were trusted, the
infrastructure could rely on their correct handling of re-
quests and the accuracy of their reports; if the infrastruc-
ture was directly involved in all communication (as in
Akamai’s infrastructure-based CDN), it could intercede
when clients misbehave towards their peers, and perform
accounting based on its own records.

In the following, we focus on a novel type of account-
ing attack that exploits these challenges. We will refer to
this attack as an inflation attack. In an inflation attack,
the attacker causes the system to overreport the amount
of service that it has provided. Using the same techni-
cal approach, one could also mount deflation attacks, in
which the attacker would cause the amount of service to
be underreported instead.

4.3 Inflation attack on NetSession

To demonstrate the potential impact of inflation attacks,
we carried out such an attack on the NetSession system.
The attack could be carried out easily by modifying the
NetSession client software. We decided against this ap-
proach, partly because a modified client might have ac-
cidentally disrupted other clients or the NetSession in-
frastructure, partly because we were able to carry out the
attack even with an unmodified NetSession client.

To accomplish this, we wrote a script that uses the
client’s API to repeatedly download a certain file, as well
as a small proxy that interposed between our local Net-
Session client and its peers. Whenever our client at-
tempts to contact a peer, our proxy returns a spoofed re-
sponse that indicates that the peer has all of the requested
blocks, and whenever our client requests any blocks, the
proxy returns the blocks at LAN speed. This man-in-the-
middle attack was possible because, unlike the messages
exchanged between clients and the infrastructure, com-
munication between peers was not signed. The effect of

Data downloaded
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Figure 2: Effect of our attack on the NetSession logs.

this attack was that our client would trigger a large num-
ber of downloads, and these downloads would complete
at LAN speed. The resulting large number of downloads
were reported to the infrastructure, even though no con-
tent was actually transferred among the peers.

4.4 TImpact of the attack

We obtained permission from Akamai to test our attack
on the deployed NetSession system. To avoid the risk
of interfering with the production system, we targeted a
set of special files that is normally used for testing; thus,
there was no risk that legitimate clients would attempt to
download files from our proxied client, or that our attack
would affect the logs of legitimate content providers. We
ran our attack for one full day; during that day, we re-
quested files as quickly as possible. To assess the impact
of the attack, Akamai gave us access to the control plane
logs for our client’s specific GUID.

Figure 2 shows the reported downloads in this log.
Our single modified client was able to generate about
30 GB/hour of fictitious downloads, which show up as
a sharp spike in the figure. We note that this is a proof-
of-concept attack, and that its throughput was limited
by the throughput of our proxy. Had we chosen to di-
rectly modify the client software, we could have reported
downloads at arbitrary rates.

4.5 How serious is this attack?

Our specific proof-of-concept attack is not difficult to
prevent; indeed, the attack as described no longer works.
However, our specific attack is just one example from
an entire class of attacks; for instance, we could have
reverse-engineered the NetSession client software and
directly modified the reports it sends to the NetSession
infrastructure. So the root of the problem runs deeper.
Moreover, the vulnerability seems to exist in hybrid
systems generally; it is inherent in the fact that hybrid
systems must account for interactions between untrusted
clients, who cannot be relied upon to report them ac-
curately. To prevent similar attacks on NetSession and
other hybrid systems, a more comprehensive solution is
needed. Also, to show that a simple fix is not sufficient,
we briefly discuss a few strawman solutions.
Sign all messages: Cryptography can be used to defend
against man-in-the-middle attacks, but recall that this
was just a trick we used to make our proof-of-concept



attack easier to implement. Instead, an attacker could
simply modify the client software to generate whatever
messages he needs it to send.

Detect software modifications: There are techniques
that aim to detect whether a client has modified soft-
ware. Some of these techniques are purely software-
based; for example, certain multiplayer games scan the
clients’ memory for known cheats [29]. However, an ad-
versary can circumvent these techniques by disabling the
scan or by reporting incorrect results. Other techniques
require hardware support; for example, trusted platform
modules can be used to certify that a client has loaded
a certain software image [19]. However, the requisite
hardware usually is not available on all clients, and even
where it is available, it may be able to certify only that a
certain binary was loaded, not that it is still running.

Limit clients to one download per file: This would
thwart our specific attack; however, an adversary could
still download many different files or create many Sybil
identities that each download the file only once.

Anomaly detection: A massive load spike like the one
in Figure 2 would probably raise the CDN operator’s sus-
picion. However, there could be a legitimate reason for
the spike, and there is no way to establish its provenance
after the fact. Thus, the operator is caught in a dilemma:
if the spike is genuine, it is probably important for the
content provider to know about it, so it must be left in
the log; if the spike is fake, its presence distorts the ac-
counting, so it should be removed.

S Reliable accounting

In this section, we describe our method for providing re-
liable accounting in hybrid systems. Although we devel-
oped this method with NetSession in mind, it should be
applicable to other types of hybrid systems (such as P2P
streaming or storage systems). We begin with a descrip-
tion of the general approach and then show (in Section 6)
how it can be applied to NetSession.

5.1 System model

We consider a system that consists of a number of trusted
infrastructure nodes and a (potentially much larger) num-
ber of untrusted clients. The system offers a service to
the clients that can be provided either by the infrastruc-
ture nodes or by other clients. The infrastructure cannot
directly observe interactions between the clients.

Our goal is to provide an accounting mechanism that
reliably captures client activity. Specifically, we are in-
terested in activity by faulty or compromised clients that
could degrade the performance of the system or distort
the record of services actually rendered.

F1 | Fail to log exact set of messages sent or
acknowledged 54
F2 | Fail to log consistent sequence of messages | 5.5
F3 | Execute illegal, or fail to execute required,

protocol action 5.6
F4 | Faulty peers collude to report fictitious
exchanges 57,58
F5 | Render poor service to peers 5.8
F6 | Nefarious user requests 59
F7 | Sybil attack 5.10

Table 1: Types of client misbehaviors. The last column
shows the subsection that describes the countermeasure.

5.2 Threat analysis

Next, we characterize the kinds of threats that a faulty or
malicious client poses to the rest of the system. To do this
in a protocol-independent way, we model the client as an
abstract state machine that accepts requests from the lo-
cal user (e.g., names of files to download) and eventually
produces responses (e.g., the contents of the file). The
state machine can send and receive messages, and it must
periodically upload a log of its actions to the infrastruc-
ture. Each state machine is expected to follow a specific
protocol, and this protocol is not necessarily fully de-
terministic (e.g., clients might be allowed to choose the
peers with the highest throughput).

Table 1 summarizes the types of threats we consider
here. Faulty or malicious clients can fail to log the exact
set of messages they have sent or acknowledged (F1), or
fail to log them in a sequence that is causally consistent
(F2). They can violate the protocol, either by making a
bad state transition or by failing to make a required state
transition (F3). They can collude with faulty peers in
order to report fictitious transactions amongst each other
(F4). They can deliver poor performance, e.g., by being
slow to respond to messages from peers, by aborting or
delaying peer transfers, or by sending corrupted content
(F5). A user can issue nefarious content requests in order
to create artificial demand for a provider’s content or to
degrade the service quality enjoyed by other clients (F6).
Finally, a user can mount a Sybil attack by joining the
system under more than one identity, in order to amplify
other attacks (F7).

5.3 Approach

In a fully decentralized system, it is difficult or even im-
possible [30] to provide reliable accounting. In a hybrid
system, however, we can do better by leveraging some of
the unique characteristics of these systems, namely:

1. Trusted infrastructure: The nodes in the infras-
tructure are directly controlled by the operator;

2. Central control: The operator can prescribe a sin-
gle protocol that all the nodes must follow;



3. Global view: The operator is able to observe the
status of all clients eventually; and

4. Dedicated resources: The infrastructure has the ca-
pacity to take over for under-performing or suspi-
cious clients.

In the following, we describe a sequence of techniques
for constructing a reliable accounting mechanism that
takes advantage of these characteristics. Each technique
adds some constraints on the kinds of behaviors a faulty
node can manifest without getting caught.

5.4 Require message commitment

First, we require clients to cryptographically sign all
messages and acknowledgments they send. Moreover,
clients record the signatures of received messages and ac-
knowledgments in a log, which they periodically forward
to the infrastructure. As a result, a faulty client can no
longer deny having sent or received a message it has pre-
viously sent or acknowledged. Likewise, a faulty client
cannot falsely claim that a correct client has sent or ac-
knowledged a message, because the faulty client would
not be able to produce the corresponding signature.

5.5 Check logs for consistency

Even with message commitment in place, a faulty client
could give a false account of the order in which certain
events happened. For instance, a client could receive an
object from the infrastructure, acknowledge it, and then
later decline a peer’s request for the same object. In its
logged record, it could claim that the peer’s request had
arrived before it received the object from the infrastruc-
ture, in order to justify its failure to serve the object.

This form of misrepresentation can be avoided by re-
quiring each client to maintain a tamper-evident log [20]
of its actions. For this purpose, the log entries form a
hash chain, and the hash of the most recent log entry is
included in the signature of any message that the node
signs. Thus, the node commits to its entire event his-
tory each time it sends a message or acknowledgment.
Because the logs and all of a node’s signatures are even-
tually sent to and checked by the infrastructure, a client
would be caught if it ever omitted, fabricated, or manip-
ulated events in its logs, or gave inconsistent accounts of
the sequence of events.

Each client is forced to log a single linear account
of its actions that includes all acknowledged messages
sent to, or received from, correct peers. If messages are
forged, omitted, reordered, or tampered with, the client
effectively makes a signed admission of guilt.

5.6 Check logs for plausibility

Even when a client’s log is consistent with the logs of all
other clients it has communicated with, the log can still

be implausible; for example, a client A might download a
file from a peer B and then, when a third peer C requests
that file from A, serve a modified version of the file or
claim that it no longer stores the file. To prevent this,
our second step is to verify that a log is plausible, i.e.,
it is consistent with a valid execution of the software the
client is expected to run.

We can decide whether a log is plausible by checking
that it satisfies a set of invariants, which must hold in any
correct execution of the client software. Typical example
invariants state that a client must only serve content it has
previously received, may only contact or accept requests
from peers suggested by the infrastructure, etc.

5.7 Control client pairings

If clients are free to choose which clients to request ser-
vices from, malicious clients can collude to request ser-
vices from each other (and thus make consistent and
plausible logs without actually doing any work), or they
can ‘gang up’ on some correct clients to deny them ser-
vices. To make collusion more difficult, the infrastruc-
ture can impose restrictions on the clients, e.g., by lim-
iting each client ¢ to only request services from peers in
some set S;.

Restrictions should be neither too tight nor too loose.
In the above example, very small sets S; will force the
clients to contact the infrastructure frequently (e.g., to
ask for additional clients if the ones in S; fail), which
increases overhead and decreases performance, whereas
very large sets S; increase the chances that a malicious
client ¢ will find an accomplice in its set .S;.

The infrastructure’s choice of S; may depend on which
peers have the requested content, which ISP a peer is
connected to, and whether it has a compatible type of
NAT. Some of these factors can be influenced by a peer;
for instance, a peer could download rarely requested con-
tent in order to increase the chance that it will be paired
with a colluding peer that requests that same content.
Therefore, controlling client pairing can only mitigate
but not eliminate client collusion.

5.8 Quarantine anomalous clients

A faulty client can degrade the service received by its
peers, e.g., by providing the requested services inconsis-
tently or too slowly. Moreover, as discussed above, col-
luding peers could inflate their upload activity. Our next
step is to apply statistical anomaly detection to identify
potentially problematic clients, and to quarantine those
clients.

Ordinarily, anomaly detection systems face a difficult
tradeoff between effectivity and the number of false pos-
itives. Our key insight is that, in the specific case of hy-
brid systems, this tradeoff can be avoided by redirect-
ing any suspicious clients to the infrastructure. In other



words, when a client ¢ manifests anomalous behavior,
the infrastructure can restrict ¢ to contacting only trusted
infrastructure nodes, and it can tell other clients not to
contact c.

If c is malicious, quarantining ¢ will ensure accurate
logging because a) ¢’s interactions with the infrastruc-
ture will be logged by the trusted nodes, and b) ¢ cannot
plausibly log any interactions with other nodes. On the
other hand, if c is correct and its detection was a false
positive, ¢’s requests will still be handled by the infras-
tructure, so c’s user will still receive good service. Since
quarantining clients is ‘safe’ from a QoS perspective, we
can perform anomaly detection aggressively and accept a
nontrivial false-positive rate, as long as the infrastructure
has sufficient resources to handle the extra load.

5.9 Flag/throttle suspicious user behavior

In addition to the types of client misbehaviors covered
in the previous section, there is a class of attacks that is
caused solely by user activity, while the client software
behaves as expected. For instance, a user could nefari-
ously download content from a specific content provider,
in order to drive up demand for that provider’s content.
(This type of attack would typically be combined with a
Sybil attack and possibly a botnet. Also, note that this
attack is not specific to hybrid CDNs.)

Based on the tamper-evident logs collected by the sys-
tem, we can perform statistical anomaly detection to
identify clients whose download activity stands out in
terms of volume and content selection. A flagged client
can be immediately subjected to a download rate-limit
by the infrastructure, pending resolution by a human op-
erator. At the same time, a human operator is notified
of the anomaly for further inspection and resolution. For
instance, an operator can contact a content provider to
check if a sudden increase in demand (possibly from a
specific set of IP addresses) is expected.

5.10 Enforce resource limits

Some of the attacks described in the previous sections
can be amplified by a Sybil attack, where an attacker reg-
isters more than one instance of the client software for
each physical node he controls. For instance, the impact
of a colluding-peers attack or a nefarious download at-
tack increases with the number of client instances. With-
out strong user identification, we cannot effectively pre-
vent Sybil attacks, but we can at least constrain the aggre-
gate amount of service that Sybils can log. For example,
we can check that, in aggregate, the activities recorded
in these logs cannot exceed the physical capacity of the
adversary’s nodes.

Since a hybrid system contains trusted infrastructure
nodes, we can achieve this goal through resource test-
ing. For example, a client could be required to demon-

strate its upstream or downstream bandwidth in a short
data exchange with the infrastructure. The infrastructure
could refuse to accept multiple clients with the same IP
address, and/or ask a group of clients with a common IP
prefix to demonstrate that they run on separate machines
by asking each of them to simultaneously solve a differ-
ent crypto puzzle. The results could then be used to flag
implausible client activity, such as clients who claim to
have exchanged data with peers in different networks at a
rate that exceeds their measured access link capacity, or
clients who claim to have exchanged data with a number
of clients on the same network that exceeds the number
of separate machines they have demonstrated.

6 Application to NetSession

In this section, we describe the RCA system, which ap-
plies the method from Section 5 to NetSession.

6.1 Overview

Our design instantiates each of the building blocks we
have presented in Section 5. We use resource certificates
(Section 6.3) to limit the aggregate bandwidth of Sybils,
a novel implementation of tamper-evident logs that has
been optimized for hybrid systems (Sections 6.4 and 6.5)
to check for consistency, a set of NetSession-specific in-
variants (Section 6.6) to check for plausibility, and a set
of statistical tests (Section 6.7) for quarantining anoma-
lous clients. The rest of this section describes each of
these building blocks in more detail.

The basic workflow in RCA is as follows. When a
client ¢ first joins RCA, it contacts one of the control
plane servers and uploads a short file to demonstrate its
link capacity; the control plane then issues the client a
private key o; (for signing messages), a public key 7,
and a certificate I'; that encodes the measured capacity.
The client can then download or upload content, just as in
the original NetSession system, but it additionally main-
tains a tamper-evident log, which it periodically uploads
to the control plane. The control plane forwards the logs
to a set of backend servers, which process them and pro-
duce the accounting information. The control plane also
applies statistical tests to detect and quarantine anoma-
lous clients.

6.2 Assumptions
The design of RCA relies on the following assumptions:

1. Infrastructure nodes are trusted by the operator and
can only fail by crashing.

2. All nodes have access to a cryptographic hash func-
tion H.

3. Faulty clients cannot forge the signature of correct
peers or of the infrastructure.



Assumption 1 seems reasonable in a centrally managed
CDN like NetSession; assumptions 2 and 3 are com-
monly assumed to hold for hash functions like SHA-256
and algorithms such as RSA, provided that the keys are
sufficiently strong.

6.3 Resource certificates

To prevent malicious clients from reporting more activ-
ity than they physically have the capacity to perform,
RCA uses a few simple resource tests, as discussed in
Section 5.10.

When a client ; first joins the system, it contacts one of
the control plane servers and requests a key pair, which
will constitute the client’s identity for the purposes of re-
porting. The control plane then exchanges some amount
of data with the client, and it measures the maximum
throughput C; that i achieves during the exchange.' Fi-
nally, the control plane then generates a fresh key pair
o;/m; and returns it to the client, along with a certifi-
cate o p(m;, G;, Cy, A;, T;) that is signed with the control
plane server’s private key o p and binds the client’s pub-
lic key 7; to the client’s GUID G, its measured capacity
C;, its IP address A;, and an expiration time T; (on the
order of a few hours). When a client’s current certificate
expires or its IP address changes, the client repeats this
process to obtain a fresh certificate.

To prevent Sybil attackers from obtaining multiple cer-
tificates for the same IP address, the control plane in-
ternally maintains a table with all unexpired certificates.
Suppose a client c requests a new certificate from an ad-
dress Ay while there are still unexpired certificates for
Ay. Then the control plane revokes® any certificates for
Ay, whose clients are not currently logged in, and it asks
the remaining clients to upload at the same time as c. It
then measures the aggregate bandwidth C of all the up-
loads and issues c a certificate for the difference between
C and the sum of the capacities from the existing cer-
tificates. To defend this mechanism against malicious
clients that attempt to overload the control plane with
requests for new certificates, clients can be required to
solve a puzzle [27] before submitting a request; the dif-
ficulty of the puzzle can be a function of the current load
on the control plane.

In summary, the infrastructure ensures that there can
be only one valid certificate per IP address at a time, and
that an adversary with an aggregate capacity C' cannot
obtain certificates whose aggregate capacity exceeds C'.
Additional resource tests could be implemented and the
results included in the resource certificate.

Note that this requires two-way communication and thus prevents
malicious clients from obtaining certificates for spoofed addresses.

2In our setting, revocation is comparatively easy because each client
has to show its current certificate to the control plane when logging in.

6.4 Tamper-evident log

RCA requires clients to maintain a tamper-evident log
of all the messages they send and receive. Unlike pre-
vious implementations designed for decentralized sys-
tems [20], a hybrid system requires different tradeoffs.
On the one hand, logs are audited exclusively by the in-
frastructure, which simplifies the implementation. On
the other hand, we need to aggressively minimize the
overhead for the infrastructure—particularly the number
of cryptographic signatures it has to verify—since we
expect the number of clients to be orders of magnitude
higher than the number of infrastructure nodes.

Each client maintains a log of entries e; :=
(hk, Sk, tk, ck), where hy is a hash value, s, a sequence
number, ¢ an entry type (SEND or RECV), and c; some
type-specific content. The hash values form a hash chain
of the form hy := H(hk—1]||sk||tk||ck). Whenever a
node ¢ sends a message, it must attach an authentica-
tor (S, hi, 0i (s || i), which is signed with ¢’s private
key o, and represents a commitment to the current state
of 4’s hash chain. Each message must be acknowledged,
and clients may have at most n,,x unacknowledged mes-
sages in flight at any given point in time. Finally, each
message or acknowledgment contains enough informa-
tion to verify that its transmission has been recorded in
the log. If ¢ forges, omits, or tampers with log entries
after the fact, the infrastructure can detect this by com-
paring the log ¢ has uploaded to the authenticators 7 has
sent to its peers.

RCA’s tamper-evident log maintains sub-chains for
each pair of communicating peers. As a result, RCA’s
authenticators are cumulative, i.e., the authenticator in
a message or acknowledgment from ¢ can be used to
verify all previous messages or acknowledgments from
1, respectively. Hence, each client need only keep one
pair of authenticators for each other peer it has commu-
nicated with—rather than one for each message it has sent
or received—which dramatically reduces the number of
authenticators that must be uploaded to, and verified by,
the infrastructure.

In summary, the tamper-evident log ensures that in-
consistencies between logs can be attributed to a specific
misbehaving client.

6.5 Consistency checking

When a client 7 is ready to upload its log )\;, it signs \;
with its private key o;, and it attaches its certificate I'; as
well as the set A; of authenticators it has collected from
other nodes. The infrastructure must then check the log
for consistency and plausibility.

At first glance, the consistency check seems to re-
quire cross-checking logs from different clients. How-
ever, RCA’s tamper-evident log is structured such that,
for each message transmission, both endpoints have suf-



ficient evidence (specifically, an authenticator from the
message or its acknowledgment) to show that the entry
in the local endpoint’s log is consistent with the entry in
the remote endpoint’s log. Thus, logs can be checked in-
dividually, which makes the log checking both efficient
and trivially scalable.

Although 7 uploads the above information to a spe-
cific infrastructure node, other infrastructure nodes may
also require information about ¢, namely authenticators
or a certificate revocation. Before checking can begin,
all information about 7 must be collected at a single node
H (i), which can be chosen, e.g., via consistent hash-
ing. This requires a ‘shuffle’ step (similar to the one
in MapReduce) in which each infrastructure node sends
copies of its received authenticators to the nodes that are
‘responsible’ for them.

Next, the infrastructure inspects A; and checks
whether a) the log is well-formed and signed with o;;
b) the certificate I'; is valid and matches o;; ¢) I'; was
not expired or revoked when the log was signed, d) at no
point in the log were there more than np,x unacknowl-
edged messages, €) each of the sub-hashchains is intact,
f) the end of each sub-hashchain corresponds to one of
the authenticators uploaded by ¢, and g) )\; is consistent
with all authenticators signed with ;. The last check
can be done incrementally if more authenticators are up-
loaded. If any of the above checks fails, ¢ is clearly faulty.
The GUID of a faulty client is immediately disabled so
that it cannot participate in peer-to-peer transactions or
infrastructure downloads; also, the system operator is no-
tified.

6.6 Plausibility checking

When a client’s log passes the consistency check, we
know that its recorded sequence of messages is consis-
tent with the log of other clients. However, the messages
in the log do not necessarily correspond to a valid execu-
tion of the client software. To detect misbehaving nodes,
RCA checks each log to see if it satisfies the following
invariants, which capture the essence of RCA’s swarm-
ing protocol. Specifically, clients

1. may only exchange data with peers or edge servers
that were suggested to them by the infrastructure;

may only serve data they have already downloaded;
3. must not modify blocks before serving them;

must serve blocks they have available (i.e., blocks
they store and for which peering is enabled); and

5. may only request blocks they do not already store.

If the log does not satisfy all of the invariants, RCA dis-
ables the GUID of the client and notifies the system oper-
ator. Otherwise, RCA identifies, for each uploaded data
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block, the content provider that owns the corresponding
file, and it tallies, for each content provider, the num-
ber of bytes that were uploaded on its behalf, minus any
bytes that would exceed the bandwidth in the client’s re-
source certificate.

6.7 Statistical tests and quarantine

RCA’s control plane continually maintains statistics
about the download and upload activities of each client,
such as its IP address, its geolocation, or the number of
bytes downloaded and uploaded during the last k& days.
The control plane uses this data and a set of statistical
tests to identify anomalous clients.

When a client ¢ is flagged as anomalous, the infras-
tructure quarantines ¢ and redirects any future download
requests from ¢ to the infrastructure nodes. The client
will continue to receive service, however; RCA merely
ensures that any interactions with ¢ involve at least one
trusted endpoint, so ¢’s actions can be accounted accu-
rately. (Logs produced by ¢ before the quarantine will
still be accepted, provided that they pass all the other
tests.) In other cases, the infrastructure merely notifies
a human operator for resolution.

There are many kinds of statistical tests that could be
useful. In Section 7.7, we describe and validate a small
set of statistical tests for the NetSession system, and in
Section 8, we discuss other tests that could be applied.

6.8 Limitations

RCA’s tamper-evident log is only guaranteed to detect
inconsistencies in message exchanges when at least one
of the two endpoints is an honest node; if the infrastruc-
ture (unknowingly) pairs up two colluding clients, one
of them can claim to have downloaded a large part of
the file from the other without actually having done so.
Controlling client pairing, applying statistical tests, and
quarantining help to mitigate this limitation.

A second limitation is related to the use of anomaly de-
tection. Since the operator usually does not know which
clients are malicious, he can only base the statistical test
on the observed behavior of all clients, which is only safe
as long as the fraction f of clients controlled by a sin-
gle adversary is small. If f is large, the adversary can
slowly change the behavior of his clients over the course
of several weeks or months, analogous to a frog-boiling
attack [12]; this might prompt the operator to adjust the
statistical tests, which would progressively relax the con-
straints on the adversary. However, we expect that in
practice, few adversaries would have both the required
number of clients and the necessary patience.

7 Evaluation

To evaluate RCA, we implemented a clone of the
NetSession client and infrastructure software, called



NetSession-Base, which includes all functionality re-
quired for our experiments. NetSession-Base is com-
plete enough to run on the Internet. However, we per-
form most of our experiments in a network emulation en-
vironment, which can run hundreds of NetSession-Base
clients on a single machine. The network emulator mod-
els bandwidth (upstream and downstream) and propaga-
tion delay, but not packet loss. Emulations are driven by
a trace that defines the node characteristics (geolocation,
link capacities, IP and GUIDs) as well as the workload,
i.e., the downloads and their precise timing.

We then added RCA’s defenses, including the tamper-
evident log, the consistency and plausibility checks, the
statistical checks, and the client quarantine. We use
RSA with 1024-bit keys for the cryptographic signatures.
We will refer to the system with defenses enabled as
NetSession-RCA.

7.1 Validation

The goal of our first experiment is to verify that our clone
matches the behavior of the Akamai NetSession system
closely enough so that we can use the NetSession-Base
system as a baseline in subsequent experiments. For this
purpose, we used Akamai’s NetSession client to down-
load a 760 MB file in the live system, and used Wireshark
to capture the network traffic from and to the client.

From the captured network traffic, we then compiled a
trace that replicates this download in the emulator, such
that the same proportion of data are downloaded from the
same number of peers and the infrastructure. We then
ran NetSession-Base using this trace, and we measured
the client’s control and data traffic exchanged with each
peer and the infrastructure. The results were all within
1% of those obtained with Akamai’s NetSession.

7.2 Experimental setup

For the following experiments, we used a 30-day trace
from Akamai’s live NetSession system recorded in De-
cember, 2010. The trace includes an identifier and size
for each object requested, the time when the download
was initiated and completed, and the number of bytes
downloaded from other peers. Our network emulator
cannot scale to the entire workload recorded in the trace,
so we used a sample that includes all downloads initiated
by a randomly chosen subset of 500 clients.

We assigned client link capacities by randomly sam-
pling from a measured distribution of download and up-
load speeds in residential broadband networks [16].

The NetSession traces do not record how many and
which peers were actually used in a download, or how
many bytes were obtained from each. In any case, be-
cause our emulation only includes a small sample of the
actual peers, it would not include many of the peers who
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Figure 3: Network traffic overhead, normalized to the
size of the downloaded content. For each system, the
figure shows the communication with the infrastructure
(left bar) and with peers (right bar).

actually uploaded to one of the peers in the sample. In-
stead, our emulation assumes that all peers in our sample
can serve all files to other peers. The infrastructure sug-
gests a random set of emulated peers for each download,
and the swarming protocol dynamically requests content
from this set of peers based on the observed bandwidth.
Since our evaluation is not concerned with the dynamics
of the swarming protocol, this approximation does not
affect the results. To be conservative, we fixed the overall
ratio of bytes downloaded from peers versus bytes down-
loaded from the infrastructure to 80%; based on our ob-
servations from the trace, this will overestimate the over-
head of our system.

7.3 Cost: Traffic

To quantify the additional bandwidth requirements of
NetSession-RCA, we measured a) the total number of
bytes downloaded as actual payload by all clients, and
b) total number of bytes transmitted in the system. The
difference between the two numbers is an estimate of the
bandwidth overhead of the system relative to the actual
payload bytes; it was 0.06% for NetSession-Base and
0.47% for NetSession-RCA. This amounts to a 7.8-fold
increase in bandwidth overhead for NetSession-RCA.

While the relative increase in overhead is substan-
tial, it is important to note that the absolute band-
width requirement is still modest. The average per-
peer bandwidth requirement is only 192 KB/day for
NetSession-RCA and 26 KB/day for NetSession-Base.
In return, NetSession-RCA provides much more fine-
grained and reliable information about peer behavior
than NetSession-Base.

Figure 3 shows a more detailed breakdown of the re-
sults. Both NetSession-RCA and NetSession-Base ex-
change some control messages with peers and with the
infrastructure; the corresponding amount of traffic is
small and identical in both systems. RCA adds an au-
thenticator and an acknowledgment for each message.
The overhead is higher for the infrastructure traffic be-



cause the number of messages is higher: in addition to
the data blocks, this traffic also contains a number of
small control messages. Finally, clients must upload
their logs to the infrastructure.

7.4 Cost: CPU

NetSession-RCA requires more client CPU than
NetSession-Base, because it must generate and verify
the signatures in authenticators. Because NetSession
is intended to run in the background without inconve-
niencing the user, this additional computation must not
consume more than a small fraction of the CPU.

To estimate the cost, we measured the number of sig-
nature generations and verifications performed by clients
as part of the download activity. We then benchmarked
RSA-1024 signature generation and verification on a sin-
gle core of an Intel Xeon X5650 CPU, and we used
these benchmarks to estimate the additional CPU load
that would be caused by these operations. The maximum
additional CPU load over all clients was never more than
0.5%.

7.5 Cost: Log storage and log upload

NetSession requires each client to maintain a log, and to
periodically upload this log to the control plane. How-
ever, NetSession-RCA’s log is considerably more de-
tailed because it keeps track of individual messages,
whereas NetSession-Base’s log merely records occa-
sional download progress reports. In both cases, the ex-
act size depends on the client’s activity.

To quantify how much log data is generated, we ran
NetSession-Base and NetSession-RCA with log upload-
ing disabled; thus, each of 500 clients kept its entire 30-
day log on its local disk. We then examined the log sizes
at the end of the experiment. The average log size was
2.5 MB; the 5th and 95th percentiles were at 1.4 MB and
3.4 MB, respectively. The largest log was 86 MB. If we
(conservatively) estimate the average download activity
per client at 1 GB per month, a larger deployment with
100 million GUIDs would generate about 1.8 TB of logs
per day. This corresponds to only 18 kB of logs per client
per day.

Figure 4 provides a detailed breakdown of the log con-
tents collected from the clients. A comparison with Fig-
ure 3 shows that the log is considerably smaller than a
complete message trace; this is because a) the log con-
tains only a hash of each data block rather than the actual
bytes (which are known to the infrastructure anyway),
and b) the log does not contain every single authentica-
tor, but only the most recent one for each client.

Each client periodically uploads its log to the control
plane and then deletes the entries once they have been ac-
knowledged. Thus, the amount of storage that is needed
locally on each client depends on the upload interval.
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With daily uploads, less than a MB of storage is required.
Since every logged byte must eventually be uploaded,
the amount of network traffic generated by the uploads
is largely independent of the upload interval.

7.6 Cost: Log processing

Once the logs have been uploaded, the infrastructure
must perform the consistency and plausibility checks de-
scribed in Section 6. The required processing time de-
pends on what actions are recorded in each log, but we
expect it to be correlated with the overall log size.

To estimate the overhead, we performed the consis-
tency and invariant checks on each of the logs produced
by the clients. We measured the total processing time,
as well as the fraction of time spent on consistency and
invariant checks. Since we expect cryptographic opera-
tions to be a major factor, we separately measured the
time spent verifying signatures (recall that the infrastruc-
ture does not generate signatures).

On average, about 0.78 MB’s worth of log data was
processed per second on a single CPU. 9% of the time
was spent on consistency checking and 91% on invariant
checking; overall, signature verifications accounted for
about 3% of the processing time. Log processing can
easily be parallelized, e.g., using MapReduce.

Based on these results, we estimate that a deployment
with 100 million GUIDs would require about 28 extra
machines to process the logs. For comparison, NetSes-
sion’s current log processing system requires around 10
machines. Both estimates assume that the machines are
fully utilized; in practice, log processing is one of several
jobs that runs on a larger cluster.

7.7 Examples of statistical tests

Developing a full set of statistical tests for NetSession
would require a detailed characterization of its workload,
which is beyond the scope of the present paper. However,
we use the set of simple tests in Table 2 to illustrate the
general principle. These tests are fully automated; they
are designed to constrain clients who collude to over-
report uploads or deliver bad service to peers. We ex-
pect that more sophisticated tests will be based on de-



# | Which peers are quarantined? | Parameters +Load

T1| IP has downloaded > N k1=20 1.00%
bytes during the last k1 days N1 =15.2G

T2| IP has been used by > g2 ko =1 0.57%
GUIDs during the last k2 days | g2 = 2

T3| GUID has downloaded > N5 | ks = 20 0.99%
bytes during the last k3 days N3=10.4G

T4| GUID has downloaded > N4 | k4 = 20 0.92%
files during the last k4 days Ny = 140

T5| GUID failed to validate > N5 | ks =1 1.00%
bytes during the last k5 days N5 =200K
Tests T1-T5 combined 2.81%

Table 2: Statistical tests used with NetSession-RCA,
along with the additional load (#bytes served) they place
on the infrastructure due to quarantined clients.

tailed workload characteristics, e.g., channel switching
patterns [11] or the clients’ response to the quarantine.

More aggressive tests reduce the amount of misbehav-
ior an adversary can get away with, but they also in-
crease the load on the infrastructure due to false posi-
tives. To give a rough impression of how aggressive our
simple tests could be, we used the 12/2010 trace to deter-
mine, for each test, the set of parameters that a) causes at
most 1% additional load on the infrastructure, and among
those, the one that b) constrains the adversary the most.
These parameters, and the resulting load increases, are
also shown in Table 2. Note that a given client can trig-
ger more than one test; hence, the load increase from a
set of tests is lower than the sum of the increases from
the individual tests.

7.8 Effectivity

As a sanity check for the NetSession-RCA implementa-
tion, we injected a set of sample attacks. Specifically,
we injected five inflation attacks and one corruption at-
tack: In blatant liars, one client uploaded a fabricated
log claiming to have downloaded 1 TB. In collusion, two
clients continuously requested files and then reported
that they had downloaded them from each other, regard-
less of which clients the infrastructure suggested. In flash
mob, five clients joined the system simultaneously and
rapidly requested rare files, ‘faking’ downloads when-
ever the infrastructure paired up two of them. In leechers,
five clients joined the system simultaneously and down-
loaded random files as quickly as possible. In Sybil at-
tack, one client joined the system with five GUIDs; the
first GUID downloaded a rare file, and the others then
tried to download the same file from each other. Finally,
in confused clients, one client uploaded malformed log
entries.

In all cases, the system behaved as expected. Logs
from faulty clients were discarded, clients with abnormal
behavior were quarantined, and the uploads affected by
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flash mob and Sybil attackers were effectively capped. In
particular, blatant liars and confused clients were caught
by our consistency checks (section 6.5), collusion was
detected by the plausibility checks (section 6.6), flash
mob was identified by resource certificates (section 6.3),
and finally leechers and Sybil attack were flagged by sta-
tistical checks (section 6.7).

8 Statistical tests

As discussed in Section 6.7, RCA uses a set of statisti-
cal tests to decide which clients should be quarantined.
We suggest the following general approach to choosing
a suitable set of tests:

1. Identify the metrics that an attack is likely to affect;

2. Closely characterize the system’s normal workload
in those metrics; and

3. Choose a threshold for each metric such that, under
the normal workload, no more than a small fraction
of the clients are above the threshold (and would
thus be quarantined).

A detailed characterization of NetSession’s workload is
beyond the scope of this paper, and is part of our ongoing
work. However, for completeness we briefly summarize
some of results from our initial investigation below.

One key set of metrics for NetSession is, obviously,
the number of downloads and their distribution across the
different files. Overall, file popularity in NetSession fol-
lows the usual power law, and the workload has the usual
diurnal pattern. However, there is a lot more fine struc-
ture. For instance, some files are more popular at cer-
tain times of the day, and this pattern can vary between
content providers; also, load can shift between files in a
predictable pattern. To avoid being quarantined, an at-
tacker would have to ‘blend in” and closely imitate the
current request pattern. This would be difficult, however,
because of the information asymmetry that is inherent in
hybrid systems like NetSession: the pattern is trivial to
observe for the infrastructure but can only be approxi-
mated by an attacker.

Another set of metrics is related to the location of the
clients, which can be obtained from a geolocation service
such as Akamai’s EdgeScape. The popularity of content
can vary between regions, and it would be anomalous if
content that is usually popular in the Middle East were to
suddenly become popular in South America. Location-
based metrics are particularly interesting because attack-
ers cannot easily choose the location of compromised
clients. Even botnets, a potential source of compromised
clients, are often biased towards particular regions [32].

A third set of metrics is related to the download topol-
ogy. Consider a graph with a vertex for each client and



an edge for each pair of clients that have downloaded
from one another. In this graph, which can easily be con-
structed by the control plane, a set of colluding peers
would show up as a tightly connected subgraph. Ef-
ficient heuristics for detecting such subgraphs have al-
ready been developed for botnet detection, e.g., in Bot-
Grep [26]. The control plane could use such techniques
to detect suspicious subgraphs of clients, and then quar-
antine these clients or redirect their download requests to
other, unrelated peers.

We note that the above list is not meant to be exhaus-
tive or universal. A rich literature of other anomaly de-
tection techniques exists, which could be applied to Net-
Session. On the other hand, the specific methods men-
tioned above may not be appropriate for all hybrid sys-
tems.

9 Conclusion

In this paper, we have examined a fundamental challenge
in P2P-infrastructure hybrids: how to reliably account
for the actions of untrusted clients. In current hybrid sys-
tems, malicious peers can report fictitious content down-
loads and degrade the system’s quality of service. We
described and evaluated RCA, a system that leverages
the unique characteristics of P2P-infrastructure hybrids
to limit the loss of accounting accuracy and service qual-
ity resulting from faulty or malicious clients. RCA re-
liably discovers all misreporting and protocol violations
by individual clients, and it can automatically quarantine
potentially colluding clients, at a moderate cost in terms
of bandwidth and load on the infrastructure.
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