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ABSTRACT

Networks have become multipath: mobile devices have

multiple radio interfaces, datacenters have redundant paths

and multihoming is the norm for big server farms. Mean-

while, TCP is still only single-path.

Is it possible to extend TCP to enable it to support

multiple paths for current applications on today’s Inter-

net? The answer is positive. We carefully review the

constraints—partly due to various types of middleboxes—

that influenced the design of Multipath TCP and show

how we handled them to achieve its deployability goals.

We report our experience in implementing Multipath

TCP in the Linux kernel and we evaluate its performance.

Our measurements focus on the algorithms needed to ef-

ficiently use paths with different characteristics, notably

send and receive buffer tuning and segment reordering.

We also compare the performance of our implementa-

tion with regular TCP on web servers. Finally, we dis-

cuss the lessons learned from designing MPTCP.

1. INTRODUCTION

In today’s Internet, servers are often multi-homed to

more than one Internet provider, datacenters provide mul-

tiple parallel paths between compute nodes, and mobile

hosts have multiple radios. Traditionally, it was the role

of routing to take advantage of path diversity, but this

has limits to responsiveness and scaling. To really gain

both robustness and performance advantages, we need

transport protocols engineered to utilize multiple paths.

Multipath TCP[5] is an attempt to extend the TCP pro-

tocol to perform this role. At the time of writing, it is in

in the final stage of standardization in the IETF.

Multipath TCP stripes data from a single TCP con-

nection across multiple subflows, each of which may

take a different path through the network. A linked con-

gestion control mechanism[23] controls how much data

is sent on each subflow, with the goal of explicitly mov-

ing traffic off the more congested paths onto the less

congested ones. This paper is not about congestion con-

trol, but rather it is about the design of the Multipath

TCP protocol itself. In principle, extending TCP to use

multiple paths is not difficult, and there are a number

of obvious ways in which it could be done. Indeed it

was first proposed by Christian Huitema in 1995[11].

In practice though, the existence of middleboxes greatly

constrains the design choices. The challenge is to make

Multipath TCP not only robust to path failures, but also

robust to failures in the presence of middleboxes that at-

tempt to optimize single-path TCP flows. No previous

extension to the core Internet protocols has needed to

consider this issue to nearly the same extent.

In the first half of this paper we examine the design

options for multipath TCP, with the aim of understand-

ing both the end-to-end problem and the end-to-middle-

to-end constraints. We use the results of a large Internet

study to validate these design choices.

Designing MPTCP turned out to be more difficult than

expected. For instance, a key question concerns how

MPTCP metadata should be encoded — embed it in the

TCP payload, or use the more traditional TCP options,

with the potential for interesting interactions with mid-

dleboxes. In the IETF opinions were divided, with sup-

porters on both sides. In the end, careful analysis re-

vealed that MPTCP needs explicit connection level ac-

knowledgments for flow control; further, these acknowl-

edgments can create deadlocks if encoded in the pay-

load. In reality, there was only one viable choice.

The second half of this paper concerns the host op-

erating system. To be viable, Multipath TCP must be

implementable in modern operating systems and must

perform well. We examine the practical limitations the

OS poses on MPTCP design and operation. This mat-

ters: our experiments show that one slow path can sig-

nificantly degrade the throughput of the whole connec-

tion when MPTCP is underbuffered. We propose novel

algorithms that increase throughput ten-fold in this case,

ensuring MPTCP always matches what TCP would get

on the best interface, regardless of buffer size.

It is not our goal to convince the reader that multipath

transport protocols in general are a good idea. There has

been a wealth of work that motivates the use of multi-

path transport for robustness[24], the use of linked con-

gestion control across multiple paths for load balancing[23,

14, 4] and the ability of multi-path transport protocols
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to find and utilize unused network capacity in redun-

dant topologies[10, 19]. Rather, the main contribution

of this paper is the exploration of the design space for

MPTCP confined by the many constraints imposed by

TCP’s original design, today’s networks which embed

TCP knowledge, and the need to perform well within

the limitations imposed by the operating system.

2. GOALS

As many researchers have lamented, changing the be-

havior of the core Internet protocols is very difficult [7].

An idea may have great merit, but without a clear de-

ployment path whereby the cost/benefit tradeoff for early

adopters is positive, widespread adoption is unlikely.

We wish to move from a single-path Internet to one

where the robustness, performance and load-balancing

benefits of multipath transport are available to all appli-

cations, the majority of which use TCP for transport. To

support such unmodified applications we must work be-

low the sockets API, providing the same service as TCP:

byte-oriented, reliable and in-order delivery. In theory

we could use different protocols to implement this func-

tionality as long as fallback to TCP is possible when one

end does not support multipath. In practice there is no

widely deployed signaling mechanism to select between

transport protocols, so we have to use options in TCP’s

SYN exchange to negotiate new functionality.

The goal is for an unmodified application to start (what

it believes to be) a TCP connection with the regular API.

When both endpoints support MPTCP and multiple paths

are available, MPTCP can set up additional subflows

and stripe the connection’s data across these subflows,

sending most data on the least congested paths.

The potential benefits are clear, but there may be costs

too. If negotiating MPTCP can cause connections to fail

when regular TCP would have succeeded, then deploy-

ment is unlikely. The second goal, then, is for MPTCP

to work in all scenarios where TCP currently works. If a

subflow fails for any reason, the connection must be able

to continue as long as another subflow has connectivity.

Third, MPTCP must be able to utilize the network at

least as well as regular TCP, but without starving TCP.

The congestion control scheme described in [23] meets

this requirement, but congestion control is not the only

factor that can limit throughput.

Finally MPTCP must be implementable in operating

systems without using excessive memory or processing.

As we will see, this requires careful consideration of

both fast-path processing and overload scenarios.

3. DESIGN

The five main mechanisms in TCP are:

• Connection setup handshake and state machine.

• Reliable transmission & acknowledgment of data.

• Congestion control.

• Flow control.

• Connection teardown handshake and state machine.

The simplest possible way to implement Multipath

TCP would be to take segments coming out of the reg-

ular stack and “stripe” them across the available paths

somehow1. For this to work well, the sender would need

to know which paths perform well and which don’t: it

would need to measure per path RTTs to quickly and ac-

curately detect losses. To achieve these goals, the sender

must remember which segments it sent on each path and

use TCP Selective Acknowledgements to learn which

segments arrive. Using this information, the sender could

drive retransmissions independently on each path and

maintain congestion control state.

This simple design has one fatal flaw: on each path,

Multipath TCP would appear as a discontinuous TCP

bytestream, which will upset many middleboxes (our

study shows that a third of paths will break such connec-

tions). To achieve robust, high performance multipath

operation, we need more substantial changes to TCP,

touching all the components listed above. Congestion

control has been described elsewhere[23] so we will not

discuss it further in this paper.

In brief, here is how MPTCP works. MPTCP is nego-

tiated via new TCP options in SYN packets, and the end-

points exchange connection identifiers; these are used

later to add new paths—subflows—to an existing con-

nection. Subflows resemble TCP flows on the wire, but

they all share a single send and receive buffer at the end-

points. MPTCP uses per subflow sequence numbers to

detect losses and drive retransmissions, and connection-

level sequence numbers to allow reordering at the re-

ceiver. Connection-level acknowledgements are used to

implement proper flow control. We discuss the rationale

behind these design choices below.

3.1 Connection setup

The TCP three-way handshake serves to synchronize

state between the client and server2. In particular, initial

sequence numbers are exchanged and acknowledged, and

TCP options carried in the SYN and SYN/ACK packets

are used to negotiate optional functionality.

MPTCP must use this initial handshake to negotiate

multipath capability. An MP CAPABLE option is sent

in the SYN and echoed in the SYN/ACK if the server

1such striping needs additional mechanisms because both
destination-based forwarding and network ECMP try hard not
to stripe packets belonging to the same TCP connection
2The correct terms should be active opener and passive
opener. For conciseness, we use the terms client and server,
but we do not imply any additional limitations on TCP usage.
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understands MPTCP and wishes to enable it. Although

this form of extension has been used many times, the

Internet has grown a great number of middleboxes in

recent years. Does such a handshake still work?

We performed a large study to test this - complete re-

sults are available in [9]. Our code generates specific

TCP segments with the aim of testing what really hap-

pens on Internet paths. These tests were run from 142

access networks in 24 countries, including a wide mix

of cellular providers, WiFi hotspots, home networks, as

well as university and corporate networks. Although we

cannot claim full coverage, the sample is large enough

to provide good evidence for what does and what does

not work in today’s Internet.

We found that 6% of paths tested remove new options

from SYN packets. This rises to 14% for connections

to port 80 (HTTP). We did not observe any access net-

works that actually dropped a SYN with a new option.

Most importantly, no path removed options from data

packets unless it also removed them from the SYN, so it

is possible to test a path using just the SYN exchange.

A separate study[3] probed Internet servers to see if

new options in SYN packets caused any problems. Of

the Alexa top 10,000 sites, 15 did not respond to a SYN

packet containing a new option.

From these experiments we conclude that negotiat-

ing MPTCP in the initial handshake is feasible, but with

some caveats. There is no real problem if a middle-

box removes the MP CAPABLE option from the SYN:

MPTCP simply falls back to regular TCP behavior. How-

ever removing it from the SYN/ACK would cause the

client to believe MPTCP is not enabled, whereas the

server believes it is. This mismatch would be a problem

if data packets were encoded differently with MPTCP.

The obvious solution is to require the third packet of the

handshake (ACK of SYN/ACK) to carry an option in-

dicating that MPTCP was enabled. However this packet

may be lost, so MPTCP must require all subsequent data

packets to also carry the option until one of them has

been acked. If the first non-SYN packet received by the

server does not contain an MPTCP option, the server

must assume the path is not MPTCP-capable, and drop

back to regular TCP behavior.

Finally, if a SYN needs to be retransmitted, it would

be a good idea to follow the retransmitted SYN with one

that omits the MP CAPABLE option.

It should be clear from this brief discussion of what

should be the simplest part of MPTCP that anyone de-

signing extensions to TCP must no longer think of the

mechanisms as concerning only two parties. Rather, the

negotiation is two-way with mediation, where the pack-

ets that arrive are not necessarily those that were sent.

This requires a more defensive approach to protocol de-

sign than has traditionally been the case.

3.2 Adding subflows

Once two endpoints have negotiated MPTCP, they can

open additional subflows. In an ideal world there would

be no need to send new SYN packets before sending data

on a new subflow - all that would be needed is a way

to identify the connection that packets belong to. The

strawman design simply sent TCP segments along dif-

ferent paths, and the endpoints used the 5-tuple to iden-

tify the proper connection. In practice though, we see

that NATs and Firewalls rarely pass data packets that

were not preceded by a SYN.

Adding a subflow raises two problems. First, the new

subflow needs to be associated with an existing MPTCP

flow. The classical five-tuple cannot be used as a con-

nection identifier, as it does not survive NATs. Second,

MPTCP must be robust to an attacker that attempts to

add his own subflow to an existing MPTCP connection.

When the first MPTCP subflow is established, the

client and the server insert 64-bit random keys in the

MP CAPABLE option. These will be used to verify the

authenticity of new subflows.

To open a new subflow, MPTCP performs a new SYN

exchange using the additional addresses or ports it wishes

to use. Another TCP option, MP JOIN is added to the

SYN and SYN/ACKs. This option carries a MAC of

the keys from the original subflow; this prevents blind

spoofing of MP JOIN packets from an adversary who

wishes to hijack an existing connection. MP JOIN also

contains a connection identifier derived as a hash of the

recipient’s key [5]; this is used to match the new subflow

to an existing connection.

If the client is multi-homed, then it can easily initiate

new subflows from any additional IP addresses it owns.

However, if only the server is multi-homed, the wide

prevalence of NATs makes it unlikely that a new SYN it

sends will be received by a client. The solution is for the

MPTCP server to inform the client that the server has an

additional address by sending an ADD ADDR option on

a segment on one of the existing subflows.

The client may then initiate a new subflow. This asym-

metry is not inherent - there is no protocol design limi-

tation that means the client cannot send ADD ADDR or

the server cannot send a SYN for a new subflow. But

the Internet itself is so frequently asymmetric that we

need two distinct ways, one implicit and one explicit, to

indicate the existence of additional addresses.

3.3 Reliable multipath delivery

In a world without middleboxes, MPTCP could sim-

ply stripe data across the multiple subflows, with the se-

quence numbers in the TCP headers indicating the se-

quence number of the data in the connection in the nor-

mal TCP way. Our measurements show that this is in-

feasible in today’s Internet:
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• We observed that 10% of access networks rewrite

TCP initial sequence numbers (18% on port 80). Some

of this re-writing is by proxies that remove new op-

tions; a new subflow will fail on these paths. But

many that rewrite do pass new options - these appear

to be firewalls that attempt to increase TCP initial se-

quence number randomization. As a result, MPTCP

cannot assume the sequence number space on a new

subflow is the same as that on the original subflow.

• Striping sequence numbers across two paths leaves

gaps in the sequence space seen on any single path.

We found that 5% of paths (11% on port 80) do not

pass on data after a hole - most of these seem to be

proxies that block new options on SYNs and so don’t

present a problem as MPTCP is never enabled on

these paths. But a few do not appear to be proxies,

and so would stall MPTCP. Perhaps worse, 26% of

paths (33% on port 80) do not correctly pass on an

ACK for data the middlebox has not observed - ei-

ther the ACK is dropped or it is “corrected”.

Given the nature of today’s Internet, it appears extremely

unwise to stripe a single TCP sequence space across

more than one path. The only viable solution is to use

a separate contiguous sequence space for each MPTCP

subflow. For this to work, we must also send informa-

tion mapping bytes from each subflow into the overall

data sequence space, as sent by the application. We shall

return to the question of how to encode such mappings

after first discussing flow control and acknowledgments,

as the three are intimately related.

3.3.1 Flow control

TCP’s receive window indicates the number of bytes

beyond the sequence number from the acknowledgment

field that the receiver can buffer. The sender is not per-

mitted to send more than this amount of additional data.

Multipath TCP also needs to implement flow control,

although packets now arrive over multiple subflows. If

we inherit TCP’s interpretation of receive window, this

would imply an MPTCP receiver maintains a pool of

buffering per subflow, with receive window indicating

per-subflow buffer occupancy. Unfortunately such an

interpretation can lead to a deadlock scenario:

1. The next packet that needs to be passed to the appli-

cation was sent on subflow 1, but was lost.

2. In the meantime subflow 2 continues delivering data,

and fills its receive window.

3. Subflow 1 fails silently.

4. The missing data needs to be re-sent on subflow 2,

but there is no space left in the receive window, re-

sulting in a deadlock.

The receiver could solve this problem by re-allocating

subflow 1’s unused buffer to subflow 2, but it can only

do this by rescinding the advertised window on subflow

1. Besides, the receiver does not know which subflow

the next packet will be sent on. The situation is made

even worse because a TCP proxy3 on the path may hold

data for subflow 2, so even if the receiver opens its win-

dow, there is no guarantee that the first data to arrive is

the retransmitted missing packet.

The correct solution is to generalize TCP’s receive

window semantics to MPTCP. For each connection a

single receive buffer pool should be shared between all

subflows. The receive window then indicates the maxi-

mum data sequence number that can be sent rather than

the maximum subflow sequence number. As a packet

resent on a different subflow always occupies the same

data sequence space, no such deadlock can occur.

The problem for an MPTCP sender is that to calculate

the highest data sequence number that can be sent, the

receive window needs to be added to the highest data se-

quence number acknowledged. However the ACK field

in the TCP header of an MPTCP subflow must, by ne-

cessity, indicate only subflow sequence numbers. Does

MPTCP need to add an extra data acknowledgment field

for the receive window to be interpreted correctly?

3.3.2 Acknowledgments

To correctly deduce a cumulative data acknowledg-

ment from the subflow ACK fields, an MPTCP sender

might keep a scoreboard of which data sequence num-

bers were sent on each subflow. However, the inferred

value of the cumulative data ACK does not step in pre-

cisely the same way that an explicit cumulative data ACK

would. Consider the sequence shown in Fig.1(a)4:

1. Data sequence no. 1 is sent on subflow 1 with sub-

flow sequence number 1001.

2. Receiver sends ACK for 1001 on subflow 1.

3. Data sequence no. 2 is sent on subflow 2 with sub-

flow sequence number 2001.

4. Receiver sends ACK for 2001 on subflow 2.

5. ACK for 2001 arrives (the RTT on subflow 2 is shorter).

6. ACK for 1001 arrives at sender.

The receiver expected the ACK for 1001 to be an im-

plicit data ACK for 1, and the ACK for 2001 to be an

implicit ACK for 2. However, as the ACK for 2001 does

not implicitly acknowledge both 1 and 2, the sender’s

inferred data ACK is still 0 after step 5. Only after step

6 does the inferred data ACK become 2.

This sort of reordering is inevitable with multipath

given the different RTTs of the different paths, and it

would not by itself be a problem, except that the receiver

needs to code the receive window field relative to the im-

plicit data ACK. Suppose the receive buffer were only

3Most will prevent MPTCP being negotiated, but a few do not.
4The example uses packet sequence numbers for clarity, but
MPTCP actually uses byte sequence numbers just like TCP
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(a) Drops due to incorrect inference (b) Stalls due to incorrect inference

Figure 1: Problems with inferring the cumulative data ACK from subflow ACK

two packets, and the application is slow to read. In the

ACK for 1001, the receiver closes the receive window

to one packet. In the ACK for 2001 the receiver closes

the receive window completely, as there is no space re-

maining. When the ACK for 1001 is finally received, the

inferred cumulative data ACK is now 2; the sender adds

the receive window of one to this, and concludes incor-

rectly that the receiver has sufficient buffer space for one

more packet. Fig. 1(b) shows a similar situation where

reordering causes sending opportunities to be missed.

To avoid such scenarios MPTCP must carry an ex-

plicit data acknowledgment field, which gives the left

edge of the receive window.

3.3.3 Encoding

We have seen that in the forward path we need to en-

code a mapping of subflow bytes into the data sequence

space, and in the reverse path we need to encode cu-

mulative data acknowledgments. There are two viable

choices for encoding this additional data:

• Send the additional data in TCP options.

• Carry the additional data within the TCP payload,

using a chunked or escaped encoding to separate con-

trol data from payload data.

For the forward path we have not found any com-

pelling arguments either way, but the reverse path is a

different matter. Consider a hypothetical encoding that

divides the payload into chunks where each chunk has a

TLV header. A data acknowledgment can then be em-

bedded into the payload using its own chunk type. Un-

der most circumstances this works fine. However, un-

like TCP’s pure ACK, anything embedded in the payload

must be treated as data. In particular:

• It must be subject to flow control because the re-

ceiver must buffer data to decode the TLV encoding.

• If lost, it must be retransmitted consistently, so that

middleboxes can track sequence state correctly5

5In our observations, the usual TCP proxies re-asserted the

Figure 2: Flow Control on the path from C to S in-

advertently stops the data flow from S to C

• If packets before it are lost, it might be necessary

to wait for retransmissions before the data can be

parsed - causing head-of-line blocking.

Flow control presents the most obvious problem for

the chunked payload encoding. Figure 2 provides an ex-

ample. Client C is pipelining requests to server S; mean-

while S’s app is busy sending the large response to the

first request so it isn’t yet ready to read the subsequent

requests. At this point, S’s receive buffer fills up.

S sends segment 10, C receives it and wants to send

the DATA ACK, but cannot: flow control imposed by

S’s receive window stops him. Because no DATA ACKs

are received from C, S cannot free his send buffer, so

this fills up and blocks the sending application on S. S’s

application will only read when it has finished sending

data to C, but it cannot do so because its send buffer is

full. The send buffer can only empty when S receives

the DATA ACK from C, but C cannot send this until S’s

application reads. This is a classic deadlock cycle.

As no DATA ACK is received, S will eventually time

out the data it sent to C and will retransmit it; after many

retransmits the whole connection will time out.

It has been suggested that this can be avoided if DATA

ACKs are simply excluded from flow control. Unfortu-

nately any middlebox that buffers data can foil this; it is

original content when sent a “retransmission” with different
data. We also found one path that did this without exhibit-
ing any other proxy behavior - this is symptomatic of a traffic
normalizer[8] - and one on port 80 that reset the connection.
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unaware the DATA ACK is special because it looks just

like any other TCP payload.

When the return path is lossy, decoding DATA ACKs

will be delayed until retransmissions arrive - this will ef-

fectively trigger flow control on the forward path, reduc-

ing performance. In effect, this would break MPTCP’s

goal of doing “no worse” than TCP on the best path.

Our conclusion is that DATA ACKs cannot be safely

encoded in the payload. The only real alternative is

to encode them in TCP options which (on a pure ACK

packet) are not subject to flow control.

3.3.4 Data sequence mappings

If MPTCP must use options to encode DATA ACKs,

it is simplest to also encode the mapping from subflow

sequence numbers to data sequence numbers in a TCP

option. This is the data sequence mapping or DSM.

At first we thought that the DSM option simply needed

to carry the data sequence number corresponding to the

start of the MPTCP segment. Unfortunately middle-

boxes and “smart” NICs make this far from simple.

Middleboxes that resegment data would cause a prob-

lem. 6 TCP Segmentation Offload (TSO) hardware in

the NIC also resegments data and is commonly used to

improve performance. The basic idea is that the OS

sends large segments and the NIC resegments them to

match the receiver’s MSS. What does TSO do with TCP

options? We tested 12 NICs supporting TSO from four

different vendors. All of them copy a TCP option sent

by the OS on a large segment into all the split segments.

If MPTCP’s DSM option only listed the data sequence

number, TSO would copy the same DSM to more than

one segment, breaking the mapping. Instead the DSM

option must say precisely which subflow bytes map to

which data sequence numbers. But this is further com-

plicated by middleboxes that rewrite sequence numbers;

these are commonplace — 10% of paths. Instead, the

DSM option must map the offset from the subflow’s ini-

tial sequence number to the data sequence number, as

the offset is unaffected by sequence number rewriting.

The option must also contain the length of the mapping.

This is robust - as long as the option is received, it does

not greatly matter which packet carries it, so duplicate

mappings caused by TSO are not a problem.

3.3.5 Send buffer management

The sender will free segments from the connection-

level send queue only when they are acknowledged by a

DATA ACK. Even if a segment is ACKed at the subflow

level, its data is kept in memory until we receive a DATA

ACK. If a DATA ACK does not arrive, a timer fires and

the sender retransmits that data. This allows the receiver

6We did not observe any that would both permit MPTCP and
resegment, though.

to ACK all segments correctly received at the subflow

level, which in turn allows the sender to correctly in-

fer path properties. This separation of functionality also

allows the receiver to drop data that is in-window at the

subflow level but out-of-window at the connection level.

Further, if a middlebox coalesces packets, TCP’s lim-

ited option space means it can only keep one of the data

sequence mapping options on the coalesced segment.

The receiver will get a bigger segment where some of

the bytes have no mapping. The packet will be acknowl-

edged at the subflow-level, and only the bytes with the

mapping will be acknowledged at the data level. This

causes the sender to retransmit the missing bytes, allow-

ing the MPTCP connection to make progress.

3.3.6 Content-modifying middleboxes

Many NAT devices include application-level gateway

functionality for protocols such as FTP: IP addresses

and ports in the FTP control channel are re-written to

correct for the address changes imposed by the NAT.

Multipath TCP and such content-modifying middle-

boxes have the potential to interact badly. In particular,

due to FTP’s ASCII encoding, re-writing an IP address

in the payload can necessitate changing the length of the

payload. Subsequent sequence and ACK numbers are

then fixed up by the middlebox so they are consistent

from the point of view of the end systems.

Such length changes break the DSM option mapping

- subflow bytes can be mapped to the wrong place in

the data stream. They also break every other mapping

mechanism we considered, including chunked payloads.

There is no easy way to handle such middleboxes.

After much debate, we concluded that MPTCP must

include a checksum in the DSM mapping so such con-

tent changes can be detected. MPTCP rejects a mod-

ified segment and triggers a fallback process: if any

other subflows exists, MPTCP terminates the subflow

on which the modification occurred; if no other subflow

exists, MPTCP drops back to regular TCP behavior for

the remainder of the connection, allowing the middle-

box to perform rewriting as it wishes.

Calculating a checksum over the data is comparatively

expensive, and we did not wish to slow down MPTCP

just to catch such rare corner cases. MPTCP therefore

uses the same 16-bit ones complement checksum used

in the TCP header. This allows the checksum over the

payload to be calculated only once. The payload check-

sum is added to a checksum of an MPTCP pseudo header

covering the DSM mapping values and then inserted

into the DSM option. The same payload checksum is

added to the checksum of the TCP pseudo-header and

then used in the TCP checksum field.

With this mechanism a software implementation in-

curs little additional cost from calculating the MPTCP
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checksum. Unfortunately, modern NICs frequently per-

form checksum offload. If the TCP stack uses the NIC

to calculate checksums, with MPTCP it will still need

to calculate the MPTCP checksum in software, negat-

ing the benefits of checksum offload. There is little we

can do about this, other than to note that future NICs

will likely perform MPTCP checksum offload too, if

MPTCP is widely deployed. In the meantime, MPTCP

allows checksums to be disabled for high performance

environments such as data-centers where there is no chance

of encountering such an application-level gateway.

The fallback-to-TCP process, triggered by a check-

sum failure, can also be triggered in other circumstances.

For example, if a routing change moves an MPTCP sub-

flow to a path where a middlebox removes DSM op-

tions, this also triggers the fallback procedure.

3.4 Connection and subflow teardown

TCP has two ways to indicate connection shutdown:

FIN for normal shutdown and RST for errors such as

when one end no longer has state. With MPTCP, we

need to distinguish subflow teardown from connection

teardown. With RST, the choice is clear: it must only

terminate the subflow, or an error on a single subflow

would cause the whole connection to fail.

Normal shutdown is slightly more subtle. TCP FINs

occupy sequence space; the FIN/FIN-ACK/ACK hand-

shake and the cumulative nature of TCP’s acknowledg-

ments ensure that not only all data has been received,

but also both endpoints know the connection is closed

and know who needs to hold TIMEWAIT state.

How then should a FIN on an MPTCP subflow be in-

terpreted? Does it mean that the sending host has no

more data to send, or only that no more data will be

sent on this subflow? Another way to phrase this is to

ask whether a FIN on a subflow occupies data sequence

space, or just subflow sequence space?

Consider first what would happen if a FIN occupied

data sequence space. This could be achieved by extend-

ing the length of the DSM mapping in a packet to cover

the FIN. Mapping the FIN into the data sequence space

in this way tells the receiver what the data sequence

number of the last byte of the connection is, and hence

whether any more data is expected from other subflows.

Suppose that some data had been transmitted on sub-

flow A just before the last data and FIN were sent on

subflow B. If the receiver is really unlucky, subflow A

may fail (perhaps due to mobility) before the last data

arrives. When the sender times out this data, it will wish

to re-send it on subflow B, but it has already sent a FIN

on this subflow. Sending data after the FIN is sure to

confuse middleboxes and firewalls that tore down state

when they observed the FIN. This problem might be

avoided by delaying sending the FIN until all outstand-

ing data has been DATA ACKed, but this adds an unnec-

essary RTT to all connections during which the receiv-

ing application doesn’t know if more data will arrive.

Much simpler is for a FIN to have the more limited

“no more data on this subflow” semantics, and this is

what MPTCP does. An explicit DATA FIN, carried in

a TCP option, indicates the end of the data sequence

space and can be sent immediately when the application

closes the socket. To be safe, either the sender waits for

the DATA ACK of the DATA FIN before sending a FIN

on each subflow, or it sends DATA FIN on all subflows

together with a FIN.

MPTCP’s FIN semantics also allow subflows to be

closed cleanly while allowing the connection to con-

tinue on other subflows. Finally, to support mobility,

MPTCP provides a REMOVE ADDR message, allow-

ing one subflow to indicate that other subflows using the

specified address are closed. This is necessary to cleanly

cope with mobility when a host loses the ability to send

from an address and so cannot send a subflow FIN.

4. IMPLEMENTATION ISSUES

To validate the design of MPTCP and understand its

impact on real applications, we added full support for

MPTCP to version 2.6.38 of the Linux kernel. This is

a major modification to TCP: our patch to the Linux

kernel, available from http://mptcp.info.ucl.ac.be, is about

10,400 lines of code . The software architecture is de-

scribed in detail in [1]. To our knowledge, this is the

first full kernel implementation of MPTCP.

We will focus on three of the more recent important

improvements to the MPTCP implementation. We first

briefly describe the algorithms that have been included

in our MPTCP implementation to deal with middleboxes.

Then we explain how to reduce the MPTCP memory us-

age. Finally we show how an MPTCP receiver is able to

handle out-of-order data efficiently.

4.1 Supporting middleboxes

As we have seen, middleboxes constrain the design

of MPTCP in many ways. To verify whether our design

and its implementation are robust to middleboxes, we

implemented Click elements [15] that model the various

operations performed by middleboxes, namely:

• NAT • Segment splitting

• Sequence number rewriting • Segment coalescing

• Removing TCP options • Pro-active acking

• Payload modification

The simplest middleboxes are NATs and those that

rewrite sequence numbers: beyond implementing the

basic MPTCP design, no special code is required to sup-

port them. Middleboxes may also remove TCP options.

If a middlebox removes the MP CAPABLE option from
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Figure 3: Impact of enabling or disabling DSM

checksums in 10G environments.

the SYN or SYN/ACK, MPTCP is not used for the con-

nection. If a middlebox removes the MPTCP option

from non-SYN segments, our implementation falls back

to regular TCP and continues the data transfer.

We also considered the impact of middleboxes that

split or coalesce segments. NICs that support TCP Seg-

mentation Offload (TSO) are an example of the former

and traffic normalizers [8] are an example of the latter.

Our implementation supports both. However, coalesc-

ing middleboxes cause a performance degration due to

the loss of data sequence mappings that force the sender

to retransmit data. In reality though, we have not ob-

served any middleboxes that coalesce segments with un-

known options.

Application-level gateways[22] are the most difficult

middleboxes to support; they modify the payload and

adjust TCP sequence numbers to compensate. MPTCP

uses the DSM checksum to detect these. If we detect a

DSM-checksum failure on only one subflow, that sub-

flow is reset and the transfer continues on another sub-

flow. If the middlebox affects all subflows, our imple-

mentation falls back to regular TCP.

Unfortunately, calculating checksums may affect per-

formance. To evaluate this impact, we used Xeon class

servers attached to 10 Gbps Ethernet interfaces. Fig-

ure 3 shows the MPTCP goodput as a function of MSS.

Checksum offloading is not yet supported in our code,

so the per-packet checksums are computed in software.

With the default Ethernet MSS, the performance is lim-

ited by per-packet costs such as interrupt processing.

As the MSS increases, the fixed per-packet costs have

less impact and goodput increases. When DSM check-

sums are switched off, our implementation uses the NIC

to offload checksum calculations at the sender and re-

ceiver. When DSM checksums are enabled, the sender

must calculate the DSM checksum in software and the

receiver must check it. With jumbo frames, these check-

sums reduce throughput by 30%.

4.2 Minimizing memory usage

TCP and MPTCP provide in-order, reliable delivery

of data to the application. The network can reorder pack-

ets or lose them, so the receiver must buffer out-of-order

packets before sending a cumulative ACK and passing

them to the application. Consequently, the sender also

allocates a similar sized pool of memory to hold in flight

segments until they are acknowledged.

How big must the receive buffer be for TCP to work

well? In the absence of loss, a bandwidth-delay product

(BDP) of buffering is needed to avoid flow control. If,

after a packet loss, we want the sender to be able to keep

sending packets while in fast retransmit we need an extra

BDP of receive buffer.

For MPTCP the story is a bit different. Assuming

there are no losses, and no special scheduling at the

sender, the receive buffer must be at least
∑

xiRTTmax

where xi is the throughput of subflow i and RTTmax is

the highest RTT of all the subflows. This allows all

paths to keep sending while waiting for an early packet

to be delivered on the slowest path. If we want to allow

all paths to keep sending while any path is fast retrans-

mitting, the buffer must be doubled: 2
∑

xiRTTmax.

We first observe that, fundamentally, memory require-

ments for MPTCP are much higher than those for TCP,

mostly because of the RTTmax term. A 3G path with a

bandwidth of 2 Mbps and 150 ms RTT needs just 75 KB

of receive-buffer, while a WiFi path running at 8 Mbps

with 20 ms RTT needs around 40 KB. MPTCP running

on the same two paths will need 375 KB — nearly four

times the sum of the path BDPs.

We used our Linux implementation to test this issue.

Fig. 4(a) shows the throughput achieved as a function

of receive-window for TCP and MPTCP running over

an emulated 8Mbps WiFi-like path (base RTT 20ms,

80ms buffer) and an emulated 2Mbps 3G path (base

RTT 150ms, 2s buffer).

MPTCP will send a new packet on the lowest delay

link that has space in its congestion window. When there

is very little receive buffer, MPTCP sends all packets

over WiFi, matching regular TCP. With a bigger buffer,

additional packets are put on 3G and overall throughput

drops. Somewhat surprisingly, even 370KB are insuf-

ficient to fill both pipes. This is because unnecessarily

many packets are sent over 3G. This pushes the effective

RTTmax towards 2 seconds, and so the receive buffer

needed to avoid flow control increases.

We see that a megabyte of receive-buffer (and send-

buffer) are needed for a single connection over 3G and

WiFi. This is a problem, and may prevent MPTCP from

being used on busy servers and memory-scarce mobile

phones. TCP over WiFi even outperforms MPTCP over

both WiFi and 3G when the receive buffer is less than

400KB, removing any incentive to deploy MPTCP.

In the rest of this section we outline a series of mecha-

nisms to be implemented at the sender that allow MPTCP

make the most of the memory it has available. Solutions
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Figure 4: Receive buffer impact on throughput

have to be adaptive: as more receive buffer becomes

available, MPTCP should use up more of the capacity

it has available. This way, if the OS is prepared to spend

the memory it will achieve higher throughput; if not, it

will receive the same as TCP.

Mechanism 1: Opportunistic retransmission. When

a subflow has sufficient congestion window to send more

packets, but there is no more space in the receive win-

dow, what should it do? One option is to resend the

data, previously sent on another subflow, that is hold-

ing up the trailing edge of the receive window. In our

example, the WiFi subflow may retransmit some data

unacknowledged data sent on the slow 3G subflow.

The motivation is that this allows the fast path to send

as fast as it would with single-path TCP, even when un-

derbuffered. If the connection is not receive-window

limited, opportunistic retransmission never gets triggered.

Our Linux implementation only considers the first un-

acknowledged segment to avoid the performance penalty

of iterating the potentially long send-queue in software

interrupt context. This works quite well by itself, as

shown in Fig. 4(b): MPTCP throughput is almost al-

ways as good as TCP over WiFi, and mostly it is better.

Unfortunately opportunistic retransmission is rather

wasteful of capacity when underbuffered, as it unnec-

essarily pushes 2Mbps traffic over 3G; this accounts for

the difference between goodput and throughput in Fig.4(b).

Mechanism 2: Penalizing slow subflows. Reacting to

receive window stalls by retransmitting is costly; we’d

prefer a way to avoid persistently doing so. If a connec-

tion has just filled the receive window, to avoid doing so

again next RTT we need to reduce the RTT on the sub-

flow that is holding up the advancement of the window.

To do this, MPTCP can reduce that subflow’s window;

in our tests we halved the congestion window and set

the slowstart threshold to the reduced window size. To

avoid repeatedly penalizing the same flow, only one re-

duction is applied per subflow round-trip time.

Penalizing and opportunistic retransmission work well

together, as seen in Fig. 4(c): MPTCP always outper-

forms or a least matches TCP over WiFi.
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Figure 5: Receive buffer impact on memory use

Mechanisms 3 & 4: Buffer autotuning with capping.

Taken together, mechanisms 1 & 2 allow an MPTCP

sender to effectively utilize whatever receive buffer the

receiver makes available. However, modern TCP im-

plementations don’t just blindly allocate large buffers

from the outset - they adaptively increase the buffer size

as they discover more buffer is needed. We’ve imple-

mented both send and receive buffer tuning, done using

the MPTCP buffer size formula above. In our exper-

iments, we set the maximum send and receive buffers

with the usual sysctls, but it is autotuning that automati-

cally increases the actual buffer.

With TCP it is generally safe to configure large max-

imum send and receive buffer sizes; autotuning ensures

they won’t be used unless they are really needed. With

MPTCP, however, if one of the subflows is on a path

with excessive network buffering, as is common with

3G providers, autotuning will measure a large value for

RTTmax and ramp up the receive buffer size unneces-

sarily. Mechanisms 1 & 2 only kick in once the receive

buffer has grown and then been filled.

To see the effect of buffer autotuning, in Fig. 5 we use

htsim to simulate the average memory consumption as a

function of configured maximum receive buffer for WiFi

and 3G. Memory consumption at the sender is lowest for

TCP over WiFi, where the BDP is lowest. TCP over 3G

has higher consumption, and MPTCP uses up to 500KB

when the configured receive-buffer permits it.

This is more than MPTCP really needs; most of the

time it is unnecessary to fill the large buffers on the 3G

link. To avoid this effect, we might cap the congestion

window when the amount of data buffered is above one
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Figure 6: The Receive-buffer optimizations significantly improve goodput with small buffers

BDP. This is easy to implement: measure the base RTT

of the subflow’s path by taking the min of all RTT mea-

surements, and cap cwnd when the smoothed RTT is

double the base RTT. In this simulation, capping halves

MPTCP’s memory usage when the configured receive

buffer is large. Our Linux implementation does not yet

support capping, but FreeBSD’s regular TCP implemen-

tation has supported this since 2002, enabled via the

net.inet.tcp.inflight.enable sysctl[6].

Despite the large advertised receive window, actual

memory consumption at the receiver is small for single

path TCP on both 3G and WiFi so long as losses are

rare and the receiving application reads as soon as data

is available. The same is not true for MPTCP: the re-

ceiver will spend at least two thirds of the memory the

sender spends, due to reordering induced by the use of

multiple paths. The effect is pronounced in the example

we chose, where the difference between WiFi and 3G

RTTs is seven-fold. For equal delay paths, MPTCP’s

receiver memory consumption is also close to zero.

4.2.1 Further evaluation

To evaluate our algorithms, we used both our htsim

simulator and our Linux kernel implementation. We

used simulation to test the viability of our proposals and

their sensitivity to a wide range of path properties. The

sensitivity analysis showed that the algorithms are ro-

bust and work well in a wide range of scenarios. We also

tested MPTCP competing with single path TCP flows

and found that MPTCP does get the same throughput as

TCP on the best path or strictly better in the vast major-

ity of cases. MPTCP does underperform TCP by 20%-

30% when the best subflow experiences frequent time-

outs; however, this is not caused by the receive-buffer

algorithms, but by MPTCP’s congestion controller over-

estimating the throughput of subflows that experience

loss rates of greater than 10%.

To illustrate more clearly the impact of mechanisms 1

and 2, it is worth examining a few more varied scenarios.

The first scenario we analyze is where one of the paths

has extremely poor performance such as when mobile

devices have very weak signal. Figure 6(a) shows through-

put achieved using our Linux implementation on an em-

ulated WiFi path (8Mbps, 20ms RTT, 80ms buffer) and

an emulated very slow 3G link (50Kbps, 150ms RTT,

2s buffer). As the link is so slow, the loss rate will

be high on the 3G path, and the large network buffer

means that retransmission over 3G takes a long time.

With receive buffer sizes of less than 400KB, when-

ever a loss happens on 3G, regular MPTCP ends up

flow-controlled, unable to send on the fast WiFi path.

MPTCP plus mechanisms 1 and 2 is able to avoid this

being a persistent problem. Opportunistic retransmis-

sion allows the lost 3G packet to be re-sent on WiFi

without waiting for a timeout and penalization reduces

the data buffered on the 3G link, avoiding the situation

repeating too quickly. With receive buffer sizes around

200KB, these mechanisms increase MPTCP throughput

tenfold.

Next, we use two hosts connected by one gigabit and

one 100Mb/s link to emulate inter-datacenter transfers

with asymmetric links. Fig. 6(b) shows that MPTCP+M1,2

is able to utilize both links using only 250KB of mem-

ory, while regular MPTCP underperforms TCP over the

1Gbps interface until the receive buffer is at least 2MB.

When the hosts are connected via symmetric links—

we used three such links in Figure 6(c)—both regular

MPTCP and MPTCP+M1,2 perform equally well, re-

gardless of the receive buffer size. This is because in

this scenario, when underbuffered, using the fastest path

is the optimal strategy.

Application level latency Goodput is not the only met-

ric that is important for applications. For interactive ap-

plications, latency between the sending application and

the receiving application can matter.

As MPTCP uses several subflows with different RTTs,

we expect it to increase the end-to-end latency seen by

the application compared to TCP on the fastest path.

To test this, we use an application that sends 8 KByte

blocks of data and timestamps each block’s transmission

and reception. This allows us to measure the variation

of the end-to-end delay as seen by the application.

10



0 50 100 150 200 250 300 350 400 450

App-Delay in ms

0

2

4

6

8

10

12

14

16

18
P

D
F

in
%

MPTCP + M1,2

regular MPTCP

TCP over WiFi

TCP over 3G

Figure 7: Application level latency for 3G/WiFi case

Figure 7 shows the probability density function of the

application-delay with a buffer-size of 200KB running

over 3G and WiFi. Mechanisms 1 and 2 do a good job of

avoiding the larger latencies seen with regular MPTCP.

Somewhat counter intuitively, the latency of TCP over

WiFi is actually greater than MPTCP+M1,2. The reason

for this is that 200KB is more buffering than TCP needs

over this path, so the data spends much of the time wait-

ing in the send buffer. MPTCP’s send buffer is effec-

tively smaller because the large 3G RTT means it takes

longer before DATA ACKs are returned to free space. If

we manually reduce TCP’s send buffer on the WiFi link,

the latency can be reduced below that of MPTCP.

4.3 Coping with reordering

Most TCP implementations support Van Jacobson’s

fast path processing. The receiver assumes that data is

received in-order and TCP quickly places the data re-

ceived in-sequence in its receive buffer, either at the end

of the in-order receive-queue (which the app can read)

or at the end of the out-of-order queue. The latter hap-

pens when a packet was lost and we are waiting for the

retransmission. In the rare case when a segment is re-

ceived out of order, TCP scans the out-of-order queue to

find the exact location of the received data.

With MPTCP the situation is completely different:

while subflow sequence numbers are received in-order,

data sequence numbers are often out-of-order forcing re-

ceivers to scan the large out-of-order queue. An obvi-

ous fix is to use a binary tree to reduce the out-of-order

queue lookup time. This adds complexity to the code,

and still takes logarithmic time to place a packet.

To obtain a simple, constant-time receive algorithm

we leverage the way packets are sent: when a subflow

is ready to send data, segments with contiguous data se-

quence numbers (a batch) will be allocated by the con-

nection and sent on this subflow, as allowed by the sub-

flow’s congestion window. Each subflow, then, will re-

ceive in-order at the data level as long as the batch size is

large. The receiver augments each subflow’s data struc-

tures with a pointer to the connection-level out-of-order

queue where it expects the next segment of that subflow

to arrive. If the pointer is wrong, we revert to scanning

the whole out-of-order queue.
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This gives big benefits; the shortcuts work for 80%

of the received packets. However, when the batch size

is very small this optimization might not be enough. It

is also not enough when we are receive-window limited

and our retransmission mechanism kicks in.

For the 20% of the cases where the shortcut is not

working, the receiver has to iterate over all packets in

the out-of-order queue to insert the received packet. To

avoid this behaviour, we modify the lookup mechanism

as follows. First, the out-of-order queue groups in-sequence

segments into batches. Then, we iterate over these batches

instead of iterating over all the segments. As there are

significantly less batches than packets in the out-of-order

queue, the lookup process will be much faster.

We evaluate these algorithms by considering a client

directly connected to a server by using two 1 Gbps links.

The client starts a long download and we measure the

receiver’s CPU load. With more subflows the number

of out-of-sequence segments that need to be processed

increases; for clarity, we only present results with 2 sub-

flows, a lower bound to utilize the links, and 8 subflows

beyond which results are similar.

Figure 8 compares CPU load for the different receive

algorithms. TCP (with 2 and 8 connections) is used

as a benchmark. The Tree algorithm reduces CPU uti-

lization, but Shortcuts and its improvement AllShortcuts

help much more. When 8 subflows are used, CPU uti-

lization drops from 42% to 30%, and when 2 subflows

are used it drops from 25% to 20%.

5. MPTCP PERFORMANCE

The two main motivations to deploy MPTCP today

are wireless networks where MPTCP could enable hosts

to use both WiFi and 3G networks [20, 18] and datacen-

ters where MPTCP allows servers to better exploit the

load-balanced paths [19]. We experimentally evaluate

the performance of our MPTCP implementation in these

two environments.

5.1 MPTCP over WiFi and 3G

In the previous section, we used emulated networks to

improve the algorithms used in our MPTCP implemen-

tation. Here, we use MPTCP over a 3G network offered
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Figure 9: MPTCP used over real 3G and WiFi

by a commercial provider in Belgium; TCP’s maximum

throughput on this network is 2Mbps. Our MPTCP im-

plementation correctly works over this 3G network de-

spite its installed middleboxes. We also used a WiFi

access point that was capped at 2 Mbps. This capping

was implemented on the access point and would rep-

resent the bandwidth offered on a shared public WiFi

network such as BT’s FON. Figure 9 shows the aver-

age goodput achieved by TCP and MPTCP in function

of the receive/send buffer sizes. Regular TCP achieves

roughly the same goodput with both 3G and WiFi except

when the buffer size is small where the larger round-trip-

time penalizes the performance over 3G. MPTCP gets

most of the available bandwidth when the buffer reaches

200KB, and it never underperforms TCP.

Our measurements show that MPTCP is able to utilize

both the 3G and WiFi networks when the buffer is large

enough. With a 500 KBytes buffer, MPTCP achieves

almost the double of the goodput of regular TCP. With a

100 KBytes buffer, reaches a goodput that is 25% larger

than regular TCP over WiFi or 3G.

5.2 Connection setup latency

During MPTCP connection setup the client and server

generate a random key and verify that its hash is unique

among all established connections (see Section 3.2). These

keys are used later to verify the addition of new sub-

flows. How does this affect connection setup latency?

The measurements use Xeon X5355 servers connected

via Gigabit ethernet. Fig. 10 shows a PDF of the delay

between receiving a SYN and sending the SYN/ACK,

measured at the server. For regular TCP, 91% of the

20,000 connection setup attempts are processed in 6µs.

Each connection is closed before the next attempt is made.

Setting up the first subflow of an MPTCP connection

takes the server between 10 and 11µs if it has no es-

tablished connections. The extra latency is mainly be-

cause MPTCP must hash the received key, generate the

server key and verify that its hash is unique. If the server

has established MPTCP connections, the verification of

hash uniqueness is more expensive — Fig. 10 shows
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Figure 10: Connection establishment latency

how the latency increases when the server already has

100 and 1000 established MPTCP connections.

This additional latency, although small compared to a

LAN RTT, could be significantly reduced by maintain-

ing a pool of precomputed keys.

5.3 HTTP performance

From the latency results, we can see that on a LAN, an

MPTCP connection starts fractionally behind the equiv-

alent TCP connection. A small amount of bandwidth

and CPU cycles are also used to establish additional

subflows. HTTP is notorious for generating many short

connections. How long does an HTTP connection us-

ing MPTCP need to be for these startup costs to be out-

weighed by MPTCP’s ability to use extra paths?

We directly connected a client and server via two gi-

gabit links. For our tests we use apachebench 7, a

benchmarking software developed by the Apache foun-

dation that allows us to simulate a large number of clients

interacting with an HTTP server. We configuredapachebench

to emulate 100 clients that generate 100000 requests for

files of different sizes on a server (requests are closed-

loop). The server was running MPTCP Linux and used

apache version 2.2.16 with the default configuration.

We tested regular TCP that uses a single link, TCP

with link-bonding using both interfaces and finally MPTCP.

Fig. 11 shows the number of requests per second served

in all three configurations. We expect MPTCP to be sig-

nificantly better than regular TCP, and indeed this shows

up in experiments: when the file sizes are larger than 100

KBytes MPTCP doubles the number of requests served.

With files that are shorter than 30 KBytes, MPTCP de-

creases the performance compared to regular TCP. This

is mainly due to the overhead of establishing and releas-

ing a second subflow compared to the transmission time

of a single file. These small flows take only a few RTTs

and terminate while still in slowstart.

TCP with link-bonding performs very well especially

when file sizes are small: the round-robin technique used

7http://httpd.apache.org/docs/2.0/programs/ab.html
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Figure 11: Apache-benchmark with 100 clients

by the Linux implementation manages to spread the load

evenly, utilizing all the available capacity. MPTCP has a

slight advantage over TCP with link-bonding only when

file sizes are greater than 150KB in our experiment.

With larger files, there is a higher probability that

link-bonding ends up congesting one of its two links,

and some flows will be slower to finish. Flows on the

faster link will finish quickly generating new requests,

half of which will be allocated to the already congested

link. This generates more congestion on an already con-

gested link, with the effect that one link is highly con-

gested while one is underutilized; the links will flip be-

tween the congested and underutilized states quasi ran-

domly. We ran experiments with varying levels of con-

gestion and found that MPTCP can serve 25% more re-

quests than link bonding in such cases.

6. RELATED WORK

There has been a good deal of work on building mul-

tipath transport protocols[11, 24, 16, 10, 13, 4, 21, 5].

Most of this work aims to leave applications unchanged

and focuses on the protocol mechanisms needed to im-

plement multipath transmission. Key goals are robust-

ness to long term path failures and to short term varia-

tions in conditions on the paths.

Huitema’s Internet Draft [11] proposes using PCB iden-

tification to replace ports as demultiplexing points at the

end-hosts; our connection tokens are similar in spirit.

The proposal stripes segments over many addresses, us-

ing a single sequence number across all subflows.

Both MTCP [24] and M/TCP [21] use a single se-

quence number together with a scoreboard at the sender

that allows maintaining congestion state and perform-

ing retransmissions per path. MTCP uses a single return

path for ACKs which decreases its robustness; also it has

been designed to run over an overlay network (RON),

reducing its deployability and efficiency.

pTCP [10] is one of the most complete proposals to

date. The SYN exchange signals the addresses that will

be used in the multipath connection, and this set is fixed

- pTCP does not support mobility. Congestion control

and retransmissions are performed per subflow. At con-

nection level there are global send and receive buffers; a

data sequence number and acknowledgment helps deal

with reordered data at the connection level. This is in-

serted in a pTCP header that follows the TCP header.

RMTP [16] is a rate-based protocol targeted for mo-

bile hosts that uses packet-pairs to estimate available

bandwidth on each path and supports both reliable an

unreliable delivery. RMTP does not offer the same ser-

vice as TCP, and requires app changes.

The Stream Control Transmission Protocol (SCTP)

has been designed with multihoming in mind to sup-

port telephony signaling applications. SCTP’s multi-

homing support was initially only capable of recovering

from failures. However, several authors have extended

it to support load-sharing [2, 13]. SCTP-CMT [12] uses

a single sequence number across all paths and keeps a

scoreboard and other information to have accurate per-

path congestion windows and to drive retransmissions.

Our protocol design has drawn on all this literature,

and has been further guided by our experimental study

of middleboxes. In light of this study, none of the exist-

ing approaches are deployable as most use single sub-

flow sequence numbers which will be dropped. pTCP

does not use subflow sequence numbers but it is un-

clear how its additional headers should be encoded. Fur-

ther, pTCP will not cope with resegmenting or content-

changing middleboxes.

On the OS side, none of the previous works on TCP

have addressed the practical problems of getting mul-

tipath transport working in reality. Most use simula-

tion analysis, and do not consider receive-buffer issues.

SCTP-CMT has been implemented in the FreeBSD ker-

nel, but its performance has not been evaluated in detail.

A technique that was previously proposed to reduce

the size of the receive-buffer is to use sender-side schedul-

ing to get the packets “in-order” at the receiver (see e.g.

[17]). Unfortunately, this solution is brittle: any packet

losses or just variations in RTT will disrupt the ordering,

causing the receiver to buffer just as much data. Further,

the sender still has to buffer as much data as before.

7. LESSONS LEARNED

In today’s Internet, the three-way-handshake involves

not only the two communicating hosts, but also all the

middleboxes on the path. Verifying the presence of a

particular TCP option in a SYN+ACK is not sufficient

to ensure that a TCP extension can be safely used. As

shown in [9], some middleboxes pass TCP options that

they don’t understand. This is safe for TCP options that

are purely informative (e.g. RFC1323 timestamps) but

causes problems with other options such as those that

redefine the semantics of TCP header fields. For exam-

ple, the large window extension in RFC1323 changes
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the semantics of the window field of the TCP header

and extends it beyond 16 bits. Nearly 20 years after the

publication of RFC1323, there are still stateful firewalls

that do not understand this option in SYNs but block data

packets that are sent in the RFC1323 extended window.

A TCP extension that changes the semantics of parts of

the packet header must include mechanisms to cope with

middleboxes that do not understand the new semantics.

In an end-to-end Internet, all the information carried

inside TCP packets is immutable. Today this is no longer

true: the entire TCP header and the payload must be

considered as mutable fields. If a TCP extension needs

to rely on a particular field, it must check its value in

a way that cannot be circumvented by middleboxes that

do not understand this extension. The DSM checksum

is an example of a solution to deal with these problems.

Most importantly, deployable TCP extensions must

necessarily include techniques that enable them to fall-

back to regular TCP when something wrong happens.

If a middlebox interferes badly with a TCP extension,

the problem must be detected and the extension auto-

matically disabled to preserve the data transfer. A TCP

extension will only be deployed if it guarantees that it

will transfer data correctly (and hopefully better) in all

the cases where a regular TCP is able to transfer data.

8. CONCLUSIONS

TCP was designed when the Internet strictly obeyed

the end-to-end principle and each host had a single IP

address. Single-homing is disappearing and a growing

fraction of hosts have multiple interfaces/addresses. In

this paper we evaluated whether TCP can be extended

to efficiently support such hosts.

We explored whether it was possible to design Mul-

tipath TCP in a way that is still deployable in today’s

Internet. The answer is positive, but any major change

to TCP must take into account the various types of mid-

dleboxes that have proliferated. In fact, they influenced

most of the design choices in Multipath TCP besides the

congestion control. Our experiments show that MPTCP

safely operates through all the middleboxes we’ve iden-

tified in our previous study [9].

From an implementation viewpoint, we proposed new

algorithms to solve practical but important problems such

as sharing a limited receive buffer between multiple flows

on a smartphone, or optimizing the MPTCP receive code.

Experiments show that our techniques are effective, mak-

ing MPTCP ready for adoption.

This work highlights once again the fact that hidden

middleboxes increase the complexity of the Internet, mak-

ing evolution difficult. We should revisit the Internet

architecture to recognize explicitly their role. The big

challenge, however, is to build a solution that is deploy-

able in today’s Internet.
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