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Abstract — With mobile phones becoming first-class
citizens in the online world, the rich location data they
bring to the table is set to revolutionize all aspects of
online life including content delivery, recommendation
systems, and advertising. However, user-tracking is a
concern with such location-based services, not only be-
cause location data can be linked uniquely to individuals,
but because the low-level nature of current location APIs
and the resulting dependence on the cloud to synthesize
useful representations virtually guarantees such tracking.

In this paper, we proposeprivacy-preserving location-
based matchingas a fundamental platform primitive and
as an alternative to exposing low-level, latitude-longitude
(lat-long) coordinates to applications. Applications set
rich location-based triggers and have these be fired based
on location updates either from the local device or from a
remote device (e.g., a friend’s phone). Our Koi platform,
comprising a privacy-preserving matching service in the
cloud and a phone-based agent, realizes this primitive
across multiple phone and browser platforms. By mask-
ing low-level lat-long information from applications, Koi
not only avoids leaking privacy-sensitive information,
it also eases the task of programmers by providing a
higher-level abstraction that is easier for applications to
build upon. Koi’s privacy-preserving protocol prevents
the cloud service from tracking users. We verify the
non-tracking properties of Koi using a theorem prover,
illustrate how privacy guarantees can easily be added to
a wide range of location-based applications, and show
that our public deployment is performant, being able to
perform 12K matches per second on a single core.

1 Introduction

The skyrocketing popularity of smart-phones has all but
eviscerated the notion of “location-based services” as a
separate class of applications. Today, virtuallyall appli-
cations and services must leverage location information.
These applications and services include search, social
networking, and multi-player games, to name just a few.
Juxtaposed with this broad need for location information
is the inherent complexity of individual applications op-
erating on location data and its implications on user pri-
vacy. Recent high-profile incidents have put the spotlight
on location privacy, with even governments and regula-
tory bodies asking questions of technology providers [6].

A popular approach in the research literature to pro-
viding location privacy isobfuscation, wherein a user’s
location coordinates are made imprecise by adding noise
or are entirely suppressed, based on such factors as user
density and the sensitivity of a location [19, 23]. While
this approach has merits, obfuscation creates an unneces-
sary tension between the quality of location-based func-
tionality and user privacy. Moreover, this approach does
not address the crux of the privacy challenge: trusted ap-
plications (e.g., navigation app), which have a legitimate
need for access to user location information, inadver-
tently leaking this to third-parties (e.g., Google maps),
who are then in a position to link a user’s ID to their lo-
cation, and possibly track the user over time.

In this paper, we argue for a different approach, Koi,
which is based on one key idea: switching to location
matchinginstead of locationlookups. In other words,
rather than having an application look up mobile node’s
lat-long coordinates, Koi lets the application specify a
location event of interest (e.g., proximity to fixed loca-
tion such as a grocery store or the dynamic location of a
friend) and notifies the application when there is a loca-
tion match. Not only does the Koi approach relieve the
application developer from having to work with the nitty-
gritty of low-level lat-long information, it avoids pol-
luting the application with lat-long information, thereby
preventing accidental leakage of this information. In-
deed, privacy incidents in the past have arisen from the
carelessness (e.g., a third-party library used by the app
developer, such as an advertising control, that constantly
sends the user’s lat-long to the third-party when lat-long
is irrelevant to the original application [14]) rather than
malice (e.g., an application that actively tries to subvert
the location privacy of the mobile user).

The design of Koi comprises three main elements.
The first, which arises directly from the approach out-
lined above and builds on prior concepts of triggers and
symbolic locations [4, 30], is acallback-based match-
ing API for applications. This API allows the applica-
tion to specify the location event of interest, whether in
terms of a static location or a dynamic location. The sec-
ond element is aprivacy-preserving cloud-based match-
ing service, which uses a novel design comprising two
non-colluding entities that together implement matching,
while ensuring that neither entity learns the association
between a user’s ID and their location. This property is
important since the matching service is a third-party as



(a) Architecture

Registering Items and Triggers
ITEM = CREATEITEM(CONTENT, TTL)
TRIG = CREATETRIGGER(CALLBACK , TTL)

Create a new item or trigger.
Adding Attributes
ADDLOCATTR(ITEMORTRIG, LOC, AUTOUPDATE)
ADDAPPATTR(ITEMORTRIG, ATTR)

Associate location or other attributes to items and triggers.
Notifications
CALLBACK .NOTIFY(CONTENT)

Called by platform when a match is found.

(b) API

Figure 1: Koi Platform

far as the user is concerned and so should not be in a posi-
tion to learn the user’s location. The third element is sup-
port for rich, semantically-meaningful, multi-attribute
matchingthat arises from the observation that applica-
tions have diverse requirements. Indeed, location-based
applications are about more than just location. For ex-
ample, a user might want to know when grocery store is
nearby, so whether a store qualifies as a “grocery store”
is equally important as proximity of the user to the store.
Further, what qualifies as a “grocery store” depends on
the application; for example, one could choose to treat a
store tagged as a “supermarket” also as a grocery store.
Even within the narrow domain of the location attribute,
what qualifies as “nearby” is app-dependent in a way that
opaque location tokens cannot accommodate.

We have designed and implemented the Koi system,
and have deployed the matching service running on a
production cloud platform. We show through micro-
and macrobenchmarks that our implementation of Koi
is performant enough for practical use despite the over-
head imposed by privacy constructs. As we elaborate
on in Section7, Koi’s location-based matching API nat-
urally accommodates applications such as social net-
working, local search, recommendations, and advertis-
ing, which are essentially based on matching. Finally,
as discussed in Section6, we have verified using the
ProVerif theorem-prover [33] that Koi protocols preserve
location-privacy.

2 Overview of Koi

Koi comprises two components, one which runs on the
user’s mobile device and the other in the cloud (Fig-
ure1a).

The mobile component of Koi interfaces between ap-
plications and the cloud component. To applications, it
exposes a simple API (Figure1b), which allows regis-
tration and updating ofitemsandtriggers, and provides
notification through a callbacks. Anitem is a statement

of fact. It contains information about an entity such as a
user, a business, a vehicle (e.g., bus), etc., in the form of
one or moreattributesof the item, including its location.
Thelocation attributeis special in that an application can
set it to be updated automatically by Koi, for example,
a user’s location as they move.Triggersare similar to
items except that these represent queries, specifically a
request for a callback when a match is found.

The mobile component of Koi interfaces with the
cloud component by communicating with it to register
items and triggers, and to set and update their attributes.
The Koi cloud service comprises two sub-components —
thematcherand thecombiner1 — which are assumed to
be non-colluding. In broad terms, thematcherknows
about identities of users (and other items) and also their
attributes (including location), but it doesnot know the
association between the users and their location or other
attributes. On the other hand, thecombinerknows the
association between (anonymized) users and (encrypted)
locations (and other attributes), but it does not know
the actual identities or the attribute values. A privacy-
preserving protocol enables the matcher and the com-
biner to perform matching without either of them learn-
ing about the association between the users and their
locations, or more generally between the identities of
items and their attributes. At the same time, knowledge
of the (plain-text) location and other attributes enables
the matcher to perform rich, semantically-meaningful
matching based, for example, on geocoding, location
proximity or spelling correction.

Multiple applications can use a common Koi service.
Attributes names are name-spaced to the application reg-
istering the item to avoid name collisions. Applications
may inter-operate by registering triggers for another ap-
plication’s attributes. Multiple Koi services (we envision
a handful) may operate independently.

1As discussed in Section5, our design also accommodates multiple
combiners.



3 Goals, Non-goals, and Assumptions

Having sketched an overview of Koi, we now discuss the
specific goals of the system, some non-goals, and the as-
sumptions made.

The goal of Koi is to provide location functionality
to applications that need it while ensuring that no third
party (i.e., entity other than the user and the application)
is in a position to learn the association between a user’s
identity and their location (or other attributes).

It is not a goal of Koi to prevent a malicious applica-
tion from leaking a user’s location information2. A mali-
cious application is one where the application-developer
intentionally and deliberately violates privacy. Our posi-
tion is that the fact that a user has chosen to run an appli-
cation implies an implicit trust in the application’s non-
maliciousness, even if the application might be buggy
or may include arbitrary third-party code not audited by
the application developer. Applications where the devel-
oper does not intend to violate privacy, but has a bug,
or includes a third-party library (such as an ad control)
that leaks user information (with our without the app-
developer’s knowledge) are not considered malicious.
Koi protects against this latter class.

We assume that the location or other attribute itself
is not sensitive, rather it is thelinkagebetween the user
identity and the attribute that is sensitive and needs to be
protected. We leave it to the application developer to de-
cide which non-sensitive attributes to register with Koi,
depending on what matching functionality is desired.

The matcher and the combiner are assumed to be
non-colluding with each other3. Furthermore, we as-
sume an honest-but-curious attacker model for each of
the matcher and the combiner. This means while the in-
ternal functioning of each entity is beyond scrutiny (e.g.,
they could try to glean information from the messages
that come their way), the external interface of each en-
tity must be conformant. We believe that this assumption
reflects the real-world situation, where a service such
as Google or Facebook would be wary of the PR back-
lash that might result from any externally-visible non-
compliant behavior (e.g., active attacks) attributable to
them. For example, if the matcher were to create and
register fake users in an attempt to get matched with and
thereby learn the location or other attributes of a real user,
it would run the risk of being exposed when the real user
realizes that they have been matched with a fake user.

4 Design

We present first the Koi platform API exposed to apps on
the phone, followed by the Koi cloud service. We present

2We present coping strategies for malicious apps in Section10.
3We discuss practical disincentives to collusion in Section10.

the detailed protocol description in Section5.

4.1 Platform API

The platform service model is similar to a database trig-
ger. The app registersitems with the Koi phone-agent.
Items may correspond to users or content (e.g., photos).
The app associatesattributes with an item. Attributes
may be locations, keywords, or arbitrary data. The app
also registerstriggers. Triggers specify one or more at-
tributes that must match. When an item matching the
trigger is registered (by another user or app, or by the
same app), the app registering the trigger is notified of
the item through a callback. Figure1b lists the Koi API.

The app specifies location attributes symbolically
(e.g., loc:self, or within 1 block of loc:self). The Koi
phone-agent internally replacesloc:self with the actual
lat-long. The agent optionally automatically updates the
lat-long if the user’s location changes. This amortizes the
cost of acquiring user location across multiple apps, and
avoids having to wake each app up whenever the user
moves. By never exposing lat-long data to the app, Koi
minimizes the app accidentally leaking it to third-parties.

The app may associate arbitrary content with an item.
A social networking app may, for instance, register the
user’s push-notification service handle so another user
can contact this user. A citizen-journalism app may, for
instance, register a photo or URL etc. The content may
additionally be encrypted, for instance in the social net-
working app, only friends with the appropriate key may
recover the push-notification handle.

4.2 Privacy-Preserving Matching Service

The operation of the Koi cloud service is best illustrated
through an example. Consider the scenario in Table1
where users Alice and Chuck register an item indicating
they are tour-guides for Bangalore and Boston respec-
tively. Bob registers a trigger looking for a tour-guide
at his present location. The goal is to match Bob, who
happens to be in Bangalore, with Alice. Note that Bob’s
phone-agent uses his lat-long without first geocoding it
to Bangalore. For simplicity, we assume each of them
register some unique user ID (as the item content, or the
trigger callback) through which they can be reached. Our
location-privacy goal is to prevent the cloud service from
associating this user ID with the user’s location.

At a high-level the Koi cloud service operates as fol-
lows. Each item or trigger is treated as a collection of
rows — one for each attribute; Table2apresents thislog-
ical view, i.e., it is never actually constructed or stored,
and is shown here only to aid the description. Note a sim-
ple database approach that stores the user and attribute,



ITEM (AliceID) TRIGGER(BobID) ITEM (ChuckID)
· TourGuide · TourGuide? · TourGuide
· loc:Bangalore · loc:12.58N,77.38E? · loc:Boston

Table 1: Original Data
Content/Callback Attribute RegId AttrId
AliceID TourGuide P A
AliceID loc:Bangalore P B
BobID TourGuide? Q C
BobID loc:12.58N,77.38E? Q D
ChuckID TourGuide R E
ChuckID loc:Boston R F

(a) Logical View

Content/Callback RegId
AliceID P
BobID Q
ChuckID R
Attribute AttrId
TourGuide A, E
TourGuide? C
loc:Bangalore B
loc:12.58N,77.38E? D
loc:Boston F

(b) Matcher Partition

RegId AttrId
P A
P B
Q C
Q D
R E
R F

(c) Combiner Partition

Table 2: Actual partitions stored by the Matcher and Combiner

while sufficient for matching, does not satisfy the pri-
vacy constraint. To achieve its privacy goals, Koi first
associates a (random) RegId with each registered item or
trigger, and a (random) AttrId with each attribute in the
registration. For example, in Table2atheTourGuide at-
tribute in Alice’s and Chuck’s registrations are assigned
different AttrIdsA andE respectively, and both rows cor-
responding to Alice’s item are assigned RegIdP. How
the RegId and AttrId are picked (and by whom) is de-
scribed later in the Koi protocol section.

As mentioned, Koi partitions the logical table above
into two halves that are placed on two different (non-
colluding) entities, neither of which is able to link a reg-
istration with attribute(s) associated with it. Thematcher
stores Table2b, and acombinerstores Table2c. In
the example, the matcher cannot place Chuck in Boston
since he does not know the association between RegId
R and AttrIdF. At the same time, the combiner, which
knows the link betweenR andF, doesn’t know which
user or what attribute they correspond to.

Matching is initiated by Bob when he registers his trig-
ger (Q). Given a RegIdQ, the combiner first queries the
matcher for an associated AttrId (say,C); the matcher
responds with AttrIdsA, E, which the combiner maps
to RegId P, R respectively. The matcher can answer
this query since in Table2b C maps to the queryTour-
Guide? and A, E map to the answerTourGuide.
The combiner then queries the matcher for another At-

trId (D) associated with the original RegId; the matcher
responds with AttrIdB. This is because the matcher,
which runs in the cloud, can geocode the plain-text
attribute (loc:12.58N,77.38E?) associated withD to
loc:Bangalore?. Note the matcher can support arbi-
trary matching algorithms here without affecting privacy;
this rich matching is a feature unique to Koi. The com-
biner maps the matcher’s responseB to RegIdP. At this
point the combiner notes that RegIdP matches both trig-
ger attributes inQ, while R matches only one (without
knowing what any of those attributes are). The combiner
then informs the matcher that RegIdP andQ match, and
the matcher invokes the callback forQ (BobID) with the
content registered forP (AliceID). Note that the com-
biner’s queries forC andD (from Bob’s triggerQ) are
mixed with other ongoing queries for other users’ trig-
ger registrations (or mixed with cover traffic generated
by the combiner) so the Matcher doesn’t learn which At-
trIds contributed to a given match, or even which AttrIds
correspond to a single registration.

5 Koi Protocol

In this section we describe the three Koi protocols: reg-
istration, matching, and combining. We describe first the
honest-but-curious matcher and single-combiner case.
We then relax the restrictions on the matcher, and extend
to multiple combiners.

5.1 Registration

The goal of the registration protocol is to create nec-
essary state in the matcher and combiner for matching
items to triggers (Table2 illustrates this state, and Ta-
ble3c lists the protocol).

R1. The client encrypts each attribute (attrj) asso-
ciated with the item or trigger first with the matcher’s
public-key (M ), and then with the combiner’s public-
key (C). Probabilistic encryption (e.g., by adding ran-
domized padding) is used to defend against dictionary
attacks. The double-encrypted attributes are sent to the
matcher along with arbitraryuser data, which is the item
content or trigger callback handle. As mentioned, item
content may be encrypted so only certain users can de-
crypt it.

R2. The matcher picks a random registration IDrid
for the registration, and forwards the double-encrypted
attributes along with therid to the combiner. Note mul-
tiple items/triggers from the same user are assigned dif-
ferent (random)rids.

The matcher stores in a tableR2U a mapping from the
rid to the arbitraryuser data and the ID of the registering
userU .



R3. Upon receiving the double-encrypted attributes,
the combiner decrypts them to revealj attributes for that
registration encrypted by the matcher’s public-key. The
combiner picks a random attribute IDaidj for each of
thej encrypted attributes. It sendsaidj and thejth en-
crypted attribute to the matcher (one at a time). These
messages are mixed withaid/encrypted-attribute pairs
from other ongoing registrations so the matcher can’t
link them back to which registration (rid) they are asso-
ciated with. If enough natural cover traffic doesn’t exist,
the combiner can generate cover traffic.

The combiner stores the set ofaidj associated with the
registration (rid) in the tableR2A, and a reverse mapping
from theaidj to therid in tableA2R.

The matcher, upon receiving eachaid/encrypted-
attribute pair, decrypts the encrypted attribute to reveal
the pain-text attributeattr. At this point the matcher
may arbitrarily process the attribute to construct a set
of equivalentattr′k For instance, the (misspelled)attr

Bretney may be corrected to includeBritney in the
equivalence set, or the locationloc:12.58N,77.38E may
be geocoded to includeloc:Bangalore in the equiva-
lence set. The matcher then updates tableT2A for each
attr′, which given a plain-text attribute returns the set of
aids associated, to include theaid sent by the combiner.
It also stores a reverse-mapping fromaid to the plain-text
set of equivalent attributesattr′ in tableA2T.

This concludes the registration protocol.

5.2 Matching Attributes

Matching is event-driven: when a trigger (or item) is reg-
istered, the combiner looks for items (or triggers) match-
ing it. Finding a match is relatively straight-forward (Ta-
ble 3d). Given a registration (rid), the combiner looks
up in tableR2A the associated set ofaidj. It then ex-
ecutes the following two-message protocol individually
for eachaidj .

M1. The combiner sends theaidj to the matcher.
As before, these messages are mixed withaids from
other ongoing matches requests so the matcher can’t link
which sets ofaids are associated with a single registra-
tion. And if enough natural cover traffic does not exist,
the combiner can generate this cover traffic.

The matcher, upon receiving the message, looks up in
tableA2T the plain-text equivalent attribute set{attr′k}
associated with thataid. For eachattr′ in the equiva-
lence set, the matcher looks up tableT2A for the set of
aid′s registered. The matcher unions together these sets
of aid′s to construct the response.

M2. The matcher sends the response back to the com-
biner.

For eachaid′, the combiner queries tableA2R to re-
trieve the registrationrid′ associated with thataid′. The

[m]X Probabilistic encryption ofm using public-key ofX
U, U ′, M, C —

User, User 2, Matcher, Combiner
user Arbitrary user data for item content; or callback key for

trigger
attr Attribute (plain-text)

rid, aid Registration ID, Attribute ID
R2U, R2A, A2R, T2A, A2T[x]↔ y —

Tablekey : x, val : y; store (←), lookup (→)

(a) Notation

User Matcher Combiner
R1: user, [{[attr]}]

R2: rid, [{[attr]}]

R3: aid, [attr]

M1: aid

M2: {aid'}

C1: rid,rid'

C2:user,user'

mix w/

others

mix w/

others

user=rid rid={aid}

aid=attr
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(b) Protocol. Encrypted parts hatched; Matcher key:\, Combiner key: /

# From→ To Processing
Message

R1. U →M

user, [{[attrj ]M |∀j}]C
R2. M → C Matcher:

rid, [{[attrj ]M |∀j}]C R2U[rid]← 〈U, user〉
Repeat∀j mixed with messages from other ongoing registrations.
R3. C →M Combiner C:

aidj , [attrj ]M R2A[rid]← R2A[rid] ∪ {aidj}
A2R[aidj ]← rid

Matcher
{attr′

k
} ← process(attrj)

∀kT2A[attr′
k
]← T2A[attr′

k
] ∪ {aidj}

A2T[aidj ]← {attr′
k
}

(c) Registration

# From→ To Message Processing
Combiner C

R2A[rid]→ {aidj |∀j}
Repeat∀j mixed with messages from other ongoing match requests.
M1. C →M aidj Matcher

A2T[aidj ]→ {attr′
k
}

S

∀k
T2A[attr′

k
]→ {aid′

l
|∀l}

M2. M → C {aid′
l
|∀l} Combiner C, ∀l

A2R[aid′
l
]→ rid′

l
Mrid[j]←Mrid[j] ∪ rid′

l

(d) Matching

# From→ To Message Processing
For eachrid′|∀jrid′ ∈Mrid[j]
C1. C →M rid, rid′ Matcher

R2U[rid]→ 〈U, user〉
R2U[rid′]→ 〈U ′, user′〉

C2. M → U user′, user

(e) Combining

Table 3: Koi Protocol Description

combiner marksrid′ as a match for thejth attribute for



therid for which the matching protocol was initiated (in
match-setMrid).

Note, by design, there are no cryptographic operations
in the match protocol to support high matching through-
put.

5.3 Combining Matches

The simplest criteria the combiner can use to determine
if rid′ matchesrid is if rid′ is present in the match-set
Mrid[j] for all j. The combiner can support richer crite-
ria (e.g., boolean match expressions), which we omit for
brevity.

C1. Once a match is found, triggering the callback is
straightforward. The combiner notifies the matcher that
registrationsrid, rid′ match. The matcher looks up in
tableR2U the associated users and content/callback data.
We discuss below a slight modification of this that hides
which pair ofrids matched from the matcher.

C2. The matcher sends to the user registering the trig-
ger, say userU , theuser data for the callback handle that
fired, and theuser′ data for matched item content.

UserU ’s phone-agent, upon receiving notification C2,
invokes the app-registered callback with the matched
item content. The app is free, at this point, to present
the content to the user (e.g., if the content is a photo), or
initiate direct communication with the other user (e.g., if
the content is a push-notification ID for the other user).
The action the app takes in the callback function are ex-
ternal to Koi.

5.4 Extensions

We now discuss two extensions that further reduce the in-
formation learned by the matcher without affecting func-
tionality.

Keeping the matched pair secret. In message
C1 above, although the matcher doesn’t learn which
location-attribute contributed to the match, the matcher
still learns which pair of users matched (which might im-
plicitly leak some information). To exchangeuser data
without either the combiner or matcher learning what
was exchanged and with whom, and doing so without
establishing shared keys between the matched users, we
use a commutative cryptography scheme [41]. In com-
mutative crypto, a message encrypted first by keyk1 and
then by keyk2 can be decrypted using the (inner) key
k1 to reveal the message singly encrypted by only the
(outer) keyk2.

To keep the matching secret from the matcher, in mes-
sage R1, the user encrypts theuser data with a per-
registration randomly chosen keykrid using a commu-
tative encryption scheme; it sendskrid to the combiner
by putting it inside the R1 message component encrypted

with the combiner’s public-key (which the matcher for-
wards to the combiner in R2). The matcher additionally
encrypts the encrypteduser data with a secret key (kM ),
and includes the double-encrypteduser data in message
R2. The combiner retrieveskrid from the message and
uses it to decrypt the double-encrypteduser data. By the
commutative encryption property, the combiner now has
theuser data for eachrid encrypted with the matcher’s
secret key.

When notifying the user of the match, instead of send-
ing message C1, the combiner retrieves the (encrypted)
user′ data associated withrid′, encrypts it using thekrid

registered by userU , and sends it to the matcher directing
it to forward to the user forrid. The matcher decrypts the
double-encrypted data using his secret keykm, revealing
user′ single encrypted withkrid, which it sends to user
U who can decrypt it to reveal theuser′ data registered
by the matched user.

During the protocol neither the matcher nor combiner
learn the content ofuser data, and during the notifica-
tion phase encryption prevents the matcher from learning
which other user’suser′ data was sent to userU .

Multiple combiners. It may be tempting for the
matcher to collude with the combiner if there is only one
combiner. Having many combiners allows the user to
pick which combiner he trusts to not collude with the
matcher. Supporting multiple combiners requires a small
change to the protocol. The user, in message R1, indi-
cated to the matcher his choice of combinerCx and uses
Cx’s public-key to encrypt the second component of the
message. The matcher then forwards the message toCx

in R2. Randomaids chosen by the combiner are name-
spaced to the combiner, e.g., by prefixing the combiner’s
domain name to theaid.

During matching, in message M2 a combiner receives
aids registered both by itself and other combiners. For
aids the combiner itself registered (which it can tell by
the namespace prefix), it follows the protocol as before.
For aids registered by other combiners, the combiner
constructs all possible sets of the form{aid′j|aid′j ∈
Mrid[j]}where theaid′ all belong to combinerCy; each
set corresponds to apossiblerid′ registered withCy be-
cause the combiner doesn’t know whichaid′s belong to
a single registration, vs. which are from different reg-
istrations. It then engages in a private set intersection
protocol [15] withCy to determine if any of theaid′ sets
matches an actual registration; if so, the two combiners
exchange the encrypteduser data (above) and notify the
users of the match. If none of theaid′ sets match, by the
properties of the private set intersection protocol, neither
combiner learns anything in the process.



6 Privacy Analysis

In this section we first define informally what we mean
by location-privacy and our trust assumptions. We then
model Koi in applied pi-calculus [35], a language for
formally modeling distributed systems and their inter-
actions, which then allows us to use the ProVerif [33]
automated cryptographic protocol verifier tool to pro-
vide machine-generated proofs of Koi’s privacy proper-
ties. We then discuss privacy concernsexternalto the
Koi service, arising from poor application design, and
offer coping strategies for applications.

6.1 Defining Privacy

Our privacy goals are based on Pfitzmann and
Köhntopp’s definition of anonymity [31] which is un-
linkability of an item of interest(IOI) and some logi-
cal user identifier. Pfitzmann and Köhntopp consider
anonymity in terms of ananonymity set, which is the set
of users that share the given item of interest — the larger
this set, the “better” the anonymity. In the related-work
section (Section11) we compare this definition of pri-
vacy tok-anonymity,l-diversity, and differential privacy.

In the Koi context, anonymity translates to unlinka-
bility between an attribute (attr) and the registration ID
(rid) (and by extension, the registering userU ) the at-
tribute is associated with. We assume that the individ-
ual attributes themselves arenot sensitive; rather, it is
when these attributes arelinked to the user, or to the
user’s other attributes narrowing down and possibly iden-
tifying the user, that it becomes sensitive. Thus for
location-privacy, as long as location data is present only
in item/trigger attributes, it cannot be linked back to the
user or his other attributes, thereby preventing the user
from being tracked by third-parties.

6.2 Proving Privacy Properties

Before we model Koi, we recall basic ideas and concepts
of applied pi-calculus needed for our analysis. A more
comprehensive description (in the ProVerif context) is
available in [9].

6.2.1 Applied Pi-Calculus Primer

Messages. Messages are obtained by applyingconstruc-
torsonnames, variables, and other messages. Construc-
tors are function symbols e.g.,REncrypt(. . . ). Names
are symbols for atomic data e.g.,Alice. Variables e.g.,x,
may be bound to names or messages. Messages are taken
apart bydestructors. Destructors are function symbols
e.g.,RDecrypt(. . . ) → . . . .

Equations of the formx = y can be used to establish
the equivalence of two messages.

As illustration, we model probabilistic asymmetric en-
cryption as the following pi-calculus relation:

RDecrypt (REncrypt(m,PubKey(k), r), k) → m (1)

In Equation1, the constructor for probabilistic en-
cryption REncrypt(m, pk, r), the r component is fresh
for every encryption thus preventing dictionary attacks.
The destructorRDecrypt(. . . , k) → m succeeds only if
pk (from the constructor) andk are related in the form
pk = PubKey(k). If so, the destructor discardsr and
yields the messagem.

Channels. Channels are named sources/sinks for mes-
sages. A messagem sent to channelc usingout(c, m)
can be received usingin(c, x), wherex will be bound to
m. Channels model asynchronous out-of-order message
exchange.

Processes. Processes are built from the grammar be-
low. We omit discussion of the syntax (see [33] for de-
tails).

P,Q,R := processes
0 null process
P | Q parallel composition
!P replication
new a; P name restriction
let N = D in Pelse Q term evaluation
if N = M then Pelse Q conditional
in(c, N); P message input
out(c, N); P message output

As illustration, we model a simplified version of the
matcher fragment that processes message R1 and gener-
ates message R2 (from Table3) as follows:

MatcherR1R2 :=
in(net, m);
let (user, eattrs) = m in
let rid = RID(m) in
out(net, (rid, eattrs))

Matcher := . . .| !MatcherR1R2| . . .

The matcher is modeled above as the parallel combi-
nation of smaller processes that each process one type
of message. The process MatcherR1R2 receives a mes-
sagem from the channelnet; deconstructsm to extract
theuser data, and the encrypted attributeeattrs; picks a
fresh registration ID for the messagem using theRID
constructor; and sends out the message(rid, eattrs)
back on thenet channel. In our full Koi model, mes-
sages are tagged with a message type to avoid ambiguity
in processing.

6.2.2 ProVerif Primer

ProVerif [33] can verify, among other security properties,
the secrecy of information in protocols expressed in the



applied pi-calculus in a fully automated manner. Applied
pi-calculus models distributed protocols as a collection
of messages, parallel processes, and channels.

ProVerif is sound. ProVerif performs a brute-force ex-
ploration through the proof space. When it says that a
security property is true, then it actually is so. The se-
curity proofs obtained through ProVerif are valid for an
unbounded number of sessions of the protocol. However,
ProVerif is not complete (i.e., false attacks can be found).
When ProVerif finds an attack it provides a derivation
tree that can be used to manually verify whether the at-
tack found is false or not.

ProVerif isnot always the preferred choice for verify-
ing new cryptographic constructions because it assumes
perfect cryptography, but is useful in verifying straight-
forward uses of existing cryptographic primitives, as is
the case with Koi. This is because if an attack were to be
found against a specific instantiation of a crypto primi-
tive (e.g., RSA), its use in Koi is trivially replaced with
another instantiation (e.g., ElGamal).

ProVerif’s default attacker model models a Dolev-Yao
attacker [11] that can overhear, intercept, and synthesize
any message sent on any channel it has access to. This
is too weak since the attacker doesn’t have access to in-
ternal state of the participants. ProVerif allows for more
powerful attacker models by allowing the user to specify
what internal state the attacker can access or modify.

Proverif cannot model traffic analysis attacks. As
mentioned, we assume there is enough natural (or gen-
erated) cover traffic for creating a mix [5] that mixes, de-
lays and reorders messages to defeat traffic analysis and
timing attacks.

6.2.3 Modeling Koi

We have modelled Koi in applied pi-calculus. Our model
includes the extension that keeps matched pairs secret
from the matcher. The model was constructed by one
of the authors, and then manually and independently
checked by the other two authors. One of the authors
checking the model had experience with implementing
Koi, and used this knowledge to verify correctness. The
other author checking the model used only Section5 of
this paper to cross-verify the applied pi-calculus model
and the protocol description here. As a final sanity-
check, we introduced a number of bugs in the proto-
col (e.g., using deterministic encryption, not encrypting
something that should be, etc.) and ensured that ProVerif
found attacks that exploited the bugs introduced.

We highlight below some non-trivial aspects of our
model, which we view as methodological contributions
of our work.

Unlinkability. ProVerif does not natively model un-
linkability. That is, if processu1 were to send out

messagem1, and processu2 were to send outm2,
ProVerif tracks only that the attacker knows all four
names(u1, u2, m1, m2) but does not track thelink be-
tweenu1 andm1 or u2 andm2.

We model unlinkability by creating a new constructor
LINK(x, y) that explicitly models the linkability ofx and
y, and a new destructorINFER that allows the attacker
to infer new links as follows.

LINK(a, b) = LINK(b, a) (2)

INFER (LINK(x, a), LINK(a, y)) = LINK(x, y) (3)

Equation2 states that links are symmetric, i.e, ifa is
linked to b, thenb is linked toa. Equation3 states that
links are transitive, i.e, ifx is linked toa, anda is linked
to y, thenx is linked toy.

For each message sent on a channel we emitLINK

messages that the attacker may use to draw inferences
and new conclusions from. Thus unlinkability ofx, y

translates to ProVerif’s notion of secrecy ofLINK(x, y),
which ProVerif is well-equipped to prove in an auto-
mated manner.

Adversary. The standard ProVerif attacker can observe
only messages sent on public channels, and cannot ob-
serve internal state (e.g. if a process decrypts a message
and then re-encrypts it before sending it out on a channel,
the attacker would not have access to the decrypted mes-
sage). To model scenarios where the process itself may
be compromised by an attacker (since in our model the
matcher and combiner could themselves be adversaries),
we use the notion of a “spy” channel on which all inter-
nal internal process state is echoed (e.g., the decrypted
message above) as well as give the spy write access to
all channels the process has access to, in effect allowing
the ProVerif attacker to completely supplant the compro-
mised process. We model a spy channel for each Koi en-
tity. By giving the ProVerif attacker access to the appro-
priate spy channel we can model an adversarial matcher,
or combiner. By giving the attacker access to multiple
spy channels we can model collusion between adversar-
ial parties. By setting the ProVerif attacker to passive we
model honest-but-curious adversaries (i.e., can receive
but not send messages).

Datastore. ProVerif’s constructors/destructors do not
modify the environment and therefore cannot be used to
model stateful operations such as a datastore. The only
place to “store state” is in an (asynchronous) channel,
where a message is “stored” between when it is sent and
when it is received. We model storing into a datastore
M[x] ← y as out(M, (x, y)). We model perform-
ing a lookup onx as the sequencein(M, (= x, y));
out(M, (x, y)). The (= x, y) syntax is ProVerif syn-
tactic sugar that uses pattern-matching to deconstruct the
input message into a tuple, check that the first element



equalsx, and binds the variabley to the second ele-
ment. Sincein removes the message from the channel
(the equivalent of deleting the mapping from the datas-
tore each time a lookup is performed), after each lookup
we add back the mapping into the datastore (by using
out). Giving the attacker access to the appropriate data-
store channel is an easy way to model an adversary that
has read/write access to this internal state.

6.2.4 ProVerif Results

We model a configuration with one (honest) userU1 —
the intended victim of privacy violations — and an un-
bounded number of other users, a matcher, and a com-
biner. The honest user registers two attributesA1 and
A2. We ensure at least one other user (U2; honest or not)
registersA1 so he is matched withU1.

We then ask ProVerif whether the attacker can con-
clude the following under various assumptions regarding
which parties are being adversarial.

P1. LINK(U1, A1), i.e.,U1 registeredA1

P2. LINK(A1, A2), i.e., there exists some user that reg-
istered bothA1 andA2

P3. LINK(U1, U2), i.e.,U1 was matched withU2.

Using ProVerif we were able to generate proofs for the
following privacy properties:

Result 1: A honest-but-curious combiner cannot vio-
late P1, P2, or P3. This is easy to see since the combiner
is never sent a message that contains user ID,user data,
or attributes in an unencrypted form.

Result 2: A honest-but-curious matcher cannot vi-
olate P1, P2, or P3. As with all properties proved by
Proverif, this holds for an unbounded number of mes-
sages in arbitrary order, subject to the mixing and crypto
assumption mentioned earlier.

Result 3: A honest-but-curious combiner in collu-
sion with a honest-but-curious matcher can violate P1,
P2 and P3. As expected, if both the matcher and the
combiner collude, the Koi service, as a whole, is anal-
ogous to existing cloud services that are organized as a
monolithic database. Such a database can trivially vio-
late all privacy properties above since it would have full
knowledge. Thus as long as the combiner and matcher do
not collude, our privacy goals P1, P2 and P3 are assured.

7 Koi Use-Cases

We examined 10 most popular location-based applica-
tions on the Android platform. The functionality pro-
vided by these applications can broadly be classified into
6 classes as listed in Table4. We describe in pseudo-
code example applications we have built for two of these
classes, and discuss briefly the other classes of apps.

Application SN TC LS LR LA ND
BrightKite X X X X

Facebook Places X X X X

Foursquare X X X X

Google Latitude X X

Google Maps X

Google Search X

Google Ads X

Gowalla X X X X

Loopt X X X X X

Routes X X

Table 4: Location-based functionality provided by popular ap-
plications. SN: Social Networking, TC: Tagging Content, LS:
Local Search, LR: Local Recommendations, LA: Location-
based Advertising, ND: Navigation Directions.

7.1 Private Mobile Social Network

A mobile social network facilitates interaction between
nearby friends and friends-of-friends. With the existing
instantiations (e.g., Foursquare or Facebook Places), the
need to perform matching onfriendswho arenearbyvi-
olates privacy in two significant ways: first, the cloud
service learns the identities of a user’s friends; and sec-
ond, the service also learns each user’s location.

We have implemented a novel mobile social network-
ing application on Koi, which enables nearby friends and
friends-of-friends with common interests to get in touch,
in a privacy-preserving manner. The user’s profile is hid-
den from the OSN service, which also means that a user’s
profile can only be seen by others whom the user allows.

Here is how the application operates. The user cre-
ates his profile on his phone by running the application.
He adds to his profile information including his inter-
ests, photos, etc. He also picks a random key that oth-
ers must possess before the application will grant them
access to data in his profile. He adds friends by simply
exchanging profile keys with them. The application reg-
isters an item for the user (Algorithm1, line 2– 8) with
the user’s push-notification mailbox as the item content,
an encrypted attribute with the user’s name prefixed by
me:, an (auto-updating) attribute with the user’s location,
and an encrypted attribute for each of his friends’ names
prefixed byfriend:. The app then registers a trigger for
each friend (line9–13). One attribute identifies the friend
of interest (line12), which matches the name registered
by the friend’s app on line4, and another targeting 1 mile
from the user’s current (auto-updating) location (line13),
which matches the location registered by the friend’s app
on line 5. As the user and his friends move around,
their phone-agents update the location attributes. When a
friend moves within 1 mile of the user, the corresponding
trigger fires with the friend’s push-notification mailbox,
which the app can use to exchange messages.

For matching friend of friends, theme: on line 11



1: procedure MATCHFRIENDS(USER)
2: I← CREATEITEM(USER.PUSHMAILBOX , TTL)
3: U← ENCRYPT(me: + USER.NAME , USER.PROFILEKEY)
4: ADDAPPATTR(I, U)
5: ADDLOCATTR(I, loc:self, TRUE)
6: for all F in USER.FRIENDSdo
7: P← ENCRYPT(friend: + F.NAME , F.PROFILEKEY)
8: ADDAPPATTR(I, P)
9: for all F in USER.FRIENDSdo

10: T← CREATETRIGGER(F.ONNEAR, TTL)
11: V← ENCRYPT(me: + F.NAME , F.PROFILEKEY)
12: ADDAPPATTR(T, V)
13: ADDLOCATTR(T, loc:self+1 mile, TRUE)

Algorithm 1: Private Mobile Social Network Application

1: procedure ROUTE(DEST)
2: I← CREATEITEM(NULL )
3: ADDLOCATTR(I, route.direction:〈loc:self;DEST〉, TRUE)
4: N← RANDOMNONCE()
5: ADDAPPATTR(I, N)
6: for all ACT in ACTIONSdo
7: T← CREATETRIGGER(ACT.ANNOUNCE)
8: ADDAPPATTR(T, N)
9: ADDAPPATTR(T, ACT)

Algorithm 2: Turn-by-turn Directions Application

is changed to readfriend:, which then matches the at-
tribute for the common-friend registered by the friend-
of-friend on line8. Matches can be restricted based on
shared-interests by associating attributes with the user’s
item, and querying for them in the triggers. Groups (e.g.
photography-club) is supported in an identical manner
with the group’s name and group’s secret key used in-
stead of the friend-name and friend’s key.

Note that neither the cloud, nor non-friends can track
the user. As per Koi’s location-privacy guarantees, the
user’s location cannot be tracker by the cloud service. A
stranger cannot track the user’s location since matching
the user’s item requires the stranger to construct a trigger
with the encrypted username attribute (line11), which
only those that have the user’s profile key can construct.

7.2 Turn-by-turn Directions

We created a proof-of-existence turn-by-turn directions
application to demonstrate how Koi can add privacy to
navigation applications that make heavy use of location
information and cloud knowledge. Today any query for
driving directions reveals to the cloud third-party (typi-
cally Google, Bing, or MapQuest) the user’s current lo-
cation and intended destination. Koi avoids both.

A key challenge in building a turn-by-turn direction
application using Koi is that the Koi APIs donotprovide
a way to directly query for information such as the route
to the destination. To get around this problem, we lever-
age that fact that the matcher sees attributes in clear-text

and could employ application-specific logic while per-
forming matching. So the end-to-end route is decom-
posed to waypoints, which are then be conveyed to the
application one-by-one, via triggers registered with Koi.

In particular, the application registers an item with an
attribute that indicates the user’s current location and
the destination (Algorithm2, line 3). This item im-
plicitly corresponds to the next waypoint on the end-to-
end route. The application also anticipates and regis-
ters one trigger for each possible directive correspond-
ing to the next waypoint (e.g., “go straight”, “turn left”,
“turn right”, etc.; lines 2.6–2.9). Based on the cur-
rent location and destination contained in the attribute,
the application-specific matcher logic looks up the route
and replaces the item’s attribute with the actual directive
corresponding to the next (i.e., first) waypoint. (Such
a replacement is akin to the matcher applying spelling
correction or using synonym information as part of its
application-specific matching logic.) Say the directive at
the first waypoint is “turn left”; the trigger correspond-
ing to “turn left” fires and so the application learns that
the next directive to present to the user is “turn left”. As
the user travels along the route, the phone-agent auto-
updates the user’s location, which causes the matcher to
compute the direction to the next waypoint, which fires
the trigger corresponding to the next directive, and so on.
In this manner, the turn-by-turn directions are conveyed
to the user.

7.3 Local Search, Tagging, Advertising

The four remaining classes of apps identified in Table4,
i.e., location-based content tagging, local search and rec-
ommendations, and location-based advertising, essen-
tially all boil down to registering an item with the appro-
priate content and attaching location and other attributes
to it. The item can be found by others using the appro-
priate triggers.

8 Implementation

We have implemented the Koi platform and the two
proof-of-concept applications mentioned. The cloud-
component is written in 1040 lines of C# code. The
phone-based agent is available as a 230 line Javascript
library that can be used by HTML5 applications on all
modern smartphones, and as a C# library that can be
used by native applications on the WP7 platform. The C#
agent can leverage the platform’s native push-notification
service to receive trigger updates, while the Javascript
version resorts to polling. The cloud service exposes
an open REST-based API (over HTTP), allowing agents
to be written for other platform and programming lan-
guages.



(a) Mobile Social Network (b) Navigation App

Figure 2: Two applications implemented on the Koi platform

In addition to the core Koi API, our agent exposes a
GUI API since location-based apps naturally use map
widgets that require lat-long information. Our GUI API
is a bare-boned API to allow the app to put push-pins
at the user’s current location (specified symbolically as
loc:self), and overlay simple geometric shapes. Fig-
ures2a and2b show screenshots of early prototypes of
our proof-of-concept applications. These applications
consist of 50–60 lines of Javascript code, and required
around 6 person-hours each to create.

9 Experimental Evaluation

We view a significant portion of the contribution of this
paper as being architectural, in terms of proposing a
higher-level abstraction (location-based triggers) as an
alternative to the lat-long location API that is commonly
used. As such, the evaluation of this architectural con-
tribution rests on showing the ease of building applica-
tions on the Koi platform, which we have done to a small
extent in Section8. In this section we focus on the per-
formance of the Koi cloud service, which we evaluate
experimentally using both real-world traces, and micro-
benchmarks. In order to exclude evaluation artifacts aris-
ing from load on the Azure platform, all experiments are
run on one core of a 3 GHz dual-core machine with 4 GB
of memory; the matcher and combiner share the one core
while the second core is used by the benchmarking pro-
cess. We use the loopback device for all communications
to test the raw performance of our implementation inde-
pendent of network bandwidth and latency.

9.1 Macro-Benchmark: Mobile Ads

We benchmark a location-based advertising application
where business-owners register advertisements with lo-
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Figure 3: User matching performance

cation attributes, and users are matched to ads for busi-
nesses near them (i.e., within a hundred meters). We
use a 2 GB real-world mobility trace of 264K users from
around the world collected over a period of 1 year. The
trace contains 22 million timestamped latitude-longitude
updates across all users. Since we lack advertiser infor-
mation, we simulate 10K businesses near popular loca-
tions visited by many users.

Processing 12 months worth of trace data through our
implementation takes around 2 hours and 50 minutes.
The system generated 2.2 billion notifications, all within
30ms of the location update that triggered the notifica-
tion. The peak memory consumption is around 2.5 GB
over the entire run. Even considering the small size
of our trace we find our implementation running on a
single-core can easily handle a mobile advertising appli-
cation while leaving plenty of headroom for more de-
manding applications.

That said, macro-benchmarks, even for a handful of
applications, are by nature inadequate for evaluating per-
formance limits. We turn to micro-benchmarks to stress
our implementation to its limits.

9.2 Micro-Benchmarks

Matching. We focus first on the matching throughput
of our Koi implementation since matching is the primary
mode of use. Our implementation combines messages
R3 and M1 (Table3) into a single message to amor-
tize communication costs. Figure3 plots the number
of matching queries processed successfully per second
(qps) as a function of how many attributes matched. That
is, if the trigger matched 100 items each on 10 attributes,
or if the trigger matched 1000 items on 1 attribute each,
the x-axis value for both datapoints is 1000. The y-
axis value is the mean query throughput for processing
100K requests (i.e., each datapoint represents an exper-
iment lasting between 10s to a few minutes); standard-
deviation error bars are negligible.

As is evident from Figure3, end-to-end performance
saturates to its peak as long as the average number of
matching attributes (per request) is below 100. The bot-
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Figure 4: Attribute registration (and indexing) performance

tleneck here is the connection throughput of the HTTP
library (which saturates are 12K qps.) Between 100 and
10K matching attributes, performance depends on the
number of items matched (with fewer items resulting in
higher performance); this is because our in-memory in-
dex layout is optimized for triggers matching a few items
on many attributes. Beyond 50K attributes per match
performance plummets as we run into memory issues. To
put this in perspective, for the macro-benchmark above,
this quantity is in the low tens, representing several or-
ders of magnitude of headroom.

Registration. We focus next on registration through-
put which includes both cryptographic operations, and
building the various tables and indexes (e.g.,R2U,
R2A, A2R etc.) Figure4 plots the number of registra-
tion requests processed per second (qps) as a function
of the average number of matching attributes per trig-
ger registered (which governs our in-memory index build
process). As above, datapoints represent mean qps for
processing 100K requests.

The figure is qualitatively similar to Figure3 in that
performance peaks for workloads similar to the advertis-
ing benchmark. The peak performance in Figure4 is half
that of Figure3 since twice the number of HTTP requests
are involved and the bottleneck is the HTTP connection
throughput. As before, performance degrades as our in-
dex runs into memory issues, though more gradually due
to different access patterns.

Combining. Our implementation can process trigger
notifications at the rate of 12K qps (same peak as Fig-
ure3). This throughput is independent of the number of
items and attributes.

Overall we find our prototype implementation per-
forms well enough even for real-time apps, and moves
the performance bottleneck outside of Koi and into the
communication layer.

10 Discussion

We discuss briefly privacy-related issues beyond Koi.
The first issue pertains to malicious applications regis-

tering a large number of finely-spaced triggers or triggers

at sensitive locations, and reverse-engineering a victim
user’s location based on triggers matched. A weak de-
fense against this attack would be for Koi to rate-limit the
number of trigger registrations from an application (ei-
ther per-device, or across all devices). This would force
the attacker to Sybil himself to remain below threshold.
Distributing apps through mobile marketplaces today re-
quires developers to purchase a developer key. If the
Sybils were to re-use this key, or re-use the credit-card
used to purchase this key, they would be easily linked.
Rate-limiting combined with an economic burden could
serve to proactively mitigate against malicious applica-
tions.

The second issue pertains to collusion between the
matcher and combiner. We mitigate the possibility from
both the matcher and combiner side. On the combiner
side, we allow for privacy-advocacy firms (e.g., EFF and
ACLU), anti-virus companies (e.g., McAffee), certificate
agencies (e.g., Verisign), non-profits (e.g., Mozilla), and
other such outfits to run the combiner. Since the ex-
istence of these outfits is entirely dependent on public
trust, it creates a strong disincentives to collusion — if
they collude and anyone finds out (e.g., during an au-
dit, or through whistle-blowers), the company would lose
all credibility and be forced to shut down (as happed
with the DigiNotar certificate agency recently). On the
matcher side, by allowing the user to pick the combiner
(of which there may be hundreds) we make it infeasi-
ble for the matcher to collude with any significant frac-
tion of these combiners before it becomes public. The
matcher would then be guilty of intentionally and de-
liberately circumventing privacy technology, which they
could be legally liable for, creating a strong disincentive.

The third concern pertains to incentives for apps to
adopt Koi. At a high level, it is up to the platform
to drive adoption. Incentives may include positive re-
inforcement (e.g., higher placement in the mobile mar-
ketplace for Koi-enabled apps), negative feedback (e.g.,
more frequent nagging popups for apps using legacy lo-
cation APIs instead of the Koi API), or strong enforce-
ment (e.g., blocking the legacy location API for free ap-
plications). Overall, the platform can use a combination
of these and other incentives to drive adoption.

11 Related Work

Existing Location APIs in Production Use.As men-
tioned, Apple’s iOS Core Location [1], Android’s Loca-
tion Manager, and the Windows Phone 7 Location Ser-
vice all expose only low-level lat-long information to
apps which, when carelessly passed by apps to third-
party code (e.g., Google’s AdMob or Apple’s iAds wid-
get), poses a privacy risk as reported in TaintDroid [14]
where the third-party service can track the user across



multiple applications.
Location APIs in Prior Research.There is a rich body

of research on location APIs. For programming ease,
Brown et al. [4] propose the notion of a stick-e note that
applications can register, which is triggered whenever the
user’s present context (e.g., location) matches that spec-
ified in the note. Other APIs have focused on fusing lo-
cation information from multiple sensors to provide ap-
plications a unified view [28]. The Location Stack [21]
proposes a 7-layer model that combines sensing and fu-
sion with the inference of user activity and intentions.

While the above work focuses on important issues
such as programming ease, sensor fusion, and activity
inference, we view these as complementary to our focus
on privacy in Koi.

Location Privacy. There is a rich body of work on
location privacy. A survey some of this work appears
in [17] and some challenges are discussed in [2,36,38].

Myles et al. [30] propose a rich policy API that in-
cludes support for symbolic locations as well as geo-
graphic locations, and for triggered callbacks. However,
their proposal depends on a trusted external entity to
enforce privacy constraints. In contrast, PlaceLab [24]
takes a decentralized approach, wherein end devices ac-
quire location information locally and allows users con-
trol over whether and how to share this information. As
an extreme form of decentralization, Anonysense [8] en-
sures that the mobile nodes in a participatory sensing
context donot share their location at all. Instead, the
nodes download all tasks registered with the system and
then determine locally which ones match their location
and should be executed. Besides imposing a bandwidth
cost, such an approach is not suitable for location-based
applications that depend on the location of other users,
e.g., mobile social networking as in Four Square.

There is a large body of work on techniques to cloak-
ing user location while still enabling location-based ser-
vices. Gruteser et al. [20] propose a centralized loca-
tion broker that performs temporal and spatial cloaking
of user location information, keeping in mind such fac-
tors as the density of users in a given area. In the context
of a traffic monitoring application, the authors in [22]
propose having virtual trip lines to trigger the reporting
of location updates by mobile nodes, say based on the
privacy sensitivity of locations. All of these techniques
assume a trusted intermediary.

The research that is perhaps closest to ours in spirit
is the recent work of Jaiswal and Nandi [26]. As in our
work, they steer away from having a trusted intermediary
by having multiple distinct entities, each holding a part
of the sensitive information, work in unison to provide
location-based services. However, location updates can
still be linked, which opens up the possibility of attacks.

In comparison to the above work, Koi is designed ex-

plicitly to ensure privacy even with respect to the cloud
service, which is not trusted. Also, unlike prior work,
we do not seek to anonymize users or hide their location
information. Rather, we consider thelinkagebetween a
user and their location as the privacy-sensitive informa-
tion and focus on protecting this from the cloud service.

Notions of Privacy. Several notions of privacy
have been proposed in the databases literature.k-
anonymity [40] ensures that each output row is identi-
cal to at leastk − 1 other rows. However,k-anonymity
is susceptible to attacks that exploit the lack of diversity
in the value of sensitive attributes amongst thek rows.
To address this,l-diversity [29] ensures that the output
containsl well-represented values for each sensitive at-
tribute. k-anonymity andl-diversity are complementary
to Koi in that the combiner could suppress matches when
the anonymity set size drops belowk (i.e., fewer thank
items match); the downside, however, is reduced func-
tionality since matches cannot be too specific (e.g., can-
not match nearby friend if only one friend is nearby).

Differential privacy [13] adds noise to ensure the out-
put (typically aggregate queries) is independent of the
presence or absence of a particular record. The differen-
tial privacy model is fundamentally a bad fit for Koi since
the output of a matching service cannot be independent
of whether the matched item is present or absent.

Privacy in Publish-Subscribe Systems.A publish-
subscribe (pub-sub) system comprises publishers who
post events, subscribers who register filters correspond-
ing to events of interest to them, and a broker who
matchesevents from publishers to the filters registered
by the subscribers. Traditionally, the broker is assumed
to be trusted, however, there has been recent work on
the issue of confidentiality. Rich matching, while sup-
porting confidentiality, is particularly hard for existing
systems. [27] encrypts sensitive fields, but matching
is restricted to the unencrypted fields. [37] employs a
commutative encryption scheme [32] for confidentiality,
however, matching is restricted to equality on a single
keyword. [34] encrypts events and filters and then uses
technique for search on encrypted data [12] to match
these, but matching is limited to equality matching, key-
word matching, and some limited numeric range match-
ing. PSGuard [39] encrypt using hierarchical key deriva-
tion algorithms [42]; such key spaces are constructed
for different types of matching, including topic or key-
word matching, numeric attribute based matching, and
prefix or suffix matching. Finally, [25] uses attribute-
based encryption (CP-ABE) [3] to encrypt the events and
key-policy attribute-based encryption (KP-ABE) [18] to
encrypt the filters, and combine KP-ABE with search-
able data encryption [12] to enable the broker to perform
matching that can be expressed as conjunctions and dis-
junctions of equalities, inequalities and negations. Koi



supports rich matching that goes far beyond the func-
tionality of prior schemes by enabling matching based
on application-specific semantics (e.g., matching “bar-
ber” and “hairdresser”) in addition to equality-matching,
numeric range-matching, regex-matching, and conjunc-
tions and disjunctions over them all.

Private Information Retrieval (PIR) and Secure Mul-
tiparty Computation (SMC).PIR allows a user to re-
trieve an item from a database server without reveal-
ing which item they are retrieving. Single-server PIR
schemes necessarily haveΩ(n) computational cost inn
— the size of the database, andO(log2n) communica-
tion cost [7, 16], which is prohibitively large. The best
known multi-server scheme still has a communication
cost ofO(n

1
log log n ) [43], which is still impractical in our

setting. SMC is known to be harder than PIR [10]. Koi’s
privacy model differ from PIR and SMC, thus allowing
for a much more efficient protocol that has constant com-
munication and computational overhead.

12 Summary

We have presented Koi, a platform for supporting
location-based applications in a privacy-preserving man-
ner. Overall we find there is much to be optimistic about
in raising the level of abstraction from a get lat-long API
to a matching-based API. We have presented a privacy-
preserving matching service, verified the privacy prop-
erties using the ProVerif theorem-prover, shown how a
wide range of applications can be built using the API
including implementing two concrete applications, pub-
licly deployed the service and released client libraries,
and have demonstrated the service to perform and scale
well through macro- and micro-benchmarks.
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