
This paper is included in the Proceedings of the 
28th Large Installation System Administration Conference (LISA14).

November 9–14, 2014 • Seattle, WA

ISBN 978-1-931971-17-1

Open access to the 
Proceedings of the 28th Large Installation 

 System Administration Conference (LISA14) 
is sponsored by USENIX

Analyzing Log Analysis: An Empirical Study  
of User Log Mining

S. Alspaugh, University of California, Berkeley and Splunk Inc.; Beidi Chen and Jessica Lin, 
University of California, Berkeley; Archana Ganapathi, Splunk Inc.; Marti A. Hearst  

and Randy Katz, University of California, Berkeley

https://www.usenix.org/conference/lisa14/conference-program/presentation/alspaugh



USENIX Association  28th Large Installation System Administration Conference (LISA14) 53

Analyzing Log Analysis: An Empirical Study of User Log Mining

S. Alspaugh∗

UC Berkeley
Beidi Chen

UC Berkeley
Jessica Lin

UC Berkeley

Archana Ganapathi
Splunk Inc.

Marti A. Hearst
UC Berkeley

Randy Katz
UC Berkeley

Abstract

We present an in-depth study of over 200K log analysis
queries from Splunk, a platform for data analytics. Using
these queries, we quantitatively describe log analysis be-
havior to inform the design of analysis tools. This study
includes state machine based descriptions of typical log
analysis pipelines, cluster analysis of the most common
transformation types, and survey data about Splunk user
roles, use cases, and skill sets. We find that log anal-
ysis primarily involves filtering, reformatting, and sum-
marizing data and that non-technical users increasingly
need data from logs to drive their decision making. We
conclude with a number of suggestions for future re-
search.
Tags: log analysis, query logs, user modeling, Splunk,
user surveys

1 Introduction

Log analysis is the process of transforming raw log data
into information for solving problems. The market for
log analysis software is huge and growing as more busi-
ness insights are obtained from logs. Stakeholders in
this industry need detailed, quantitative data about the
log analysis process to identify inefficiencies, stream-
line workflows, automate tasks, design high-level anal-
ysis languages, and spot outstanding challenges. For
these purposes, it is important to understand log anal-
ysis in terms of discrete tasks and data transformations
that can be measured, quantified, correlated, and auto-
mated, rather than qualitative descriptions and experi-
ence alone.
This paper helps meet this need using over 200K queries

∗This author was an employee of Splunk Inc. when this paper was
written.

recorded from a commercial data analytics system called
Splunk. One challenge is that logged system events are
not an ideal representation of human log analysis activ-
ity [3]. Logging code is typically not designed to capture
human behavior at the most efficacious level of granu-
larity. Even if it were, recorded events may not reflect
internal mental activities. To help address this gap, we
supplement the reported data with results of a survey of
Splunk sales engineers regarding how Splunk is used in
practice.
In our analysis, we examine questions such as: What
transformations do users apply to log data in order to
analyze it? What are common analysis workflows, as
described by sequences of such transformations? What
do such workflows tell us, qualitatively, about the nature
of log analysis? Who performs log analysis and to what
end? What improvements do we need to make to analysis
tools, as well as to the infrastructure that logs activities
from such tools, in order to improve our understanding
of the analysis process and make it easier for users to
extract insights from their data?
The answers to these questions support a picture of log
analysis primarily as a task of filtering, reformatting, and
summarizing. Much of this activity appears to be data
munging, supporting other reports in the literature [28].
In addition, we learn from our survey results that users
outside of IT departments, including marketers and ex-
ecutives, are starting to turn to log analysis to gain busi-
ness insights. Together, our experience analyzing these
queries and the results of our analysis suggest several
important avenues for future research: improving data
transformation representation in analytics tools, imple-
menting integrated provenance collection for user activ-
ity record, improving data analytics interfaces and cre-
ating intelligent predictive assistants, and further analyz-
ing other data analysis activities from other systems and
other types of data besides logs.
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Figure 1: The default Splunk GUI view displays the first several events indexed, with extracted fields highlighted on
the side, and a histogram of the number of events over time displayed along the top. The user types their query into
the search bar at the top of this view.

2 Related Work

We discuss (1) systems for log analysis, (2) techniques
for log analysis, and (3) results of log analysis, so that
those log analysis activities can be compared to our ob-
servations. We also discuss (4) user studies of system ad-
ministrators – one of the primary classes of log analysts –
and (5) of search engine users – where query logs are the
main source of data on user behavior and needs.
Systems for log analysis: The purpose of this section
is not to compare Splunk to other analysis systems, but
to describe the uses these systems support, to provide a
sense of how our observations fit within the larger con-
text. Dapper, Google’s system tracing infrastructure,
is used by engineers to track request latency, guaran-
tee data correctness, assess data access costs, and find
bugs [34]. From their detailed descriptions, we can in-
fer that engineers use transformations similar to those
used by Splunk users. Other systems, such as Sawzall
and PigLatin, include query languages that extract data
from logs with heavy use of these same types of trans-
formations [30, 26]. These points suggest that the activ-
ity records we have collected may represent typical log
analysis usage, despite being gathered from only one sys-
tem.
Techniques for log analysis: Published techniques for
log analysis center around the main challenges in work-
ing with logs, such as dealing with messy formats,
and solving event-based problems [23]. This includes
event and host clustering [20, 21], root failure diagno-
sis [8, 17], anomaly detection [18], dependency infer-

ence [25, 19], and data extraction [16, 39]. Although
their motivating use cases overlap with Splunk use cases,
in our observations, the use of such techniques appears to
be relatively rare (even though Splunk does provide, e.g.,
clustering and anomaly detection functionality).
Results of log analysis: Log analysis is also used in re-
search as a means to an end rather than as the subject
itself. Logs have been used to explain system behav-
ior [7, 6], understand failures [31, 24], identify design
flaws [11], spot security vulnerabilities [15], highlight
new phenomena [29], and drive system simulations [12].
To the extent that such research involves heavy applica-
tion of human inference rather than “automatic” statisti-
cal inference techniques, like many of those mentioned
in the previous section, it appears to more closely align
with our observations of log analysis behavior. However,
the problems addressed are naturally of an academic na-
ture, whereas Splunk users of often looking for timely
business insights specific to their situation.
System administrator user studies: As system admin-
istrators are one of the primary classes of log analysts,
studies of their behavior are relevant to our study of log
analysis. Researchers have studied system administra-
tors to characterize their work environments and prob-
lems commonly faced [4], as well as the mental mod-
els they form [13]. One study surveying 125 system
administrators discovered that accuracy, reliability, and
credibility are considered the most important features in
tools [38]. Other researchers have called for more stan-
dardization in system administration activities – such ef-
forts will benefit from the data we present [9].

2
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Term Definition
event a raw, timestamped item of data indexed by Splunk, similar to a tuple or row in databases
field a key corresponding to a value in an event, similar to the concept of a column name
value part of an event corresponding to a certain field, similar to a particular column entry in a particular row
query a small program written in the Splunk query language, consisting of pipelined stages
stage a portion of a query syntactically between pipes; conceptually a single transformation
transformation an abstract category of similar commands e.g., filter or aggregate; each stage is a transformation
command the part of a stage that indicates what operation to apply to the data
argument the parts of a stage that indicate what fields, values, or option values to use with a command
interactive a query that is run when it is entered by the user into the search bar
scheduled a query that has been saved by a user and scheduled to run periodically like a cron job

Table 1: Terminology describing Splunk data.

Search engine query log studies: While we are unaware
of prior work that uses query logs to study analysis be-
havior, query logs are often used to study search engine
user behavior. People have used search engine query
logs to model semantic relationships [22], track user
preferences [35], and identify information needs [32].
Techniques involve examining query terms and analyz-
ing user sessions [14, 33]. Due to data quality issues dis-
cussed in Section 4, we could not analyze user sessions,
but other aspects of our current and previous work paral-
lel these techniques [2]. Employing some of these tech-
niques to examine data analysis activity logs is a promis-
ing avenue of future research. Going forward we ex-
pect that the study of human information seeking behav-
ior will be enriched through the study of analysis query
logs.

3 Splunk Logs and Queries

We collected queries from Splunk1, a platform for index-
ing and analyzing large quantities of data from heteroge-
neous data sources, especially machine-generated logs.
Splunk is used for a variety of data analysis needs, in-
cluding root cause failure detection, web analytics, A/B
testing and product usage statistics. Consequently, the
types of data sets indexed in Splunk also span a wide
range, such as system event logs, web access logs, cus-
tomer records, call detail records, and product usage
logs. This section describes the Splunk data collection
and query language in more detail; Table 1 lists the ter-
minology introduced in this section.

3.1 Overview

Data collection To use Splunk, the user indicates the
data that Splunk must index, such as a log directory on
a file system. Splunk organizes this data into temporal
events by using timestamps as delineators, and processes
these events using a MapReduce-like architecture [5].

1www.splunk.com

Splunk does not require the user to specify a schema for
the data, because much log data is semi-structured or un-
structured, and there is often no notion of a schema that
can be imposed on the data a priori. Rather, fields and
values are extracted from events at run time based on
the source type. Specifically, when a user defines a new
source type, Splunk guides the user in constructing reg-
ular expressions to extract fields and values from each
incoming raw event.
Query llanguage Splunk includes a query language for
searching and manipulating data and a graphical user in-
terface (GUI) with tools for visualizing query results.
The query consists of a set of stages separated by the
pipe character, and each stage in turn consists of a com-
mand and arguments. Splunk passes events through each
stage of a query. Each stage filters, transforms or en-
riches data it receives from the previous stage, and pipes
it to the subsequent stage, updating the displayed results
as they are processed. A simple example of a query is
a plain text search for specific strings or matching field-
value pairs. A more complex example can perform more
advanced transformations, such as clustering the data us-
ing k-means. Users can save certain queries and schedule
them to be run on a given schedule, much like a cron job.
We call these queries scheduled queries.
Graphical user interface Users almost always com-
pose Splunk queries in the GUI. The default GUI view
displays the first several events indexed, with extracted
fields highlighted on the left hand side, and a histogram
of the number of events over time displayed along the
top. A screen shot of this default view is shown in Fig-
ure 1. The user types their query into the search bar at
the top of this view. When the user composes their query
in the GUI, we call it an interactive query.
When the user enters a query that performs a filter, the
GUI updates to display events which pass through the
filter. When the user uses a query to add or transform
a field, the GUI displays events in updated form. Most
queries result in visualizations such as tables, time series,
and histograms, some of which appear in the GUI when
the query is executed, in the “Visualization” tab (Fig-

3
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ure 1). Users can also create “apps,” which are custom
views that display the results of pre-specified queries,
possibly in real time, which is useful for things like mon-
itoring and reporting. Although the set of visualizations
Splunk offers does not represent the full breadth of all
possible visualizations, they still capture a large set of
standard, commonly used ones.

3.2 An Example Splunk Query

The Splunk query language is modeled after the Unix
grep command and pipe operator. Below is an example
query that provides a count of errors by detailed status
code:

search error | stats count by status | lookup

statuscodes status OUTPUT statusdesc
This example has three stages: search, stats, and
lookup are the commands in each stage, count by

and OUTPUT are functions and option flags passed to
these commands, and “error”, “status”, “statuscodes”,
and “statusdesc” are arguments. In particular, “status”
and “statusdesc” are fields.
To see how this query operates, consider the following
toy data set:

0.0	
   -­‐ error	
   404	
  

0.5	
   -­‐ OK	
   200	
  

0.7	
   -­‐ error	
   500	
  

1.5	
   -­‐ OK	
   200	
  

The first stage of the query (search error) filters out all
events not containing the word “error”. After this stage,
the data looks like:

0.0	
   -­‐ error	
   404	
  

0.7	
   -­‐ error	
   500	
  

The second stage (stats count by status) aggregates
events by applying the count function over events
grouped according to the “status” field, to produce the
number of events in each “status” group.

count	
   status	
  

1	
   404	
  

1	
   500	
  

The final stage (lookup status codes status OUTPUT sta-
tusdesc) performs a join on the “status” field between
the data and an outside table that contains descriptions of

Total queries 203691
Interactive queries 18872
Scheduled queries 184819
Distinct scheduled queries 17085

Table 2: Characteristics of the set of queries analyzed
from the Splunk logs.

each of the codes in the “status” field, and puts the corre-
sponding descriptions into the “statusdesc” field.

count	
   status	
   statusdesc	
  

1	
   404	
   Not	
  Found	
  

1	
   500	
   Internal	
  Server	
  Error	
  

4 Study Data

We collected over 200K Splunk queries. The data set
consists of a list of timestamped query strings. Table 2
summarizes some basic information about this query
set.
We wrote a parser for this query language; the parser
is freely available 2. This parser is capable of parsing
over 90% of all queries in the data set, some of which
may be valid failures, as the queries may be malformed.
(This limitation only affects the cluster analysis in Sec-
tion 6.)
It is important to note that we do not have access to any
information about the data over which the queries were
issued because these data sets are proprietary and thus
unavailable. Having access only to query logs is a com-
mon occurrence for data analysis, and methodologies
that can work under these circumstances are therefore
important to develop. Further, by manually inspecting
the queries and using them to partially reconstruct some
data sets using the fields and values mentioned in the
queries, we are fairly certain that these queries were is-
sued over many different sources of data (e.g., web server
logs, security logs, retail transaction logs, etc.), suggest-
ing the results presented here will generalize across dif-
ferent datasets.
It is also important to note that some of the queries la-
beled as interactive in our data set turned out to be pro-
grammatically issued from sources external to Splunk,
such as a user-written script. It is difficult to sepa-
rate these mislabeled queries from the true interactive
queries, so we leave their analysis to future work, and
instead focus our analysis in this paper on scheduled
queries.

2https://github.com/salspaugh/splparser
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5 Transformation Analysis

The Splunk query language is complex and supports a
wide range of functionality, including but not limited
to: reformatting, grouping and aggregating, filtering, re-
ordering, converting numerical values, and applying data
mining techniques like clustering, anomaly detection,
and prediction. It has 134 distinct core commands at the
time of this writing, and commands are often added with
each new release. In addition, users and Splunk app de-
velopers can define their own commands.
We originally attempted to analyze the logs in terms of
command frequencies, but it was difficult to general-
ize from these in a way that is meaningful outside of
Splunk [1]. So, to allow for comparisons to other log
analysis workflows and abstract our observations beyond
the Splunk search language, we manually classified these
134 commands into 17 categories representing the types
of transformations encoded, such as filtering, aggregat-
ing, and reordering (Table 3).
Note that because some Splunk commands are over-
loaded with functionality, several commands actually
perform multiple types of transformations, such as ag-
gregation followed by renaming. In these cases, we cat-
egorized the command according to its dominant use
case.
We use this categorization scheme to answer the follow-
ing questions about log analysis activity:
• How are the individual data transformations statisti-

cally distributed? What are the most common transfor-
mations users perform? What are the least common?

• How are sequences of transformations statistically dis-
tributed? What type of transformations do queries usu-
ally start with? What do they end with? What transfor-
mations typically follow a given other transformation?

• How many transformations do users typically apply in
a given query? What are the longest common subse-
quences of transformations?

5.1 Transformation Frequencies

We first counted the number of times that each trans-
formation was used (Figure 2). The most common are
Cache (27% of stages), Filter (26% of stages), Aggre-
gate (10% of stages), Macro (10% of stages),and Aug-
ment (9% of stages). Scheduled queries are crafted and
set up to run periodically, so the heavy use of caching and
macros is unsurprising: Splunk adds caching to sched-
uled queries to speed their execution, and macros capture
common workflows, which are likely to be discovered by
users after the iterative, ad hoc querying that results in
a “production-ready” scheduled query. Although we do
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Figure 2: The distribution of data transformations that
are used in log analysis. The top graph shows, for
each transformation, the percent of stages that apply that
transformation. The bottom graph shows, for each trans-
formation, the percent of queries that contain that trans-
formation at least once (so the percents do not add to
100).

not report directly on them here due to data quality is-
sues (Section 4), anecdotally, it appears that interactive
queries have a similar distribution except that the use of
Cache and Macro is less frequent, and the use of Input
is more frequent.
For each transformation type, we also computed the
number of queries that used that transformation (Fig-
ure 2). This gives us some idea of how many of the
queries would be expressible in a restricted subset of the
language, which is interesting because it tells us the rel-
ative importance of various transformations.
From this we see that Filter transformations are ex-
tremely important – 99% of scheduled queries use such
transformations. Without Aggregate transformations,
42% of scheduled queries would not be possible. Around
a quarter of queries use Augment, Rename, and Project
transformations, and 17% use commands that Trans-
form columns.
In contrast, Joins are only used in 6% of scheduled
queries. This possible difference from database work-
loads could be because log data is not usually relational
and generally has no schema, so it may often not have in-
formation that would satisfy key constraints needed for
join, or it may already be sufficiently denormalized for
most uses. It could also be because these are scheduled
queries, and expensive Join operations have been opti-
mized away, although again anecdotally the interactive
queries do not suggest this. Reorder transformations
are also used only 6% of the time – log events are al-
ready ordered by time by Splunk, and this is probably
often the desired order. Input and Output transforma-
tions are used in only 2% of scheduled queries – these

5
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Transformation Description Top Commands % Queries Examples

Aggregate
coalesce values of a given field or
fields (columns) into one summary
value

stats 86.0 stats sum(size kb)

timechart 9.0 timechart count by region

top 3.0 top hostname

Augment add a field (column) to each event,
usually a function of other fields

eval 57.0 eval pct=count/total*100

appendcols 19.0 spath input=json

rex 15.0 rex "To: (?<to>.*)"

Cache write to or read from cache for fast
processing

summaryindex 98.0 summaryindex namespace=foo

sitimechart 30.0 sitimechart count by city

Filter remove events (rows) not meeting
the given criteria

search 100.0 search name="alspaugh"

where 7.0 where count > 10

dedup 4.0 dedup session id

Input input events into the system from
elsewhere

inputlookup 88.0 inputlookup data.csv

Join join two sets of events based on
matching criteria

join 82.0 join type=outer ID

lookup 16.0 lookup

Macro apply user-defined sequence of
Splunk commands

‘sourcetype metrics‘ 50.0 ‘sourcetype metrics‘

‘forwarder metrics‘ 13.0 ‘forwarder metrics‘

Meta configure execution environment localop 83.0 localop

Miscellaneous commands that do not fit into other
categories

noop 39.0 noop

Output write results to external storage or
send over network

outputlookup outputlookup results.csv

Project remove all columns except those se-
lected

table 80.0 table region total

fields 22.0 fields count

Rename rename fields rename 100.0 rename cnt AS Count

Reorder reorder events based on some crite-
ria

sort 100.0 sort - count

Set perform set operations on data append 66.0 append [...]

set 40.0 set intersect [...] [...]

Transform mutate the value of a given field for
each event

fillnull 96.0 fillnull status

convert 2.0 convert num(run time)

Transpose swap events (rows) with fields
(columns)

transpose 100.0 transpose

Window
add fields that are windowing func-
tions of other data

streamstats 90.0 streamstats first(edge)

Table 3: Manual classification of commands in the Splunk Processing Language into abstract transformations cate-
gories. For each transformation category, the Top Commands column shows the most-used commands in that category.
The % Queries column shows, for all queries containing a given transformation, what percent of queries contained
that command.

6
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again could have been optimized away, or possibly cap-
tured in Macros. Lastly, the other transformations are
used in nearly zero queries. In the case of Windowing
transformations, this could be because windowed opera-
tions are accomplished “manually” through sequences of
Augment transformations or via overloaded commands
that were classified as other transformation types. We
were surprised such operations were not more common.
In the case of the others, such as Transpose, it is more
likely because log data is rarely of the type for which
such operations are needed.

5.2 Transformation Pipelines

Next, for each pair of transformation types, we counted
the number of times within a query that the first trans-
formation of the pair was followed by the second trans-
formation of the pair. We used these counts to compute,
for each transformation, how frequently each of the other
transformation types followed it in a query.
We used these frequencies to create a state machine
graph, as shown in Figure 3. Each node is a type of
transformation, and each edge from transformation A to
a transformation B indicates the number of times B was
used after A as a fraction of the number of times A was
used. Also included as nodes are states representing the
start of a query, before any command has been issued,
and the end of a query, when no further commands are
issued. The edges between these nodes can be thought of
as transition probabilities that describe how likely a user
is to issue transformation B after having issued transfor-
mation A.
Using these graphs, we can discover typical log analysis
pipelines employed by Splunk users. We exclude from
presentation sequences with Cache transformations, as
those have in most cases been automatically added to
scheduled queries by Splunk to optimize them, as well
as Macros, because these can represent any transfor-
mation, so we do not learn much by including them.
The remaining top transformation pipelines by weight
(where the weight of a path is the product of its edges)
are:
• Filter
• Filter | Aggregate
• Filter | Filter 3

• Filter | Augment | Aggregate
• Filter | Reorder
• Filter | Augment
The preponderance of Filter transformations in typical
pipelines is not surprising given that it is the most fre-

3These can be thought of as one Filter that happened to be applied
in separate consecutive stages.

quently applied transformation. It also makes sense in
the context of log analysis – logging collects a great deal
of information over the course of operation of a system,
only a fraction of which is likely to be relevant to a given
situation. Thus it is almost always necessary to get rid of
this extraneous information. We investigate Filter, Ag-
gregate, and Augment transformations in more detail in
Section 6 to explain why these also appear in common
pipelines.
These transformations sequences may seem simple com-
pared to some log analysis techniques published in con-
ferences like KDD or DSN [20, 25]. These pipelines
more closely correspond to the simpler use cases de-
scribed in the Dapper or Sawzall papers [34, 30]. There
are many possible explanations for this: Most of the
problems faced by log analysts may not be data mining
or machine learning problems, and when they are, they
may be difficult to map to published data mining and
machine learning algorithms. Human intuition and do-
main expertise may be extremely competitive with state
of the art machine learning and other techniques for a
wide variety of problems – simple filters, aggregations
and transformations coupled with visualizations are pow-
erful tools in the hands of experts. Other reasons are
suggested by user studies and first-hand industry expe-
rience [23, 38]. Users may prefer interpretable, eas-
ily adaptable approaches over black-boxes that require
lots of mathematical expertise. It is worth further in-
vestigating the types of analysis techniques currently in
widespread use and assess how the research on analysis
techniques can better address practitioner needs.
We hypothesize that one important variable determining
what transformation sequences are most often needed is
the data type. Thus, we created more focused state ma-
chine graphs for two commonly analyzed source types by
pulling out all queries that explicitly specified that source
type4: Figure 4 shows the analysis applied to server ac-
cess logs, used for web analytics (measuring traffic, re-
ferrals, and clicks). Figure 5 shows the results on operat-
ing system event logs (analyzing processes, memory and
CPU usage). These figures suggest that indeed, query
patterns can be expected to differ significantly depend-
ing on the type of data being analyzed. This could be
due to the domain of the data, which could cause the
types of questions asked to vary, or it could be due to
the format of the data. For example web logs may have
a more regular format, allowing users to avoid the con-
voluted processing required to normalize less structured
data sources.
Other important factors likely include who the user is and
what problems they are trying to solve. For example, in

4Source type can be specified in Filter transformations – this is
what we looked for.
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Figure 3: State machine diagram describing, for all distinct scheduled queries, the pairwise transition frequency
between the command categories described in the text. Only edges with weight greater or equal to .05 are shown,
for clarity.
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Figure 4: The pairwise transition frequency between transformations for web access log queries.
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Figure 5: The pairwise transition frequency between transformations for OS event log queries.

the case of web access log data, an operations user will
want to know, “Where are the 404s?5 Are there any hosts
that are down? Is there a spike in traffic that I should add
capacity for?” A marketer will want to know, “What key-
words are people searching today after my recent press
release? What are the popular webinars viewed on my
website?” A salesperson may ask, “Of the visitors today,
how many are new versus returning, and how can I figure
out whom to engage in a sales deal next based on what
they’re looking for on the web site?” Capturing this sup-
plemental information from data analysis tools to include
in the analysis would be useful for later tailoring tools to
particular use cases. We have gathered some informa-
tion about this (Section 7) but unfortunately we could
not cross-reference this data with query data.

5.3 Longest Subsequences

To investigate what longer, possibly more complex,
queries look like, we looked at the longest common sub-
sequences of transformations (Table 4). Again, we ex-
cluded Cache and Macro transformations from presen-
tation. We again see the preponderance of Filter, Ag-
gregate, and Augment transformations. Beyond that,
the most striking feature is the preponderance of Aug-
ment transformations, particularly in the longer subse-
quences. To gain more insight into exactly what such
sequences of Augment transformations are doing, we
look more closely at such transformations in the follow-

5404 is an HTTP standard response code indicating the requested
resource was not found.

ing section.

6 Cluster Analysis

Recall from Section 5 that three of the most common
transformation types in log analysis are Filter, Aggre-
gate and Augment. To find out more details about why
and how such transformations are used, we clustered
query stages containing these types of transformations,
and then examined the distribution of transformations
across these clusters. Clustering provides an alterna-
tive to manually looking through thousands of examples
to find patterns. Similar conclusions would likely have
been arrived at using manual coding techniques (i.e.,
content analysis), but this would have been more time-
consuming.
In clustering these transformations, we investigate the
following sets of questions:
• What are the different ways in which Filter, Aggre-

gate, and Augment transformations are applied, and
how are these different ways distributed?

• Can we identify higher-level tasks and activities by
identifying related clusters of transformations? Do
these clusters allow us to identify common workflow
patterns? What can we infer about the user’s informa-
tion needs from these groups?

• How well do the commands in the Splunk query lan-
guage map to the tasks users are trying to perform?
What implications do the clusters we find have on data
transformation language design?

9
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Length Count % Queries Subsequence
2 2866 16.77 Transform | Aggregate
2 2675 6.13 Augment | Augment
2 2446 14.06 Filter | Aggregate
2 2170 12.70 Aggregate | Rename
2 1724 8.42 Filter | Augment
3 2134 12.49 Transform | Aggregate | Rename
3 1430 4.00 Augment | Augment | Augment
3 746 4.24 Aggregate | Augment | Filter
3 718 4.20 Aggregate | Join | Filter
3 717 4.20 Aggregate | Project | Filter
4 710 4.16 Aggregate | Project | Filter | Rename
4 710 4.16 Transform | Aggregate | Augment | Filter
4 694 2.71 Augment | Augment | Augment | Augment
4 472 2.73 Filter | Augment | Augment | Augment
4 234 1.37 Augment | Augment | Augment | Project
5 280 1.62 Filter | Augment | Augment | Augment | Augment
5 222 1.30 Augment | Augment | Augment | Augment | Project
5 200 0.61 Augment | Augment | Augment | Augment | Augment
5 171 1.00 Augment | Augment | Augment | Augment | Filter
5 167 0.98 Filter | Augment | Augment | Augment | Aggregate
6 161 0.94 Augment | Augment | Augment | Augment | Filter | Filter
6 160 0.94 Augment | Augment | Filter | Filter | Filter | Augment
6 160 0.94 Augment | Augment | Augment | Filter | Filter | Filter
6 148 0.87 Filter | Augment | Augment | Augment | Augment | Filter
6 102 0.60 Augment | Aggregate | Augment | Augment | Augment | Augment

Table 4: Longest common subsequences of transformations along with count of how many times such sequences
appeared, and the percent of queries they appeared in.

To cluster each set of transformations, we:
(1) parsed each query (see: Section 4)
(2) extracted the stages consisting of the given transfor-

mation type,
(3) converted the stages into feature vectors,
(4) projected these feature vectors down to a lower di-

mensional space using PCA,
(5) projected these features further down into two dimen-

sions, to allow visualization of the clusters, using t-
SNE [37], and lastly

(6) manually identified and labeled clusters in the data.
Then, to count the number of transformations in each
cluster, we use a random sample of 300 labeled exam-
ples from the clustering step to estimate the true propor-
tion of stages in each cluster within 95% confidence in-
tervals. 6

6.1 Types of Filters

Filter stages primarily consist of the use of the search

command, which almost all Splunk queries begin with,
and which allows users to both select events from a
source and filter them in a variety of ways. We clustered

6Assuming cluster distribution is multinomial with k parameters

pi we use the formula n = k−1(1−k−1)

(.05/1.96)2 (which assumes each cluster is
equally likely) to estimate the sample size required to estimate the true
parameters with a 95% confidence interval. The maximum required
size was 246.

all distinct Filter stages and discovered 11 cluster types
using 26 features7 (Figure 6). Some of the clusters over-
lap, in that some examples could belong to more than one
group. We discuss how we resolve this below.
The most common application of Filter is to use
multi-predicate logical conditions to refine an event
set, where these predicates are themselves filters of
the other types, such as those that look for matches
of a given field (e.g., search status=404), or
those that look for any event containing a specified
string (e.g., search "Authentication failure for

user: alspaugh"). When a Filter could go into mul-
tiple categories, it was placed into this one, which also
contains Filters with many predicates of the same type in
a statement with many disjunctions and negations. Thus,
it is the largest category. Considering each filter pred-
icate individually might be more informative; we leave
that to future work.
Another common Filter pulls data from a given source,
index, or host (like a SELECT clause in SQL). These re-
semble Filters that look for a match on a given field, but
return all events from a given source rather than all events
with a specific value in a specific field.
Other types of filters include those that deduplicate
events, and those that filter based on time range, index,
regular expression match, or the result of a function eval-

7See Section 11 for more information about the features used.
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Figure 6: Distribution of different types of Filter trans-
formations.

uation on the fields of each event. Lastly, some Filter
transformations include the use of macros, others, the
use of subsearches, the results of which are used as ar-
guments to further constrain the current filter.
These use cases reveal several things:
• It is helpful to be able to simultaneously treat log data

both as structured (field-value filters, similar to SQL
WHERE clauses) and as unstructured (string-contains
searches, similar to grep).

• Some commands in Splunk, like search, are heavily
overloaded. A redesign of the language could make it
easier to identify what users are doing, by bringing the
task performed and the command invoked to perform
it more in line with one another. For example, there
could be a distinct command for each task identified
above. This might also form a more intuitive basis on
which to organize a data transformation language or
interface, but would need to be evaluated for usability.

• Though it may appear that time range searches are not
as prevalent as might have be suspected given the im-
portance of the time dimension in log data, this is be-
cause the time range is most often encoded in other pa-
rameters that are passed along with the query. So time
is still one of the most important filter dimensions for
log analysis, but this is not reflected in these results.

6.2 Types of Aggregates

We discovered five Aggregate cluster types using 46 fea-
tures (Figure 7). The most common Aggregate com-
mand is stats, which applies a specific aggregation
function to any number of fields grouped by any number
of other fields and returns the result. Most often, com-
monplace aggregation functions like count, avg, and
max are used. Almost 75% of Aggregates are of this
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Figure 7: Distribution of different types of Aggregate
transformations.

type. Another 10% of Aggregates do this, but then also
prepare the output for visualization in a a chart rather
than simply return the results (see the “Visualization” tab
discussed in Section 3). Another common type of Ag-
gregate is similar to these, but first buckets events tem-
porally, aggregates each bucket, and displays the aggre-
gated value over time in a histogram. Another type first
aggregates, then sorts, then returns the top N results (e.g.,
top user). The last type groups by time, but not neces-
sarily into uniformly sized buckets (e.g., when forming
user sessions).
The takeaways from this are:
• Visualizing the results of aggregations is reasonably

popular, though much of the time, simply viewing a
table of the results suffices. Aggregations lead to the
types of relational graphics that many people are fa-
miliar with, such as bar and line graphs [36]. Users
might also appreciate having the ability to more easily
visualize the result of Filter transformations as well;
for example, using brushing and linking. 8

• For log analysis, when visualization is used, it is more
likely to visualize an aggregate value over buckets of
time than aggregated over all time.

6.3 Types of Augments

Augments add or transform a field for each event. The
most commonly used such command is eval, which is
another example of a heavily overloaded command. We
discovered eight classes of Augment use by clustering
over 127 features (Figure 8). These classes shed light
onto the results of Section 5 and reveal what some of

8Brushing and linking is an interactive visualization technique
wherein multiple views of data are linked and data highlighted in one
view (i.e., a filter) appears also highlighted in the other view (i.e., a bar
graph or heat map).
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Figure 8: Distribution of different types of Augment
transformations.

the long pipelines full of Augment transformations were
likely doing.
The most common ways users transform their
data are by manipulating strings (e.g., eval

name=concat(first, " ", last)), conditionally
updating fields (e.g., eval type=if(status>=400,

"failure", "success")), performing arithmetic
(e.g., eval pct=cnt/total*100), calculating date-
time information (e.g., eval ago=now()- time),
applying multi-valued operations (e.g., eval

nitems=mvcount(items)), or simple value as-
signments (e.g., eval thresh=5). Other Augment

operations add a field that indicates which group an
event belongs to and still others use the results of a
subsearch to update a field.
These tasks reveal that:
• Aside from filtering and aggregation, much of log

analysis consists of data munging (i.e., translating
data from one format into another, such as convert-
ing units, and reformatting strings). This is supported
by other studies of data analysis in general [28]. Such
data munging transformations could be mined to cre-
ate more intelligent logging infrastructure that outputs
data in form already more palatable to end-users, or
could be incorporated into an automated system that
converts raw logs into nicely structured information.
The more complicated transformations should be eval-
uated to identify whether the tool could be made more
expressive.

• Just as with Filter transformations, here we observe
heavily overloaded commands (i.e., eval). Refac-
toring functionality to clean up the mapping between
tasks and commands would help here for the same rea-
sons.

7 Usage Survey

The analytic results open many questions about usage
goals that can best be answered by talking to the peo-
ple who use the system. To this end, we administered a
survey to Splunk sales engineers and obtained responses
that describe the use cases, data sources, roles, and skill
sets of 39 customer organizations. Note: these are not
responses directly from customers, rather each sales en-
gineer answered each question once for each of three
customers, based on their firsthand knowledge and ex-
perience working with those customers. Figure 9 sum-
marizes the results visually.

7.1 Survey Results

The main results are:
User roles: The bulk of Splunk users are in IT and en-
gineering departments, but there is an important emerg-
ing class of users in management, marketing, sales, and
finance. This may be because more business divisions
are interleaving one or more machine generated log data
sources for business insights.
Programming experience: Although most Splunk users
are technically savvy, most only have limited to moderate
amounts of programming experience.
Splunk experience: Surprisingly, many of the cus-
tomers reported on did not consistently have expertise
with Splunk, in fact, some users had no Splunk experi-
ence. This may be an artifact of the fact that the survey
respondents were sales engineers, who may have opted
to reply about more recent or growing customer deploy-
ments.
Use cases: Along with the main user roles, the main use
cases are also IT-oriented, but, consistent with the other
responses, Splunk is sometimes used to analyze business
data.
Data sources: Correspondingly, the main type of data
explored with Splunk is typical IT data: logs from web
servers, firewalls, network devices, and so on. However,
customers also used Splunk to explore sales, customer,
and manufacturing data.
Transformations applied: Customers primarily use
Splunk to extract strings from data, perform simple arith-
metic, and manipulate date and time information. In
some cases, customers perform more complex operations
such as outlier removal and interpolation.
Statistical sophistication: Customers generally do not
use Splunk to perform very complicated statistical analy-
sis, limiting themselves to operations like computing de-
scriptive statistics and looking for correlations. In one
instance, a customer reported having a team of “math

12
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Figure 9: Summary of survey answers. Each vertical line represents a customer. Each colored grouping represents a
different question and each row in the group represents one possible response to that question. A dot is present along
a given column and row if the option corresponding to that row was selected for the question in that group, for the
customer in that column.
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junkies” that exported data out of Splunk, ran “very so-
phisticated batch analytics,” and then imported those re-
sults back into Splunk for reporting.
Data mash ups: The degree to which customers com-
bine data sources in their analysis varies across individ-
ual users and organizations. Some organizations almost
always combine data sources for their analysis while
a nearly equal number almost never do. This could
be in part due to diversity in Splunk expertise and use
cases.
Other tools: To better understand the ecosystem in
which Splunk exists, we asked what other data analysis
tools customers used. In keeping with their IT-oriented
roles and use cases, command line tools are frequently
used by most Splunk users, in addition to databases,
scripting languages, and desktop visualization tools like
Tableau. A significant number of customers used custom
in-house applications for analyzing their data. A rela-
tively small number used cluster computing frameworks
or analysis languages like MATLAB.
Based on these results, we make the following predic-
tions.
• IT and engineering professionals will be increasingly

called upon to use their expertise working with ma-
chine data to aid other business divisions in their
information-seeking needs, and will gain some exper-
tise in these other domains as a result (deduced from
user role and use case data).

• Classic tools of the trade for system administrators and
engineers will be increasingly picked up by less tech-
nical users with other types of training, causing an
evolution in both the features offered by the tools of
the trade as well as the skills typically held by these
other users (deduced from user role data). Although
it is likely that more people in a growing variety of
professions will learn how to program over the com-
ing years, the market for log and data analysis tools
that do not require programming experience will likely
grow even faster (deduced from programming experi-
ence data).

• There is still no “one stop shop” for data analysis and
exploration needs – customers rely on a variety of
tools depending on their needs and individual exper-
tise (based on the other tools data). This may be due
to the existence of a well-established toolchain where
different components are integrated into a holistic ap-
proach, not used disparately. Better understanding of
which parts of different tools draw users would help
both researchers and businesses that make data analy-
sis products understand where to focus their energies.

8 Conclusion

In this paper we presented detailed, quantitative data de-
scribing the process of log analysis. While there have
been a number of system administrator user studies, there
have been few if any quantitative reports on traces of user
behavior from an actual log analysis system at the level
of detail we provide. In addition, we provide qualitative
survey data for high-level context. Together these are
important sources of information that can be used to to
inform product design, guide user testing, construct sta-
tistical user models, and even create smart interfaces that
make recommendations to users to enhance their analysis
capabilities. We first summarize our main observations,
then follow with a call to action for current tool builders
and future researchers.
Filtering: In our observations, a large portion of log
analysis activity in Splunk consists of filtering. One pos-
sible explanation is that log analysis is often used to solve
problems that involve hunting down a few particular
pieces of data – a handful of abnormal events or a partic-
ular record. This could include account troubleshooting,
performance debugging, intrusion detection, and other
security-related problems. Another possible explanation
is that much of the information collected in logs, e.g.,
for debugging during development, is not useful for end-
users of the system. In other words, logs include many
different types of data logged for many different reasons,
and the difference between signal and noise may depend
on perspective.
Reformatting: Our analysis of Augment transforma-
tions suggested that most of these transformations were
for the purpose of data munging, or reformatting and
cleaning data. The prevalence of reformatting as a por-
tion of log analysis activity is likely reflective of the fact
that much log data is structured in an inconsistent, ad
hoc manner. Taken together, the prevalence of filter-
ing and reformatting activity in Splunk suggest that it
may be useful for system developers to collaborate with
the end users of such systems to ensure that data use-
ful for the day-to-day management of such systems is
collected. Alternatively, another possible explanation is
that the Splunk interface is not as useful for other types
of analysis. However, other reports indicate that indeed,
much of data analysis in general does involve a lot of data
munging [28].
Summarization: We observed that it is common in
Splunk to Aggregate log data, which is a way of summa-
rizing it. Summarization is a frequently-used technique
in data analysis in general, and is used to create some
of the more common graph types, such as bar charts
and line graphs [36]. This suggests it may be useful
to automatically create certain types of summarization

14



USENIX Association  28th Large Installation System Administration Conference (LISA14) 67

to present to the user to save time. In log analysis with
Splunk, summarizing with respect to the time dimension
is an important use case.
The complexity of log analysis activity: We were not
able to determine whether Splunk users make use of
some of the more advanced data mining techniques pro-
posed in the literature, such as techniques for event clus-
tering and failure diagnosis [20, 25]. One possible ex-
planation for this is that due to the complexity and vari-
ability of real world problems, as well as of logged in-
formation, designing one-size-fits-all tools for these sit-
uations is not feasible. Alternatively, such analyses may
occur using custom code outside of Splunk or other an-
alytics products as part of a large toolchain, into which
we have little visibility. This idea is supported by some
of the Splunk survey results (Section 7). Other possi-
ble explanations include lack of problems that require
complicated solutions, lack of expertise, or requirements
that solutions be transparent, which may not be the case
for statistical techniques. It could also be the case that
such techniques are used, but are drowned out by the
volume of data munging activity. Finally, it may be that
we simply were not able to find more complex analyt-
ics pipelines because programmatically identifying such
higher-level activities from sequences of smaller, lower-
level steps is a difficult problem.
Log analysis outside of IT departments: Our sur-
vey results also suggest that log analysis is not just for
IT managers any longer; increasing numbers of non-
technical users need to extract business insights from
logs to drive their decision making.

9 Future Work

Need for integrated provenance collection: Under-
standably, most data that is logged is done so for the pur-
pose of debugging systems, not building detailed models
of user behavior [3]. This means that much of the con-
textual information that is highly relevant to understand-
ing user behavior is not easily available, and even basic
information must be inferred through elaborate or unreli-
able means [10]. We hope to draw attention to this issue
to encourage solutions to this problem.
Improving transformation representation: In the pro-
cess of analyzing the query data, we encountered diffi-
culties relating to the fact that many commands in the
Splunk language are heavily overloaded and can do many
different things. For example, stats can both aggregate
and rename data. When this is the case, we are more
likely to have to rely on error-prone data mining tech-
niques like clustering and classification to resolve ambi-
guities involved in automatically labeling user activities.

If the mapping between analysis tasks and analysis repre-
sentation (i.e., the analysis language) were less muddied,
it would alleviate some of the difficulties of analyzing
this activity data and pave the way for easier modeling of
user behavior.
Opportunities for predictive interfaces: Thinking for-
ward, detailed data on user behavior can be fed into ad-
vanced statistical models that return predictions about
user actions. Studies such as the one we present are im-
portant for designing such models, including identifying
what variables to model and the possible values they can
take on. Other important variables to model could in-
clude who the user is, where their data came from, and
what problems they are trying to solve. These could be
used to provide suggestions to the user about what they
might like to try, similar to how other recently successful
tools operate [27].
Further analyses of data analysis activity: Finally, in
this paper, we only presented data analysis activity from
one system. It would be informative to compare this to
data analysis activity from other systems, and on other
types of data besides log data. Thus, we make our anal-
ysis code public so others can more easily adapt and
apply our analysis to more data sets and compare re-
sults.
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11 Availability
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