
Let’s Parse to Prevent Pwnage
Invited position paper

Mike Samuel
Google Inc.

Úlfar Erlingsson
Google Inc.

Abstract

Software that processes rich content suffers from en-
demic security vulnerabilities. Frequently, these bugs are
due to data confusion: discrepancies in how content data
is parsed, composed, and otherwise processed by dif-
ferent applications, frameworks, and language runtimes.
Data confusion often enables code injection attacks, such
as cross-site scripting or SQL injection, by leading to in-
correct assumptions about the encodings and checks ap-
plied to rich content of uncertain provenance. However,
even for well-structured, value-only content, data con-
fusion can critically impact security, e.g., as shown by
XML signature vulnerabilities [12].

This paper advocates the position that data confusion
can be effectively prevented through the use of simple
mechanisms—based on parsing—that eliminate ambi-
guities by fully resolving content data to normalized,
clearly-understood forms.

Using code injection on the Web as our motivation,
we make the case that automatic defense mechanisms
should be integrated with programming languages, ap-
plication frameworks, and runtime libraries, and applied
with little, or no, developer intervention. We outline a
scalable, sustainable approach for developing and main-
taining those mechanisms. The resulting tools can offer
comprehensive protection against data confusion, even
when multiple types of rich content data are processed
and composed in complex ways.

1 Data Confusion and Why Parsing Helps

A persistent source of security issues is data confusion:
vulnerabilities caused by inconsistencies between differ-
ent software in the parsing, composition, and overall pro-
cessing of rich content. Data confusion has already led
to large-scale exploits such as rapidly-spreading Web ap-
plication worms [18], and its risk is increasing, with the
growth of distributed and cloud computing.

Examples of data confusion have arisen in the han-
dling of nested HTML tags [8], apostrophes in SQL
statements [19], signature scopes in XML protocol mes-
sages [12], and encoded length fields in binary data [9].

Data confusion cannot be eliminated simply by train-
ing software developers or by exhorting them to be more
careful. For general-purpose software, data is usually
of uncertain provenance and, locally, it is usually hard
to tell what data can be trusted, what data properties
have been checked, and what assumptions about data
are made elsewhere. Even if all software for process-
ing rich content was written with the utmost care—
and developers had the right incentives, know-how, and
resources—discrepancies between different developers’
decisions would still be sure to introduce vulnerabilities.

On the other hand, to avoid data confusion, it is often
sufficient to simply normalize the content data by parsing
and re-serializing the data. Normalization has been pre-
viously used by security mechanisms, e.g., to eliminate
TCP fragmentation ambiguities [22] and to build deter-
ministic HTML parse trees [21]. It benefits security by
resolving ambiguities, by simplifying the data encoding
(e.g., via conversion), and by eliding deprecated aspects
or unnecessary functionality from the content.

For example, to display raster images, only a single
(compressed) encoding and color space (e.g., sRGB) is
strictly necessary. Thus, by normalizing to a single form
of bitmap data, most of the attack surface due to the va-
riety of image formats (and all of their myriad encodings
and options) can be eliminated. Notably, such normal-
ization can benefit even the security of legacy software:
eliminating esoteric options and encodings will prevent
most known JPEG and PNG exploits (e.g., [1, 9]).

Clearly, automatic mechanisms based on trustworthy
parsing can prevent many types of data confusion by re-
ducing the attack surface due to the divergent assump-
tions of different software.

Centralized, trustworthy parsing can be helpful in
other ways, as well. For example, such parsing could

support large-scale collection of statistics about content
data that would help identify corner cases and rarely-
used features—both a common source of vulnerabilities.
Also, such processing could ensure that content data met
the required constraints of certain, preferred software—
such as that deemed to be standard, or most secure—and
thereby eliminate further sources of data confusion, such
as those underlying recently-discovered attacks on anti-
virus scanners [11].

Centralized normalization could even improve per-
formance, and eliminate redundant work, by serializ-
ing content data to a new unambiguous, highly-efficient
structured format (e.g., based on Google’s Protocol
Buffers [7]), instead of back to the original data format.
In the context of the Web, Michal Zalewski of Google
has pointed out many ancillary benefits of similar new
formats, such as reduced latency of loading Web pages.

2 Towards Comprehensive Defenses

Unfortunately, to overcome endemic data confusion,
simple centralized mechanisms are not sufficient. Rich
content may be composed and processed on both clients
and servers and typically embeds some form of ex-
ecutable code—and that code often encodes complex
predicates and content introspection that prevents static
reasoning about behavior. During such processing, data
confusion can easily result in code injection vulnerabil-
ities, where attacker-controlled characters are included
as part of executed expressions, in unexpected con-
texts [14]. Therefore, it is not surprising that, for many
years, the most commonly-reported security vulnerabil-
ities have been SQL-injection and Cross-Site Scripting
(XSS) in Web applications [2, 6].

The remainder of this position paper uses the con-
text of Web applications to outline a sustainable ap-
proach for developing comprehensive protections against
data confusion—even when multiple types of rich con-
tent data are processed and composed in complex ways.
Those defenses are based on the close integration of au-
tomated mechanisms for content data normalization, san-
itization, and templating, as well as execution sandbox-
ing, into client and server Web programming languages.
For scalability, we describe how those mechanisms can
be based on annotated parse-tree grammars developed in-
dependently of any language, platform, or application.

2.1 The Case of HTML and the Web

Web application developers are forced, by necessity,
to restrict their attention to functionality that works
reliably cross-platform (e.g., “JavaScript: The Good
Parts” [4]). On the other hand, attackers can make full

Untrusted data Untrusted code
Untrusted ctx. Lowering Sanitization

Trusted ctx. Safe templating Sandboxing

Figure 1: Techniques for securely handling Web content
data, across different processing contexts and input data.

use of all the Web’s bad parts: its corner cases, eso-
teric platform-specific features, and poorly-thought-out
functionality. Also, the recent fast-paced experimenta-
tion with new features, languages, and application frame-
works for the Web and for cloud computing forces de-
fenders to consider an impossible menagerie of technolo-
gies: ASP.NET, CoffeeScript, Ruby on Rails, Django,
jQuery, JSF, Dart, and Go—to name but a handful.

Security-savvy Web developers must know how to
(manually) employ a range of ad hoc tools for securely
composing content strings from untrusted and trusted
sources. In particular, consistent use of tools like SQL
prepared statements or auto-escaped HTML templates in
Web application frameworks can greatly reduce suscep-
tibility to data confusion [5]. More principled, safe-by-
construction mechanisms (such as those in [19, 20]) have
seen little adoption, since they have required extensive
modification of the Web application source code as well
as substantial programmer retraining.

These existing tools fall on two axes, as depicted in
Figure 1. The first axis is determined by the initial run-
time processing of attacker-controlled inputs: untrusted
data will be encoded into strings, whereas untrusted code
will be passed to a language interpreter.

untrusted = x; // is "javascript:..." ?
location = untrusted + ’?foo=bar’;

For example, the above code fragment composes un-
trusted data with a trusted literal, ‘?foo=bar’, to form a
location URL. Here, the application developer may have
failed to check that the untrusted data encodes a URL
domain path, thereby enabling an attack.

By contrast, untrusted code may exercise more author-
ity than the Web application developer intends.

Dear Sir,<script>IPwnYou()</script>

For example, a Web mail client would be wise to remove
the “<script>” from the above HTML email body.

The second axis depends on whether the Web appli-
cation itself is trustworthy. Untrusted contexts of pro-
cessing allow attacker-controlled input to fully deter-
mine the rendering of content data. However, more of-
ten Web servers or client browsers may process attacker-
controlled inputs in a trusted context—e.g., to insert un-
trusted data or code into holes in templates trusted by
the Web application. For example, in PHP, a Web appli-
cation might use a template “$untrusted”
with trusted HTML tokens “” and “”.

2

3 Building Sustainable Defenses at Scale

Annotated, high-level parse-tree grammar specifications
can be used to drive data confusion defenses like nor-
malization, encoding, sanitization, and templating. Such
annotated grammars can be developed and maintained
by security-minded engineers and pen-testers familiar
with the content format (such as HTML and CSS)—
independent of any platform—and, on each platform,
compiled to make use of the correct specific primitives
for the secure processing of content data.

Seperately, the underlying platform-specific content
security primitives can be provided as part of runtime
platforms and application frameworks (such as Python
and ASP.NET). Thus, the cost of defenses can be
linear—O(c+ p), and not O(c · p), for c content data for-
mats and p platforms—which, in particular, can allow
code injection defenses to be sustainably scaled to all the
Web’s different languages, frameworks, and platforms.

Figure 1 shows the techniques that might be ap-
plied by platform-specific content security primitives.
When deployed as automatic mechanisms, driven by
annotated grammars, these techniques based on pars-
ing and normalization can comprehensively prevent data
confusion—as long as they are fully integrated into Web
application languages, frameworks, and libraries.

The first technique, encoded lowering, normalizes
content to a plain-data format that elides possible con-
trol characters, and is free of rich features—e.g., “1<2”
becomes “1<2” in HTML [10]. The second, san-
itization, normalizes content by eliding all features not
deemed to be in a safe subset. Sanitizers like HTML Pu-
rifier [23] allow web-sites to inline untrusted HTML. The
third, auto-escaped templating, composes untrusted con-
tent with trusted literals, as specified in a structured fash-
ion in the Web application—e.g., as is done in Google’s
Closure Templates [16]. Importantly, this composition
must guarantee that untrusted content cannot have side
effects, and that the intended semantics of trusted literals
are preserved. Finally, sandboxing, like PHP’s Runkit
Sandbox [13], contains the effects of untrusted content
by limiting the interface available during its processing.

3.1 Basing Tools on Annotated Grammars
Grammars are widely used for specifying data formats
and language parsers, by defining both the set of lan-
guage literals and the structure of a parse tree (based on
the grammar productions). However, traditional gram-
mars do not specify aspects necessary to fight data con-
fusion. In the context of the Web, such aspects include:
• The relationship between data values and substrings

in the language; e.g., the JSON grammar does not
specify that \‘ in “I\‘m” encodes an apostrophe.

• The grammar for encoded strings; e.g., that the at-
tribute in is en-
coding the URL ?a=b&c=d.

• A mapping from strings to “safer” strings; e.g.,
that removing JavaScript and external URLs makes
HTML content safer.

• Resolution of references within content data; e.g.,
to uniquely map identifiers to DOM elements.

Grammars for languages and data formats can be an-
notated to provide extra information about language sub-
strings and units of content data—much like how the C#
and Java programming languages allow annotations [3].

HTML := (text | link)*
text := ([^&<"] | entity)*
entity := "&" | "<" | ...
link := "<a" href? ">" text ""
href := " href=\"" text "\""

URL := ext_url | js_url | ...
ext_url := "https://" uri_char*
js_url := "javascript:" uri_char*
uri_char := [^{}\%] | "\%" hex hex

For example, consider the above BNF grammar for a
small subset of HTML and URLs, which does not allow
tools to infer that

• < encodes a “<”,
• the quoted attribute encodes a URL using entities,
• js_url content data encodes JavaScript,
• the hex digits in “%” hex hex encode a byte,
• or, that code may follow the javascript prefix.

href := " href="
@Embed{URL}(’"’ text ’"’)

entity := (@Char{"&"}("&")) | ...

On the other hand, a grammar where href and entity
are annotated, as shown above, can allow tools to infer

• that a known-safe URL @Embeds as a href at-
tribute value after converting & to &, etc.,

• how to encode a plain-text value to a URL, and, how
to sanitize a URL to a safe URL.

Annotated grammars can be converted to pushdown
automata, as in Figure 2. Subsequently, each such au-
tomaton can be compiled into code that performs en-
coded lowering by converting untrusted content data into
a series of automaton inputs—for example, (start list,
start string, char 65, end string, end char)—and search-
ing the automaton for states that satisfy that input series.
Such searches can be efficient, if automata compilation
pre-computes possible input paths and makes use of the
control-flow constructs for the Web application platform.
Similarly, efficient code for content sanitizers and the

3

valuestart Str, ‘"’ start List, ‘[’

‘\\’ enc [\\"]

enc [^\\"]

‘"’, end Str

Pop ‘]’, end List

Push value

‘,’

Figure 2: Pushdown automaton to parse a JSON subset.

context-propagation in templating systems can also be
compiled from grammar-derived automata.

For testing, we can exploit the division of labor be-
tween maintainers of content data grammars and the
platform-specific normalization primitives to achieve test
coverage. Grammar maintainers can maintain test suites
for the encoders, sanitizers, and context propagators de-
rived from their grammars. These grammar-based tests
can be run directly against the pushdown automata de-
rived from the grammars, and existing tools for fuzzing
untrusted content data can be used to stress test gram-
mars. Independently, platform-specific maintainers can
fuzz the grammars, to stress their code generation, and
also use the tests of expected automata behavior to verify
the consistency of the code they generated for normaliza-
tion primitives.

3.2 Language and Runtime Integration

Even if mechanisms to defend against code injection
were ubiquitous—deployed and fully supported on all
platforms—Web application developers would continue
to use code like “$untrusted_input”,
which, in PHP, is succinct, easy to write, and also un-
safe. Thus, we propose that data confusion defenses
should be integrated closely with programming lan-
guages: “$untrusted_input” should do
what programmers intend when they write it. Integration
with programming languages can be facilitated by delay-
ing content data operations until the processing context
can be safely determined, whether by overloading opera-
tors, “(re)defining syntactic sugar” [17], or using reflec-
tive mechanisms in legacy languages [15].

4 Conclusions

Data confusion vulnerabilities stem from differences be-
tween the meaning of rich content data, as understood
by different software applications. On the Web, and in
cloud computing, data confusion may be impossible to

eradicate, due to the plethora of rich content formats cou-
pled with the multiplicity of different computers, plat-
forms, frameworks, languages, libraries, and runtimes
upon which applications are built. However, as this po-
sition paper outlines, the development and maintenance
of data confusion defenses can be sustainable even at the
scale required to cover nearly all Web technologies. Let’s
build and deploy such defenses, and, instead of giving
up, let’s parse to prevent pwnage.

References
[1] AEDLA, J. libpng: code execution, 2012. http://lwn.net/

Articles/481976/.
[2] BOBERSKI, M., ET AL. The ten most critical Web application

security risks. Tech. rep., OWASP, 2010.
[3] BRACHA, G., ET AL. JSR 175: A metadata facility for the Java

programming language. JCP, 2004.
[4] CROCKFORD, D. JavaScript: The Good Parts. O’Reilly, 2008.
[5] FINIFTER, M., AND WAGNER, D. Exploring the relationship

between Web application development tools and security. In
USENIX conference on Web application development (2011).

[6] FONSECA, J., VIEIRA, M., AND MADEIRA, H. Testing and
comparing Web vulnerability scanning tools for SQL injection
and XSS attacks. In IEEE PRDC (2007).

[7] GOOGLE. Protocol buffers, 2012. http://code.google.
com/p/protobuf/.

[8] HICKSON, I. Serializing HTML fragments: Warning!, 2012.
http://www.w3.org/TR/html5/the-end.html.

[9] HORNAT, C. JPEG vulnerability: A day in the life of
the JPEG vulnerability, 2004. http://infosecwriters.
com/text_resources/pdf/JPEG.pdf.

[10] INCHOWSKI, J. OWASP Java encoder project. http://code.
google.com/p/owasp-java-encoder/.

[11] JANA, S., AND SHMATIKOV, V. Abusing file processing in mal-
ware detectors for fun and profit. In IEEE Symposium on Security
and Privacy (2012).

[12] MCINTOSH, M., AND AUSTEL, P. XML signature element
wrapping attacks and countermeasures. In ACM Workshop on
Secure Web Services (2005).

[13] PHP.NET. RunKit_Sandbox, 2012. http://php.net/
manual/en/runkit.sandbox.php.

[14] RAY, D., AND LIGATTI, J. Defining code-injection attacks. In
ACM POPL (2012).

[15] SAMUEL, M. Secure string interpolation. http://tinyurl.
com/secinterp, 2008.

[16] SAMUEL, M. Closure tools security, 2012. http://
tinyurl.com/closure-sec.

[17] SAMUEL, M., ET AL. EcmaScript Quasi-Literals. EcmaScript
TC39, 2011.

[18] SAMY. The Samy worm. http://namb.la/popular.
[19] SU, Z., AND WASSERMANN, G. The essence of command in-

jection attacks in Web applications. In ACM POPL (2006).
[20] TALAGA, P., AND CHAPIN, S. Towards a guaranteed (X)HTML

compliant dynamic Web application. Springer LNBIP 101, 2012.
[21] TER LOUW, M., AND VENKATAKRISHNAN, V. Blueprint: Pre-

cise browser-neutral prevention of cross-site scripting attacks. In
IEEE Symposium on Security and Privacy (2009).

[22] VUTUKURU, M., BALAKRISHNAN, H., AND PAXSON, V. Effi-
cient and robust TCP stream normalization. In IEEE Symposium
on Security and Privacy (2008).

[23] YANG, E. Z. Standards-compliant HTML filtering, 2012.
http://htmlpurifier.org.

4

http://lwn.net/Articles/481976/
http://lwn.net/Articles/481976/
http://code.google.com/p/protobuf/
http://code.google.com/p/protobuf/
http://www.w3.org/TR/html5/the-end.html
http://infosecwriters.com/text_resources/pdf/JPEG.pdf
http://infosecwriters.com/text_resources/pdf/JPEG.pdf
http://code.google.com/p/owasp-java-encoder/
http://code.google.com/p/owasp-java-encoder/
http://php.net/manual/en/runkit.sandbox.php
http://php.net/manual/en/runkit.sandbox.php
http://tinyurl.com/secinterp
http://tinyurl.com/secinterp
http://tinyurl.com/closure-sec
http://tinyurl.com/closure-sec
http://namb.la/popular
http://htmlpurifier.org

	Data Confusion and Why Parsing Helps
	Towards Comprehensive Defenses
	The Case of HTML and the Web

	Building Sustainable Defenses at Scale
	Basing Tools on Annotated Grammars
	Language and Runtime Integration

	Conclusions

