
RGBDroid: A Novel Response-Based Approach to Android Privilege
Escalation Attacks

Yeongung Park
adminstor@dankook.ac.kr

Dept. of Computer Sci.

Dankook University

ChoongHyun Lee
chl@csail.mit.edu

CSAIL, Dept. of EECS

Massachusetts Institute of Technology

Chanhee Lee
lchan12@dankook.ac.kr

Dept. of Computer Sci.

Dankook Univerisity

JiHyeog Lim
marnitto@dankook.ac.kr

Dept. of Computer Sci.

Dankook Univerisity

Sangchul Han
schan@kku.ac.kr

Dept. of Computer Eng.

Konkuk University

Minkyu Park
minkyup@kku.ac.kr

Dept. of Computer Eng.

Konkuk University

Seong-Je Cho
sjcho@dankook.ac.kr
Dept. of Software Sci.

Dankook University

Abstract

Recent malware often collects sensitive information from
third-party applications with an illegally escalated priv-
ilege to the system level (the highest level) on the An-
droid platform. An attack to obtain root-level privilege
in an Android environment can pose a serious threat to
users because it breaks down the whole security sys-
tem. RGBDroid (Rooting Good-Bye on Droid) is an ex-
tension to the Android smartphone platform that effec-
tively detects and responds to the attacks associated with
escalation or abuse of privileges. Considering the An-
droid security model, which dictates that users are not al-
lowed to get root-level privilege and that root-level privi-
lege should be restrictively used, RGBDroid can find out
whether an application illegally acquires root-level priv-
ilege, and does not permit an illegal root-level process to
access protected resources according to the principle of
least privilege. RGBDroid protects the Android system
against malicious applications even when malware ob-
tains root-level privilege by exploiting vulnerabilities of
the Android platform.

This paper shows that i) a system can still be safely
protected even after the system security is breached by
privilege escalation attacks, and ii) our proposed re-
sponse technique has comparative advantage over con-
ventional prevention techniques in terms of operational
overhead which can lead to significant deterioration of
overall system performance. RGBDroid has been imple-
mented on an embedded board and verified experimen-
tally.

1 Introduction

Android is a Linux based mobile operating system. It
strengthens security through basic security mechanisms
in Linux. However, it still has security vulnerabilities.
Recently, malicious codes exploiting these vulnerabili-
ties have been rapidly increasing [2, 14]. Some mali-

cious Android codes carry out adverse actions with root
privilege, the highest administrator privilege in Android,
acquired through privilege escalation attacks [5, 6, 13].
Since resource access restrictions of the Android secu-
rity model [14] can be lifted by such malicious root
privilege attacks, an attacker who obtains root privilege
can perform various adverse actions. In fact, malwares
such as GingerMaster [5], DroidKungFu [6], and Droid-
Dream [13] make the system act as a bot, a compromised
computer, by installing a malicious app without notice
through the abuse of root privilege acquired by privilege
escalation.

This paper presents RGBDroid, a novel security model
that provides a fundamentally new approach to protect
the system against privilege escalation attacks in the An-
droid environment. Instead of trying to prevent privilege
escalation attacks, RGBDroid responds to the attacks to
achieve the same goal (i.e., protecting the system from
the adverse actions attainable through privilege escala-
tion).

The Android security model does not allow a user to
acquire root privilege directly; it allows only parts of An-
droid systems to acquire limited root privilege. RGB-
Droid is a security scheme designed to protect a system
by detecting and responding to the root privilege acqui-
sition by an attacker or unauthorized apps through priv-
ilege escalation attacks. In addition, RGBDroid restricts
access with root privilege to resources by strictly apply-
ing the principle of least privilege. RGBDroid detects
unauthorized acquisition of root privilege and restricts
access to protected resources by an illegal root-level pro-
cess using pWhitelist and Criticallist. pWhitelist is a list
of normal system programs that can be executed with
root privilege. Even if a malicious app acquires root
privilege, it cannot execute any programs or access any
resources since it is not in the pWhitelist. In addition,
RGBDroid uses Criticallist to prohibit a malicious app
from affecting user processes’ execution directly or indi-
rectly by manipulating resources that are critical to the



operation of the Android system. Criticallist has a list of
critical resources that can affect user apps and are vital
in operating Android, and protects such critical resources
from being manipulated by a root privileged process.

This paper shows that RGBDroid can effectively pro-
tect the system against malicious behaviors at the kernel
level through an experiment of root shell acquisition and
an experiment based on a system resource access sce-
nario. We also show efficiency of the proposed scheme
by performance analysis.

This paper is organized as follows. In Section 2, we
describe the features of the Android security model and
analyze malicious codes that attempt privilege escalation
attacks in the Android environment. In addition, we an-
alyze the limitations of the conventional security tech-
nologies and explore the needs for a system level security
mechanism. Section 3 introduces RGBDroid as a way to
mitigate such limitations. In Section 4, we show the ef-
fectiveness of RGBDroid through experiments based on
actual malicious behavior scenarios. Section 5 analyzes
the performance of RGBDroid and we summarize our
conclusions in Section 6.

2 Related Work

2.1 The Android Security Model

Android is a Linux-based system. Application programs
and system parts execute within their own processes.
Android provides functions such as preemptive multi-
tasking, efficient memory management, and user and
group control. In addition, its application program privi-
lege mechanism prevents Java applications from abusing
the system and resources, and developers are forced to
sign their application programs to distribute them [2, 14].

Overall protection between Android applications and
the system is based on standard Linux protection mech-
anism such as assigning a user-ID(UID) or group-
ID(GID) to application. Additional protection is imple-
mented through a permission framework that restricts
specific operations of processes. The permissions are
specified in the AndroidManifest.xml file during applica-
tion development, and once the development completes
the permissions cannot be changed. The user is informed
of the specified permissions at installation time. If the
user confirms these the app is installed and operates.

As mentioned, Android provides sandboxing based on
UIDs and GIDs, file access control of user programs, and
account access control using file system configuration.
Android also prevents users from using root privilege di-
rectly to protect the system against incautious user activ-
ities.

2.2 Security Problem in Android

There have been a number of efforts to enhance se-
curity in Linux. Examples include TrustedBSD [16],
AppArmor [3], TrustedSolaris [4], GRSecurity [8], and
SELinux [11]. Most of them aim at precluding illegal
resource access and privilege escalation. However every
vulnerable point cannot be predicted in various comput-
ing environments. In the research by Chen et al. [3], OS
level security policies are analyzed and compared, and
the authors present attack scenarios that install a rootkit
into Ubuntu 8.04 servers under SELinux and AppArmor.

Rooting is exploiting the vulnerability of the Android
platform and acquiring root privilege. It includes at-
tacks on the Linux kernel, daemons, and services. Once
rooted, normal users can acquire root privilege, make se-
curity mechanisms useless, and add or remove arbitrary
functions. Enck et al.[2] show that the address book DB
can be accessed through an ADB shell after rooting.

Recent privilege escalation attacks on Android exploit
trusted programs in a similar way to that in the research
by Chen et al. [3]. Privilege escalation attacks may by-
pass Android security mechanisms and pose a serious
threat. In this perspective, a new approach is needed that
effectively detects and defeats the attacks related to esca-
lation or abuse of privilege.

2.3 Analysis on malware with rooting

The recent privilege escalation attacks such as Droid-
KungFu [6], DroidDream [13] and GingerMaster [5] per-
form malicious actions not only at the user level but also
at the system level.

DroidKungFu infects Android market applications.
Infected applications add a new receiver component and
a new service component. The receiver component is no-
tified when the Android platform completes booting, and
then it invokes the service component. Through the ser-
vice component DroidKungFu collects and sends various
pieces of information such as IMEI(International Mobile
Equipment Identity), Device ID and SDK version to a
remote server, then it tries to obtain a root shell. The
root shell receives commands from a C&C(Command
and Control) server, and installs a hidden backdoor ap-
plication. The infected phone is thus converted to a bot.

GingerMaster and DroidDream have some similari-
ties. Both infect normal Android applications. Once an
infected application is installed, it registers a service, col-
lects information on the user’s device, transfers the infor-
mation to a remote server and tries to obtain a root shell.
The root shell installs another malicious application that
receives commands from a C&C server. The malware
can successfully evade the detection of most mobile anti-
virus software.

2



2.4 Security Solutions in Android

Behavior of most Android malwares using privilege es-
calation attacks is similar to that of DroidDream, Droid-
KungFu, and GingerMaster. Most Android security
software tries to detect such malware using signature
based detection. However, signature based detection is
easy to evade, and is useless in detecting unknown mal-
ware [12, 15].

Several solutions have been proposed for enhancing
Android security. Each solution requires modifying the
Android middleware layer and installing one or more ex-
tension components. Kirin [18] is an extension compo-
nent of the Android application installer. It certifies an
application based on the application’s security policy and
Kirin’s security policy. Saint [9] adopts a fine-grained ac-
cess control model and governs install-time permission
assignment and run-time use.

TaintDroid [17], based on taint analysis, tracks the
flow of privacy-sensitive data. When the data are trans-
mitted over the network, users are notified to identify
misbehaving applications. QUIRE [7] is a security solu-
tion that can defend against privilege escalation attacks
via confused deputy attacks. To address this problem,
when there is an Inter Process Communication (IPC) re-
quest between Android applications, QUIRE [7] allows
the applications to operate with a reduced privilege of its
caller by tracking the call chain of IPCs.

Since most security solutions perform in the middle-
ware layer, they can defeat malicious applications in the
user layer efficiently. However, it is difficult to detect
misbehavior in the system layer. Therefore, a new secu-
rity solution is needed that can defeat privilege escalation
attacks and protect the system layer.

3 RGBDroid Design

This paper presents RGBDroid, a novel security model
that adopts a fundamentally new approach called
“postvention” and provides an effective system protec-
tion mechanism by using an Android feature that root
privileges are allowed restrictively only to particular pro-
grams required to operate Android. RGBDroid is not a
prevention technique such as those that existing Linux
security techniques focus on to prevent privilege escala-
tion attacks, but is instead and effective response tech-
nique when root privilege is temporarily hijacked by
privilege escalation attacks. Temporarily hijacked root
privileges signify a condition that an attacker can directly
or indirectly manipulate the control flow of a vulnerable
program with root privileges. If the control flow of a vul-
nerable program with root privileges is manipulated by
an attacker, activities the attacker wants can be executed
by calling particular functions. For example, an attacker

Figure 1: RGBDroid overview

can seize root privileges by manipulating the control flow
of a program that has a security vulnerability and then by
executing shell code through the system() function. In
order to defend these actions, RGBDroid can restrict un-
limited access to resources, and detect and respond to the
privilege escalation attacks by applying the principle of
least privilege based on pWhitelist and Criticallist. The
overall structure of RGBDroid is shown in Figure 1.

The current Android security system requires the use
of a particular interface when a user layer (UID is greater
than or equal to 10000) process accesses system layer
(UID is smaller than 10000) resources. When a system
layer process accesses user layer resources, the Android
system controls the access based on the group that the re-
source owner belongs to according to the Discretionary
Access Control (DAC) policy. However, because root
privileges can modify and control all parts of the oper-
ating system, the current Android security system that
does not particularly restrict root privileges can be easily
incapacitated by privilege escalation. An attacker can ac-
cess all system resources unlimitedly by exploiting such
a vulnerability. To deal with these problems, RGBDroid
is located in the kernel area as shown in Figure 1, and su-
pervises and controls servicing resource access requests
from a process. RGBDroid hooks several system calls
including open() and write() so that the calls are moni-
tored whenever a suspicious process requests access to
core resources. RGBDroid allows or denies access based
on pWhitelist and Criticallist. In order to control access
to resources, RGBDroid classifies resources in Android
into two layers as shown in Figure 2. System layer re-
sources are the resources owned by the accounts whose

3



Figure 2: Hierarchical classification of resources

UID(User IDentifier) is less than 10000, and user layer
resources are the resources owned by the accounts whose
UID is greater than or equal to 10000. Examples of sys-
tem layer resources are core.jar and framework.jar that
are files of library functions used for the Android frame-
work. Examples of user layer resources are the contact
list database, SMS, photographs, videos, etc.

RGBDroid systematically monitors and controls ac-
cess to resources of the two layers depending on the prin-
ciple of least privilege. RGBDroid reinforces Android
security features by monitoring and restricting each re-
source access request that a root privileged app issues.
RGBDroid is located between the system call entry and
original kernel subsystems, and has been implemented as
a Loadable Kernel Module(LKM) to monitor a resource
access request of root privilege. By using LKM, the An-
droid kernel does not have to have all possible function-
ality already compiled into the base kernel; that is, dy-
namically loading our module into and unloading it from
kernel are possible. Inconvenience during development
caused by a limitation of root privilege usage and re-
source access can thereby be prevented. In addition, be-
cause modification of the Android platform itself is not
required, it is easy to apply RGBDroid to an existing An-
droid system.

Because RGBDroid is implemented through LKM,
RGBDroid can be incapacitated or evaded by some types
of attacks. A representative example is to unload the
LKM module that is already loaded into the kernel using
the rmmod system call. RGBDroid detects and blocks
such attempts to unload it by hooking the rmmod call.
In addition, an attempt to inject malicious code into a
process trusted by the pWhitelist is a possible attack, but
root privilege is required to attack processes protected by
pWhitelist using the ptrace call. It is not easy to perform
a particular behavior through code injection via calling
the ptrace using temporarily acquired root privilege.

If LKM is disabled in the Android kernel, our pro-
posed solution requires a rooted device and a kernel re-
compilation. A preferred method is for an Android plat-
form developer to adopt our solution before the final re-
lease of their product.

3.1 pWhitelist
pWhitelist is the list of programs that can use root priv-
ileges, and RGBDroid permits access to resources re-
quested only by a program with root-level privileges in
the pWhitelist. RGBDroid denies any resource access
request made by a program which is not a member of
pWhitelist. By using such denial of resource request,
RGBDroid protects the system against unlimited access
to resources by malware with root privileges obtained
through a privilege escalation attack.

Because Linux manages each of resources as a file,
RGBDroid monitors each file access request made by a
program with root privilege by hooking open() system
call in kernel level and controls resource access of root
privilege using the algorithm shown in Figure 3. As a
side note, it is difficult for Linux on PC platforms to
adopt an access control scheme using pWhitelist as in
RGBDroid; because a root user can directly use root
privilege in a PC Linux system, it is not possible to pre-
dict which programs will be installed or which resources
will be accessed by a program with root privileges. Nev-
ertheless, such software does exist: LIDS (Linux Intru-
sion Detection System) [1] employs security functional-
ity for PCs which is very similar to that of RGBDroid.
LIDS requires a user to directly set access privileges for
each resource in the process of kernel compilation.

pWhitelist includes a total 15 processes, and any pro-
cess not listed in pWhitelist cannot use root privilege.
After temporarily obtaining root privilege through a priv-
ilege escalation attack, a malicious app needs to run a
particular program with root privilege in order to keep
the root privilege continuously. At this stage, RGBDroid
can effectively defend the system by blocking that par-
ticular program with pWhitelist. As a result, a malicious
app fails to keep the root privilege that is temporarily hi-
jacked.

The process information in pWhitelist is gathered by
logging and analyzing information of processes that uses
root privilege. pWhitelist is stored and maintained as an
independent file. The list is generated by reading the
pWhitelist file during booting phase and kernel initial-
ization. Thus, it is possible to immediately update the
process list whenever Android adopts a new process with
root privilege.

3.2 Criticallist
Criticallist is a list of system layer resources that even a
process with root-level privileges cannot modify. These
include critical resources that are essential to operate the
Android platform. An attacker who has illegally seized
root privilege accesses and manipulates critical resources
in system layer can perform malicious activities such as

4



unsigned short uid;
unsigned short euid;

if uid == 0 OR euid == 0
if !(procname == procname_in_whiltelist)

return deny;
call sys_open();

Figure 3: A hooked open() system call using pWhitelist

Table 1: Protected resources of Criticallist
Resource Name

All the resources of /System/framework directory
/System/etc/hosts

All the resources of /System/lib directory

installing a Managed Code Rootkit [10]. These activities
can modify the Android middleware subsystem, and can
thus affect the control flow of all programs that run on
the subsystem. An attacker can also perform various ma-
licious behaviors by manipulating the configuration files
of the Android framework (For example, redirecting a
request for a specific URL to the attacker’s server by ma-
nipulating the /system/etc/hosts file). RGBDroid disal-
lows malware with root privilege to modify system layer
resources that do not need to be modified by root privi-
lege and can result in serious adverse effects to the sys-
tem if manipulated. Note that access to such resources
by non-root privilege is restricted by the default Android
security mechanism. The system layer resources that are
protected by Criticallist in the current version of RGB-
Droid are shown in Table 1.

The /system directory that contains system resources
is mounted as read-only and all resources are owned by
root. Therefore, if a non-root user accesses system re-
sources, the access is restricted and controlled by the
default access control policy of Android kernel because
RGBDroid is built on top of the existing Android secu-
rity model. However, because an attacker with root priv-
ilege can change the read-only permission of the /sys-
tem directory into readable/writable permissions through
remount using mount command, and critical resources
under the /system directory can then be manipulated by
write operation. If critical resources like DNS are mod-
ified, this can cause severe damage to the user or to
apps. Criticallist is structured for protecting such im-
portant system resources that must maintain integrity. It
blocks illegal access to critical resources by wrapping the
original write() system call with the algorithm shown in
Figure 4.

Using the resource access policy based on Critical-
list, RGBDroid can efficiently detect and block unau-
thorized access to critical resources. As a result, RGB-

unsigned short uid;
unsigned short euid;

if uid == 0 OR euid == 0
if pathname == resource_in_criticallist

return deny;
call sys_write();

Figure 4: A hooked write() system call using Criticallist

Droid can effectively protects the entire Android system
against various privilege escalation attacks by detecting
and tightly restricting i) illegal access to critical system
layer resources and ii) any further malignant behavior of
an attacker who temporarily seizes root privileges.

4 Implementation and Experiments

The experiments were conducted assuming that mali-
cious Android code has temporarily seized root privilege
via a privilege escalation attack. Through analysis of
existing malicious Android code, we consider both ac-
tual and possible malignant activities by malicious apps
with root privileges. Then, we prove the effectiveness
of RGBDroid by showing those malignant activities fail
with our proposed mechanism. Experiments were con-
ducted on an H-AndroSV210 board using Android ver-
sion 2.2.

4.1 Shell acquisition
According to the Android security model, Android users
cannot directly use root privileges and a shell program
does not need to be executed with root privileges. How-
ever, most of the malicious codes using privilege esca-
lation attacks in Android try to execute a shell program
with root privileges in order to maintain their temporar-
ily seized root privileges. If the execution of the shell
program with root privileges is not permitted, the at-
tacker cannot maintain root privileges continuously and
the privilege escalation attacks eventually fail.

Figure 5 shows a screenshot of the execution of the
root shell by connecting H-AndroSV210 through An-
droid Debug Bridge (ADB) when our proposed scheme

Figure 5: A successful execution of root shell with RGB-
Droid off

5



Figure 6: A failure message when attempting to execute
shell program with RGBDroid on

is not applied. In Figure 5, we can see the root shell is
indeed executed. This demonstrates that malware can ob-
tain root shell access through malicious activity. Figure
6 is a screenshot which shows that the attempt to execute
a shell program with root privilege fails in the Android
board when RGBDroid is active. Figure 6 shows that ac-
cess to the libc.so file is denied and thus the execution
of the shell program fails. Because the shell program,
which is not in the list of processes that can use root priv-
ileges, attempts to run using root privilege, pWhitelist in
RGBDroid blocks access to the resources required to run
the shell program and consequently the attempt fails. In
addition, even if a reverse shell is used, the attempt fails
for the same reason as above because the shell program
must be executed on the target system. This mechanism
can block most of the attempts to acquire the root shell
in current Android.

4.2 Managed Code Rootkit attack
The managed code rootkit is an attack by manipulat-
ing resources required for executing a virtual machine
of platform independent languages. Examples of man-
aged code are Java, .NET, PHP, Python, Perl, etc. An-
droid interprets a modified version of the Java language
by using a virtual machine called Dalvik which is sim-
ilar to the JVM. Thus, a managed code rootkit attack
may be executed by manipulating base resources for run-
ning Android’s Dalvik virtual machine. There are a va-
riety of base resources required to run the Dalvik vir-
tual machine, ranging from Java libraries such as Frame-
work.jar and Core.jar to many native libraries located in
/system/framework/lib. They are various attack surfaces.
The current Android version executes the Dalvik virtual
machine without verifying whether such libraries are il-
legally modified or not, making the rootkit attack possi-
ble by manipulating the base resources.

In the experiment, the code for the getByName func-
tion in /system/framework/core.jar file is modified to at-
tempt a DNS spoofing attack. Figure 7 shows the result.

The getByName function used for the DNS spoofing
attack in Figure 7 is a function that returns the IP address
corresponding to a URL received as an argument. In our
experiment, we manipulated the code for getByName so
that it returns the IP address of www.naver.com if it re-

Figure 7: Screenshot that shows successful DNS spoof-
ing attack

Figure 8: Screenshot showing successful replacement of
core.jar file when RGBDroid is off

ceives www.victim.com as the URL argument. As shown
in Figure 7, the attempt was successful. The managed
code rootkit attack shown in Figure 7 inserts a rootkit
by replacing the /system/framework/core.jar file with our
manipulated core.jar file. By using a root shell we can
verify that core.jar file can indeed be replaced (Figure 8).
After applying RGBDroid, the attempt to replace core.jar
by using the same instructions fails as shown in Figure 9.
This occurs because RGBDroid restricts the write oper-
ation to the /system/framework/ directory. Manipulation
of the various system configuration files in /system/etc
directory can similarly be defended.

5 Performance

Performance measurement and evaluation are performed
in the same experimental environment as in section 4.
We evaluate performance by comparing user program ex-
ecution time and I/O throughput before and after RGB-
Droid is applied. Performance measurements were con-
ducted using AndroBench 3.1, an Android storage per-
formance measurement program.

Figure 9: Screenshot showing unsuccessful attempt to
replace core.jar file when RGBDroid is on

6



Table 2: I/O Performance Measurement Table (Unit:
TPS (Transactions Per Second))

Count Before RGBDroid After RGBDroid
Insert Update Delete Insert Update Delete

1 25.77 28.17 28.28 24.83 26.56 26.71
2 26.02 28.69 28.1 25.22 26.83 26.67
3 26.14 28.95 28.58 24.84 27.17 23.95
4 26.8 28.72 28.76 23.95 26.36 26.69
5 25.94 28.81 28.3 22.98 26.23 25.36
6 27.4 28.4 28.79 24.78 25.52 26.44
7 24.51 28.67 28.66 23.25 26.69 26.03
8 27.23 27.37 28.5 25.09 27.23 26.89
9 24.49 28.53 27.55 25.03 26.1 26.5
10 26.99 28.73 28.67 25.12 27.33 25.64

Ave. 26.13 28.50 28.42 24.51 26.60 26.09

Table 3: User processing time measurement table (Unit:
second)

Count Before RGBDroid After RGBDroid
Insert Update Delete Insert Update Delete

1 11.64 10.64 10.6 12.07 11.29 11.23
2 11.52 10.45 10.67 11.89 11.17 11.24
3 11.47 10.36 10.36 12.07 11.04 12.52
4 11.19 10.44 10.42 12.52 11.37 11.23
5 11.56 10.41 10.59 13.05 11.43 11.82
6 10.94 10.56 10.42 12.1 11.75 11.34
7 12.23 10.46 10.46 12.9 11.23 11.52
8 11.01 10.95 10.52 11.95 11.01 11.16
9 12.24 10.51 10.88 11.98 11.49 11.31
10 11.11 10.44 10.46 11.94 10.97 11.7

Ave. 11.49 10.52 10.54 12.25 11.27 11.51

5.1 I/O throughput
Table 2 shows the results of executing 10 cycles of 300
insert operations, 300 update operations, and 300 delete
operations, in SQLite right after Android booted on the
H-AndroSV210 board. As shown in the table, the av-
erage number of transactions per second (TPS) before
applying RGBDroid are 26.13, 28.50, and 28.42 respec-
tively for the three operations and those after applying
RGBDroid are 24.51, 26.60, and 26.09. After applying
RGBDroid, I/O throughput diminishes by 6.2%, 6.7%,
and 8.1% for insertion, update, and deletion respectively.
The overall average I/O throughput of the three opera-
tions decreases by 7%.

5.2 User Program Processing Time
We measured time consumed for insert, update, and
delete operations that the AndroBench 3.1 performed as
user program processing time. Table 3 shows that the
processing time increases by 6.2%, 6.7%, and 8.4% for
each operation after RGBDroid is applied. Average pro-
cessing time for all three operations increases by 7%
overall, which can be considered small processing over-
head.

Figure 10: Comparison of I/O performance measurement
before and after RGBDroid is activated

Figure 11: Comparison of user processing time measure-
ment before and after RGBDroid is activated

5.3 Analysis

Table 2 and Table 3 show that the operations required for
RGBDroid to control resource access by hooking system
call functions related to file I/O do not affect the sys-
tem performance significantly. Figure 10 and Figure 11
show the graphical comparison of these measurement re-
sults before and after RGBDroid is activated. While I/O
throughput diminishes by 7% and the user program pro-
cessing time increases by 7%, the overhead is acceptable
considering the level of protection that RGBDroid can
provide. Conventional security mechanisms approaches
privilege escalation attacks from the perspective of pre-
venting them. In order to prevent the attacks, it is nec-
essary to predict potential vulnerabilities in the system.
Such prediction requires monitoring and tracing various
parts of the system, which inevitably leads to significant
performance degradation. More importantly, predicting
all possible vulnerabilities is unrealistic in practice as
well as in principle. However, the response based ap-
proach described in this paper, does not rely on the spe-
cific knowledge of an individual vulnerabilities. Instead
of the high cost of prediction, it responds to attacks by
blocking actual adverse actions at the last stage when
a root privileged attacker attempts to actually access
security-critical or protected resources. In this way, the
response based approach emasculates the hijacked root

7



privileges making them nominal root privileges. In sum-
mary, after an attacker succeeds in acquiring root priv-
ileges temporarily through privilege escalation attacks,
the possible activities required to keep root privileges and
the potential adverse actions are limited and predictable
in contrast with the great many unpredictable potential
vulnerabilities in the prevention based approach. There-
fore, because the response based approach does not re-
quire monitoring numerous parts of the system and needs
few additional operations, it causes only a small perfor-
mance overhead unlike the prevention approach.

6 Conclusions

Recent malicious Android codes manipulate system re-
sources or make the system into a bot by seizing
root privileges through privilege escalation attacks and
stealthily installing malware without notice. This paper
presents a solution, RGBDroid, that protects the system
by effectively responding after an attacker has already at-
tained root-level privilege. This paper shows experimen-
tally that malware cannot execute specific applications to
hold root privileges and that an attacker fails to adversely
manipulate system resources. RGBDroid is a fundamen-
tally different approach from the prevention approaches
that conventional security solutions have used since it
protects the system after root privileges are hijacked with
privilege escalation attacks. Prevention approaches have
a high risk of becoming incapacitated because all possi-
ble vulnerabilities in the kernel or user applications can-
not be predicted. However, the present approach of re-
sponding to an attack immediately after its occurrence is
very efficient because it does not require monitoring or
predicting the potential vulnerabilities but just requires
blocking possible malicious acts after the attack. Even
though limiting root privileges may suggest added incon-
venience for users, the security approach of RGBDroid
is very suitable and efficient in an Android environment
because users do not use root privileges according to An-
droid’s security policy. The security measures proposed
in this paper present a new approach in security studies,
and furthermore, show new possibilities in security re-
search in other operating systems as well as Android.

7 Acknowledgments

This research was supported by the Basic Science Re-
search Program through the National Research Founda-
tion of Korea (NRF) funded by the Ministry of Educa-
tion, Science and Technology (2011-0026301) and by
the National IT Industry Promotion Agency (NIPA) un-
der the program of Software Engineering Technologies
Development.

References
[1] ALLEM, T. Lids - deploying enhanced kernel security in linux.

Technical report, SANS, Feb 2001. http://www.lids.org.

[2] ENCK W, O. M. M. P. Understanding android security. Security
& Privacy 7 (Feb. 2009), 50–57.

[3] H.CHEN, N.LI, Z. Analyzing and comparing the protection
quality of security enhanced operating systems. In ISOC Con-
ference 2009 (2009), Annual NDSS Symposium’09.

[4] INC., S. M. Trusted Solaris User’s Guide, 1 ed. Wiley Publishing
Inc., 2001.

[5] JIANG, X. Gingermaster: First android malware utilizing a
root exploit on android 2.3 (gingerbread). http://www.cs.
ncsu.edu/faculty/jiang/GingerMaster/.

[6] JIANG, X. Security alert: New sophisticated android
malware droidkungfu found in alternative chinese app mar-
kets. http://www.csc.ncsu.edu/faculty/jiang/
DroidKungFu.html.

[7] M. DIETZ, S. SHEKHAR, Y. P. A. S., AND WALLACH, D. S.
Quire: lightweight provenance for smartphone operating sys-
tems. In Proceedings of the USENIX Security Symposium (2011),
Seuciry’11.

[8] M. FOX, J. GIORDANO, L. S., AND THOMAS, A. Selinux
and grsecurity: A case study comparing linux security ker-
nel enhancements. http://cs.virginia.edu/jcg8f/
GrsecuritySELinuxCaseStudy.pdf/.

[9] M. ONGTANG, S. MCLAUGHLIN, W. E., AND MCDANIEL, P.
Semantically rich application-centric security in android. In Pro-
ceedings of Annual Computer Security Application Conference
(2009), ACSAC ’09.

[10] METULA, E. .net framework rootkits: Backdoors inside your
framework. Tech. rep., BlackHat, April 2009.

[11] RUNGE, C. SELinux: A New Approach to Secure Systems, 1 ed.
Redhat, 2004.

[12] SCHMIDT, A.-D.; BYE, R. S. H.-G. C. J. K. O. Y. K. C. S.
A. S. Ststic analysis of executables for collaborative malware
detection on android. In Proceedings of the IEEE International
Conference on Communications (2009), ICC ’09, pp. 1–5.

[13] SECURITY, L. M. Lookout mobile security technical tear down
- droiddream. Tech. rep., Lookout Mobile Security, 03 2011.

[14] TEAHYUN KIM, HYUNWOOK JIN, I. K. S. P. K. K. S. C. S. H.
Analysis of android mobile platform security model. Tech. rep.,
Korea Internet & Security Agency, University of Seoul, Seoul,
Korea, 08 2010.

[15] TROY VENNON, D. S. Threat analysis of the android market.
Tech. rep., SMOBILE SYSTEMS, June 2010.

[16] WATSON, R. N. M. Trustedbsd adding trusted operating system
feature to freebsd. In Proceedings of the USENIX Annual Tech-
nical Conference (2001), ATC ’01.

[17] W.ENCK, P.GILBERT, B.-G. L. P. C. J. J. P. M., AND SHETH,
A. N. Taintdroid: An information-flow tracking system for real-
time privacy monitoring on smartphones. In Proceedings of the
9th USENIX Symposium on Operating Systems Design and Im-
plementation (Oct 2010), OSDI’10.

[18] W.ENCK, M. O., AND MCDANIEL, P. On lightweight mo-
bile phone appiication certification. In Proceedings of ACM CCS
(November 2009), CCS’09.

8


