
ROSS: A Design of Read-Oriented STT-MRAM Storage for
Energy-Efficient Non-Uniform Cache Architecture

Jie Zhang, Miryeong Kwon, Chanyoung Park, Myoungsoo Jung, and Songkuk Kim
School of Integrated Technology,

Yonsei Institute Convergence Technology,
Yonsei University

jie@yonsei.ac.kr, miryeong.kwon@yonsei.ac.kr, chanpark@yonsei.ac.kr, m.jung@yonsei.ac.kr, songkuk@yonsei.ac.kr

Abstract
Spin-Transfer Torque Magnetoresistive RAM (STT-
MRAM) is being intensively explored as a promis-
ing on-chip last-level cache (LLC) replacement for
SRAM, thanks to its low leakage power and high stor-
age capacity. However, the write penalties imposed by
STT-MRAM challenges its incarnation as a successful
LLC by deteriorating its performance and energy effi-
ciency. This write performance characteristic unfortu-
nately makes STT-MRAM unable to straightforwardly
substitute SRAM in many computing systems.
In this paper, we propose a hybrid non-uniform cache
architecture (NUCA) by employing STT-MRAM as a
read-oriented on-chip storage. The key observation here
is that many cache lines in LLC are only touched by
read operations without any further write updates. These
cache lines, referred to as singular-writes, can be in-
ternally migrated from SRAM to STT-MRAM in our
hybrid NUCA. Our approach can significantly improve
the system performance by avoiding many cache read
misses with the larger STT-MRAM cache blocks, while
it maintains the cache lines requiring write updates in
the SRAM cache. Our evaluation results show that, by
utilizing the read-oriented STT-MRAM storage, our hy-
brid NUCA can better the performance of a conven-
tional SRAM-only NUCA and a dead block aware STT-
MRAM NUCA by 30% and 60% with 45% and 8%
lower energy values, respectively.

1 Introduction

Last-level cache (LLC) is utilized as a shared resource
in most commercial multicore products and co-processor
architectures [6], making it a pivotal design component
in determining both system performance and energy-
efficiency. While many emerging applications enjoy the
massive parallelism and high computational power of
multicore systems, they are required to manage large
datasets presenting challenge of scale, which in turn
leads to the demand for integrating larger LLCs in mod-
ern computing system [2].

Static Random Access Memory (SRAM) has been
the prevailing technology for on-chip cache, success-
fully catering to the latency demands of the high perfor-
mance processors. However, SRAM’s cell design consti-
tutes a large number of transistors (usually six, at least
four), making it a low-density device with considerably

high leakage power. With increasing demand for larger
caches, SRAM is struggling to keep up with the density
and energy-efficiency requirements set by state-of-the-
art system designs.

Thanks to the device-level advantages of STT-MRAM
such as high-density structure, zero leakage current, and
very high endurance, it comes out as an excellent candi-
date to replace age-old SRAM for LLC design. However,
the performance of STT-MRAM is critically sensitive to
write frequency due to its high write latency and energy
values. Therefore, an impulsive replacement of SRAM
with high-density STT-MRAM, simply for increasing
LLC capacity, can deteriorate cache performance and in-
troduce poor energy consumption behavior.

Extensive research is taking place to address these
challenges. Guangyu et al [8] proposed a 3D-stacked
STT-MRAM, which intends to hide the long-latency of
STT-MRAM on writes by adding a small SRAM write
buffer to each STT-MRAM bank. Asit K. et al [9] dis-
cussed a memory request scheduling scheme on a 3D
multicore environment integrating STT-MRAM, which
aims to resolve the STT-MRAM write issues at the on-
chip network level. This approach promoted an idea
of re-routing subsequent requests to idle cache banks,
instead of the write-busy bank. While these proposed
schemes can partially alleviate the write overhead prob-
lem imposed by STT-MRAM, the quest for an energy-
efficient cache still remains unconquered. In addition,
the hybrid cache using SRAM-based write buffer is un-
aware of application behaviors, and its benefits are re-
stricted by the amount of available buffer at runtime.

We observe that performance and energy-efficiency
of a hybrid cache critically depend on its internal data-
movement trend, and by studying such trends we can
modify the cache architecture accordingly to get the best
out of it. Specifically, we observe that nearly 90% of the
data in a LLC can actually be written only once during
its lifetime, which has been reported as “deadwrites” in
[13]. One of the potential approaches to eliminate STT-
MRAM’s disadvantages, being aware of this deadwrite
characteristics, is to bypass the writes associated to the
deadwrites to the underlying main memory. However,
we also observe that, about 60% of total read misses re-
sults from such bypassed write data.

In this paper, we propose a Read-Oriented STT-
MRAM Storage (ROSS) based non-uniform cache ar-
chitecture (NUCA), that can avail combined benefits of
a hybrid design and the data movement/usage trends



in a LLC. We built upon the standard NUCA architec-
ture, and modified it to develop a high-capacity hybrid
cache where designated SRAM banks are replaced with
STT-MRAM banks. This inclusion of high-density STT-
MRAM blocks enables the cache to attain larger storage
capacity, as well as higher energy efficiency. In our pro-
posed architecture, cache data with singular-write char-
acteristics (i.e., data is written only once and is not re-
referenced by any latter write operations) are migrated
from the SRAM cache blocks to the STT-MRAM blocks
inside the LLC, rather than bypassing them to the main
memory. As a result, our proposed scheme allows the
cache controller to free up sufficient SRAM blocks for
write intensive data, without sustaining the read oper-
ation overheads imposed by off-chip memory accesses.
Our comprehensive evaluation results show that, our
ROSS cache significantly improves the overall LLC per-
formance, incurring only a minor overhead from the data
migration process. The main contributions of this work
can be summarized as follows:
• Evaluation of data movement trend in the LLC. We ex-
tensively evaluate data read and write trend in the LLC
for a wide range of memory-intensive workloads. This
motivational evaluation allows us to better understand
the actual trend of data movement in the LLC, and to
modify our architecture accordingly, for optimum per-
formance and energy-efficiency.
• Development of ROSS based NUCA. Motivated from
the observations, we propose two novel hybrid ROSS
based non-uniform cache architectures. The first one
is hybrid ROSS (HB-ROSS) that takes advantage of
SRAM’s low write latency and small write power as
well as STT-MRAM’s high density and energy efficiency
by detecting and retiring data with singular-write from
SRAM to STT-MRAM. Second, to further optimize en-
ergy efficiency, early retirement ROSS (ER-ROSS) is de-
signed to reduce SRAM capacity, while maintaining high
performance. Differing from HB-ROSS, ER-ROSS re-
tires all potential singular-write data sets at early stage.
• Comprehensive system-level evaluation. We evalu-
ate and compare our proposed ROSS-based NUCA with
a SRAM-only NUCA and a dead block aware STT-
MRAM based NUCA, and show that our proposed ROSS
caches show significant improvement in terms of both
cache performance and energy-efficiency. Specifically,
compared to the prior work, our singular-write aware
ROSS cache improves LLC performance by upto 60%,
and consumes upto 50% less energy at system level.

2 Background

SRAM Cache. Table 1 lists the technology features of
SRAM and STT-MRAM. In practice, SRAM has a six-
transistor structure and has high static power due to sub-
threshold and gate leakage currents. It exhibits excellent
latency values and low dynamic energy consumption due
to the simple read/write operations and its latch-like stor-
age mechanism.

SRAM STT-MRAM

Cell Structure �
�
�

�
�
�

��

��

�
�

Cell Area (F2) 50-120 6-40
Leakage (mW) 75.7 6.6

Read Latency (ps) 397 238
Write Latency (ps) 397 6932
Read Energy (pJ) 35 13
Write Energy (pJ) 35 90

Table 1: Features of 32KB SRAM and STT-MRAM
caches [14].

STT-MRAM Cache. Compared to SRAM, STT-
MRAM is comprised of a magnetic tunnel junction
(MTJ) and a single access transistor. As a result, STT-
MRAM caches have higher density (3x ∼ 4x) and lower
leakage power. However, for the write operation, STT-
MRAM involves physical rotation of the MTJ free layer,
which requires high write latency and write power con-
sumption. High write overhead becomes a serious obsta-
cle for STT-MRAM to completely replace SRAM.
NUCA. In modern cache architectures, large LLC is em-
ployed to relieve the burden of frequent accesses to un-
derlying main memory. However, global wire delay fol-
lowed by increased cache area size, has emerged as a
dominant factor for increasing cache access time and
more access contentions. The non-uniform cache ar-
chitecture (NUCA) is proposed to reduce the penalty of
long wire delay by dividing the cache into smaller banks.
Each bank has non-uniform latency based on bank loca-
tions, smaller than what it would be if the whole cache
was a uniform cache.

3 Design and Implementation of ROSS

In this section, we first describe the motivation behind
our proposed ROSS based NUCA architecture, and then
discuss about the LLC topology, NUCA baseline and
ROSS scheme. At last, we provide the implementation
details of ROSS.

3.1 Motivation
Figure 1 shows cache eviction trend for the tested work-
loads and “1” ∼ “>5” denote the number of writes on
cache blocks. One can observe from this figure that,
nearly 90% of the written data are actually never re-
written before their eviction, referred to singular-writes.
Singular-writes can be generated by different situations
such as data fill by a single read-miss, a redundant write
just before a write-back, or an access sequence to a cache
block ending with a write-back request. In addition, we
make another critical observation from our motivational
evaluation regarding singular writes. Specifically, Fig-



Figure 1: Last Level Cache eviction trend.

Figure 2: Read-miss distribution.

ure 2 shows the distribution of read-misses for evicted
data that experience different times of write operations.
In the figure, each column presents the total number of
read-misses. One can observe from this figure that the
number of read misses caused by evicting data which has
singular writes accounting for more than 60% of the total
read misses.

Based on these observations, we propose our ROSS-
based NUCA where the data blocks with multiple writes
are assigned to SRAM blocks to take advantage of
SRAM’s low write latency, while the data blocks with
singular writes which are less impacted by longer write
latency, can be migrated in STT-MRAM, and can reap
the benefit of huge capacity brought by STT-MRAM.

3.2 An Overview of ROSS Architecture
As the capacity of LLC keeps increasing, the conven-
tional single-bank cache architecture exposes significant
latency overhead, due to the high RC delay of long word-
lines and bitlines. To mitigate such high latency, we di-
vide LLC into heterogeneous (SRAM and STT-MRAM)
cache banks to model the bottom line of our hybrid cache
(referred to as “ROSS”). Figure 3b shows the topological
overview of our proposed ROSS-based NUCA. Our pro-
posed hybrid cache consists of 64 cache banks, which are
connected by a point-to-point mesh network and man-
aged by our LLC controller. The LLC controller is re-
sponsible for coordinating cache accesses inside LLC,
communicating with memory and lower-level cache, and
making decision on data replacement. On the other
hand, each cache bank is built up by either SRAM ar-
ray or STT-MRAM array. To take advantage of SRAM’s
shorter access latency, the SRAM-based cache bank is
placed close to the LLC controller, which can signif-
icantly reduce the wire latency overhead, while STT-
MRAM banks are placed off the LLC controller.

3.3 Read-Oriented Hybrid NUCA
Traditional NUCA designs [1] are not optimized as a
platform for ROSS based LLC. In this work, we propose

����� �����	�
�	������ �������


�
�
��
�
�
���

�����
��
�
�����

�
�
�
	


�
�




�
�
�
�

�
�
�




�
�
�
�

��� ���

�	�����
	�
��
���

���� !"#������	�$�
$%��&������
' �&��()���
	�	�	��'

�
	�

�
�

�
	�

�
�

Figure 3: An overview of our proposed ROSS.

Figure 4: Cache management policy for ROSS.

a well-tailored NUCA and its corresponding cache man-
agement policy, which are shown in Figure 4.
Tailored NUCA. Considering the data movement over-
head (high write latency and energy consumption) in
STT-MRAM banks, we employ S-NUCA which stati-
cally maps data to STT-MRAM banks and does not allow
data migration later on. On the other hand, SRAM banks
follow the rule of D-NUCA strategy [1], which adjusts
hot data sets among SRAM banks to achieve best access
latency [1]. In addition, due to the limited SRAM capac-
ity, SRAM banks are also designed to migrate singular-
write data to STT-MRAM banks. Consequently, internal
data migration only happens between SRAM banks or
from SRAM to STT-MRAM banks.
Cache access workflow in ROSS. Figure 4 shows the
basic cache management policy for our ROSS cache. If
one data request misses in L1 cache, that request con-
tinues to inquire the cache banks in LLC. In case of
cache hit in either SRAM bank or STT-MRAM bank,
that bank will serve the requested data directly to the
host ¸º. On the other hand, if cache misses in LLC,
memory fill will be done to SRAM blocks on read miss
and data block will be written to SRAM banks on write-
back miss ¶·. Considering multicore system is sensi-
tive to latency, such cache miss strategy is optimized to
provide fast write response. When more space is required
in SRAM banks, SRAM banks will migrate cache blocks
to STT-MRAM banks ¹. The specific migration policy
will be described later on. Finally, when STT-MRAM is
full, it will evict data blocks to underlying memory based
on pseudo LRU policy ».
Address mapping policy. Multibanked cache shows
substantial flexibility for mapping lines to banks, as data
can be placed in any cache line of any cache bank. How-
ever, such mapping policy incurs overwhelming memory
and latency overheads to maintain a big address mapping
table. To balance the trade off between bank utilization
and overhead, we applied simple mapping [1], which is



shown in Figure 3a. According to simple mapping, 4
SRAM banks and 4 STT-MRAM banks are grouped as
a bank set. The bank set can be regarded as an associa-
tive cache structure with each cache set spreading across
multiple banks. Each bank consists of several pairs of tag
arrays and data arrays as one or more ways of the cache
set (c.f. Figure 3a). Based on the modified cache struc-
ture, the search address has been partitioned into Tag,
Index, and Bank set. Any incoming cache request will be
mapped to one bank set based on Bank set field.
Data search policy. As shown in Figure 3a, when
searching for a data block in cache, cache controller de-
cides which bank set the data belongs to, according to
the bank set. Then, the remaining address information
is sent to each pair of tag array and data array in banks
of the matched bank set. Specifically, the Index field is
used by row decoder to activate rows in tag arrays and
tag field is used for comparison.
Data migration policy. In our hybrid ROSS (HB-ROSS)
design, whenever a SRAM bank is full and should clean
up space for incoming data, one cache block which was
written for one time (singular-write candidate) is selected
to move to a STT-MRAM bank. If there are multiple can-
didates, the oldest data block among them is retired. We
assume that the oldest data that only experiences an one-
time write has the highest possibility to be a singular-
write data during its lifetime, and therefore should be
migrated to a STT-MRAM bank.

Unfortunately, HB-ROSS cannot sufficiently relieve
the network burden of data migration from SRAM to
STT-MRAM banks. For better performance, we intro-
duce an aggressive Early Retirement ROSS (ER-ROSS)
cache design. In ER-ROSS, instead of passively mi-
grating single cache block to STT-MRAM on cache fill,
cache controller searches for all qualified cache blocks
and migrates them to STT-MRAM when network is not
busy. While this aggressive migration cannot guarantee
all the cache blocks are singular-write, the penalty can
be mitigated with significant advantages such as lower
leakage from less SRAM banks, and relieving of poten-
tial traffic burst by offering more free space in SRAM.

3.4 Design Details of ROSS
To support the functionality of ROSS scheme, we in-
corporate a few components inside the cache controller.
Firstly, multiple status registers are organized as a bitmap
table for every cache line to indicate the number of write
requests accessed by each data. Status “0” represents
data with one-time write, while status “1” means the
corresponding cache line is accessed by multiple write
operations. These status registers are initialized or up-
dated after cache register handles incoming read/write
requests. In addition, we add 8-bit timing counters for
every cache line in SRAM banks to cooperate with status
registers by storing more cache lines’ information. The
timing counter has three operations:
Initialize: Whenever a cache line is updated with a new
data block, the corresponding timing counter will be re-

set by the cache controller. For example, as for singular-
write data, the timing counter only reset when its cache
line get filled. On the other hand, as for multi-write data,
the timing counter is reset when cache line is accessed by
a write request. Note that timing counter cannot replace
status registers, as timing counter cannot distinguish be-
tween singular-write data and multi-write data.
Poll: We introduce a polling mechanism to increment ev-
ery timing counter periodically, unless a timing register
has reached its maximum. Another responsibility of the
polling mechanism is to check if any timing counter has
reached the predefined threshold (e.g. 200). if one cache
line exceeds the threshold which means no write requests
access the cache line for a long time, the cache line would
be evicted to a STT-MRAM bank.
Evict: In HB-ROSS, evicting a cache line from SRAM
banks to STT-MRAM banks follows two criteria: “Status
register = 0” and “Max of all timing counters”, which de-
cide the “oldest singular-write data”. On the other hand,
in ER-ROSS, “Status register = 0” and “timing counter
reaches threshold” are the criterion to evict cache lines.

4 Evaluation Methodology

Simulation Setup. For our evaluation, we have used the
gem5 simulator [11], one of the most recognized archi-
tectural simulators. We modified the cache segment of
the simulator to evaluate the STT-MRAM cache and our
proposed hybrid configurations. Table 2 depicts the main
simulation parameters.
Simulated Configurations. In our evaluation, we com-
pared two variations of our proposed ROSS architecture
with SRAM-only NUCA and dead block aware STT-
MRAM-only NUCA. Table 3 shows the details of the
four architectures.
• Normal Non-Uniform Cache Architecture (ND-
NUCA). In this model, the whole on-chip cache is con-
structed with traditional SRAM in D-NUCA model [1].
• Dead Block aware Non-Uniform Cache Architecture
(DB-NUCA). The entire cache banks are made up of
STT-MRAM. The DB-NUCA is also aware of dead-
blocks, and bypasses dead blocks directly to the off-
chip memory in an attempt to avoid the write penalties
brought by STT-MRAM. We mimic the implementation
of dead block detection in [13].
• Hybrid Read-Oriented STT-MRAM Storage (HB-
ROSS). In this configuration, half of SRAM cache
banks are replaced with STT-MRAM. HB-ROSS mi-
grates singular-writes only when the SRAM banks have
no more room.
• Early Retirement aware Read-Oriented STT-MRAM
Storage (ER-ROSS). This configuration represents our
complete scheme for designing a high-performance al-
beit energy-efficient cache architecture. Here, six-eighth
of the SRAM cache blocks are replaced with STT-
MRAM blocks, greatly increasing the capacity of the
cache. It also has the ability to retire multiple data blocks
at an early stage.



Processor 1 core, OoO execution, SE mode
Frequency 3.2GHz
L1 Cache 16KB/core, 2-way, 2 cycles
SRAM L2 32KB/bank, R/W : 20 cycles

STT-MRAM L2 96KB/bank, R/W : 20/60 cycles
Network Wormhole Switching, 2 cycles

Off-chip Mem 4GB DDR3 DRAM FR-FCFS
Benchmark SPEC2006

Workloads PerlBench, mcf, milc, libquantum, lbm,
cactusADM, sjeng, and gobmk

Table 2: Major simulation parameters and workloads.
ND-

NUCA
DB-

NUCA HB-ROSS ER-ROSS

��������

����

STT-MRAM
Bank Fraction 0% 100% 50% 75%

Total Storage 2MB 6MB 4MB 5MB
Associativity 8 24 16 20

Capacity
Constitution 32KBx64 96KBx64 32KBx32

+96KBx32
32KBx16

+96KBx48

Table 3: Comparative details of 4 cache configurations.

5 Evaluation Results

Figure 5 shows the evaluation result of the six workloads
we evaluated, which including the system performance
and energy comparison of the two ROSS cache configu-
rations with the DB-NUCA and ND-NUCA.
Raw IPC (Instructions Per Cycle). In Figure 5a, for
all eight workloads, HB-ROSS outperforms the base-
line ND,DB-NUCA by 20% and 50%, respectively. ER-
ROSS outperforms the baseline ND/DB-NUCA by 30%
and 60%, respectively. This result supports our expecta-
tion that, the high storage capacity and better utilization
of SRAM blocks in ROSS cache enable better perfor-
mance from the cache. In addition, ER-ROSS provides,
on average, 10% better performance than HB-ROSS. For
the three workloads libquantum, sjeng and gobmk, HB-
ROSS performs slightly better than ER-ROSS. However,
it should be noted that, in addition to the core cache ar-
chitecture, IPC performance is also dependent on various
other system parameters and workload characteristics.

(a) IPC. (b) Read-miss

(c) Energy Consumption of Cache.
Figure 5: Performance and energy analysis.

LLC Read-miss Rate. Figure 5b shows the read-miss
rate in the last-level cache (LLC). DB-NUCA shows a
higher read-miss rate than ND-NUCA by 67%, on av-
erage; which is unexpected considering that DB-NUCA
enjoys a much higher capacity STT-MRAM LLC. We be-
lieve this degradation in read-miss is caused by the ‘by-
pass all singular-write to memory’ policy, since 60% of
those singular-write has to be retrieved by read opera-
tions. Importantly, for all eight workloads, both HB/ER-
ROSS outperforms the ND-NUCA by 55%, on aver-
age. This result supports our claim that, ROSS can sub-
stantially improve cache performance by not migrating
singular-writes to the off-chip memory. In addition, for
all eight workloads ER-ROSS provides, on average, 5%
better performance than HB-ROSS. We believe this is
because, ER-ROSS, compared to HB-ROSS, terminates
many more defunct cache line at an early stage and keeps
the LLC free for future read operations.
Cache energy consumption. Figure 5c shows the en-
ergy consumption by the four cache architectures for the
eight workloads. As expected, the cache energy compo-
nent is dominated by static leakage energy. From the
figure one can see that, the baseline ND-NUCA, with
its all-SRAM design, shows the worst performance in
terms of cache energy consumption. DB-NUCA reduces
leakage energy by replacing SRAM with STT-MRAM,
and improves the baseline performance by 40%, on av-
erage. Both HB/ER-ROSS displays similar cache energy
consumption as DB-NUCA, and shows performance im-
provement of 45%, on average, over ND-NUCA. Specif-
ically, for the lbm workload, ER-ROSS improves energy
consumption compared to the baseline ND-NUCA by
60%. Finally, ER-ROSS improves energy consumption
of HB-ROSS by 5%, on average.

6 Acknowledgement

This research is supported in part by MSIP “ICT Con-
silience Creative Program” IITP-R0346-16-1008, NRF-
2015M3C4A7065645, NRF-2016R1C1B2015312 DOE
grant DE-AC02-05CH1123 and MemRay grant (2015-
11-1731). M. Jung has an interest in being supported
for any type of engineering or costumer sample product
on emerging NVM technologies (e.g., PRAM, X-Point,
ReRAM, STT-MRAM etc.).

7 Conclusion

In this paper, we proposed a hybrid NUCA using Read-
Oriented STT-MRAM Storage (ROSS), which is able
to fully utilize the benefits of STT-MRAM by detect-
ing and deploying singular-write data in STT-MRAM
banks. The evaluaion results show that, our proposed
ROSS caches exhibit upto 60% and 50% improvement in
terms of performance and energy-efficiency, compared to
prior work.



References

[1] Kim, Changkyu, et al. ”An adaptive, non-uniform
cache structure for wire-delay dominated on-chip
caches.” In Acm Sigplan Notices, 2002.

[2] Lin, Junmin, et al. ”Understanding the memory be-
havior of emerging multi-core workloads.” In Proc.
of ISPDC, 2009.

[3] Khvalkovskiy, A. V., et al. ”Basic principles of STT-
MRAM cell operation in memory arrays.” In Journal
of Physics, 2013.

[4] Zhao, W. S., et al. ”Failure and reliability analysis of
STT-MRAM.” In Microelectronics Reliability, 2012.

[5] Dorrance, Richard. ”Modeling and Design of STT-
MRAMs.” PhD diss (2011).

[6] Molka, Daniel, et al. ”Memory performance and
cache coherency effects on an Intel Nehalem mul-
tiprocessor system.” In Proc. of PACT, 2009.

[7] Guo, Xiaochen, et al. ”Resistive computation: avoid-
ing the power wall with low-leakage, STT-MRAM
based computing.” In ACM SIGARCH Computer
Architecture News, 2010.

[8] Sun, Guangyu, et al. ”A novel architecture of the
3D stacked MRAM L2 cache for CMPs.” In Proc.
of HPCA, 2009.

[9] Mishra, Asit K., et al. ”Architecting on-chip in-
terconnects for stacked 3D STT-RAM caches in
CMPs.” In ACM SIGARCH Computer Architecture
News, 2011.

[10] Rizzo, N. D., et al. ”Thermally activated magneti-
zation reversal in submicron magnetic tunnel junc-
tions for magnetoresistive random access memory.”
In Applied Physics Letters, 2002.

[11] Binkert, Nathan, et al. ”The gem5 simulator.”
In ACM SIGARCH Computer Architecture News,
2011.

[12] Smullen, Clinton W., et al. ”Relaxing non-volatility
for fast and energy-efficient STT-RAM caches.” In
Proc. of HPCA, 2011.

[13] Junwhan Ahn, et al. ”DASCA: Dead Write Pre-
diction Assisted STT-RAM Cache Architecture”. In
Proc. of HPCA, 2014.

[14] Jin, Youngbin, Mustafa Shihab, and Myoungsoo
Jung. ”Area, Power, and Latency Considerations of
STT-MRAM to Substitute for Main Memory.” Proc.
ISCA. 2014.


