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Abstract
Programmers can utilize the upcoming non-volatile
memory (NVM) technology in various ways. One
appealing way is to directly store critical application
data structures in NVM instead of serializing them to
block-storage. Changing legacy code to achieve this,
however, is laborious and prone to bugs. We present
NVMOVE, a tool that simplifies this transition by analyz-
ing the source code and automatically identifying persis-
tent types, types that are serialized and persisted. Aided
by this tool, programmers can modify their applications
to allocate such persistent types on the non-volatile mem-
ory heap. Upon analyzing Redis, a key-value store with
122 struct types, NVMOVE identifies 25 types as persis-
tent, with no false negatives and 11 false positives. We
evaluate the benefits of NVMOVE by moving the identi-
fied persistent types in Redis onto a non-volatile memory
heap. Redis modified in this manner offers full persis-
tence of data, and performs within 78% of Redis with no
persistence, achieving more than 2× the performance of
Redis that performs logging on SSDs.

1 Introduction
Non-Volatile Memory (NVM) provides byte-addressable
and low-latency access, enabled by technologies such as
Phase Change Memory [12, 14, 15, 16, 31], Memris-
tors [27] and Spin-Transfer-Torque MRAM [11]. NVM
promises to provide fast, cheap, non-volatile storage at
near-DRAM latencies, blurring the line between mem-
ory and storage [20]. Moreover, NVM is expected to
be available commercially soon, raising the question on
how to best leverage this technology. Programmers have
the choice to use NVM as a drop-in replacement for tra-
ditional storage. Currently, applications persist data us-
ing a block-based interface to storage. They first seri-
alize the in-memory data and then write the serialized
form to storage; we term this Block-based Persistence
(BLP). BLP suffers from three problems: (a) the perfor-
mance overhead of serialization, (b) the additional com-
plexity (and resulting bugs) from maintaining both in-
memory and in-storage data formats [24, 25], and (c)
the performance overhead of system calls that invoke
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the kernel [2, 20]. Alternatively, a new programming
model for persistence can access NVM via loads and
stores [20, 29, 30]. Thus, in-memory data structures
can be persisted in-place without the need for serializa-
tion, assuming some mechanism exists for consistent up-
dates [30]. We term this Byte-based Persistence (BYP)
(§ 2).

Researchers have tackled the problem of writing new
applications for NVM using the BYP model [30]. How-
ever, few projects address the conversion of existing ap-
plications from the BLP model to the BYP model. To
convert a BLP program1 programmers first need to iden-
tify the data structures that are serialized and persisted.
Next, they need to allocate such structures on the non-
volatile heap, and make sure the structures are updated
in a crash-consistent manner. Performing this conversion
manually is laborious and prone to bugs, and may take a
long time. For example, the open-source project porting
the key-value store Redis to NVM has been active for
over a year, and it still only supports strings for keys [1].

As a first step towards tackling this problem, we
present NVMOVE, a tool that uses static analysis tech-
niques to automatically analyze the source code of a
BLP application, and identify the user-defined types that
are persisted to storage. The key observation behind
NVMOVE is that any persistent data structure needs to be
instantiated and initialized from persistent storage when
the application starts or when it recovers from a crash.
We make the following contributions:
• We describe our experience in designing and imple-

menting NVMOVE, and discuss the trade-offs be-
tween different design approaches (§ 3).

• We evaluate NVMOVE on Redis [19, 33]. When
compared against a manual port of Redis to NVM,
NVMOVE correctly identifies all persistent types,
with no false negatives (§ 4.1).

• Using the analysis results from NVMOVE, we emu-
late transforming Redis into a BYP program with full
durability (no data loss on crash), and show that this
program outperforms Redis with synchronous logging
by up to 2.2× (§ 4.2).
1We use the term BLP/BYP program for programs written under the

BLP/BYP model.
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2 Block-based and Byte-based Persistence

Traditionally, programmers use the BLP model to persist
data in two steps: 1) serializing in-memory data, 2) us-
ing systems calls such as write to persist the serialized
form of data. Consider the code example in Figure 1c.
It shows a sample program in the BLP model that up-
dates and persists a simple structure: record. Note how
only line 2 actually updates the record; lines 4–9 serial-
ize the record into a temporary buffer buf, and persist it
using system calls. Figure 1c omits the code required to
recover to a consistent state in the event of a crash.

The block-based persistence model is a poor fit for
NVM for two reasons. First, the block-based interface
is optimized to hide the high latencies of block-storage
devices, and has inherent software overheads that can
cause large performance issues with NVM [2, 20]. The
performance overhead of providing persistence via the
block interface causes programmers to trade-off safety
for performance by reducing persistence frequency. This
strategy is not only vulnerable to possible loss of valu-
able data, but also causes problems in program recov-
ery2. Second, using the block interface forces serializa-
tion of in-memory data into a different format. Main-
taining two versions of the same data structure leads to
additional complexity and bugs [24, 25]. Both of these
problems can be avoided by persisting to NVM using the
BYP model.

The code example of Figure 1d shows a BYP program
that provides similar functionality as the BLP program
in Figure 1c. The BYP program persists the updated
state of record directly in NVM. For this program, the tag
@persistent in struct declaration (at line 1 in Figure 1b)
is needed to indicate that each instance of struct record
should be allocated on the non-volatile heap. For any in-
stance of record, updating and persisting its state is as
simple as directly updating the instance’s field in line 2,
and flushing the cache (not shown). Note that a separate
mechanism, e.g., transactions, is still needed to guaran-
tee crash consistency [26, 30].

3 NVMOVE
NVMOVE analyzes a given application, and identifies
user-defined types — structs for C programs — that rep-
resent semantically persistent state. The types that repre-
sent the persistent state may be different from the types
that are syntactically persisted. For example, in Fig-
ure 1c, we would like to identify record as the persistent
type, and not char* (the type of buf). NVMOVE achieves

2Just recently, Delta Airlines experienced a major service disruption
due to a malfunction that lasted only an hour, but the total recovery took
more than 13 hours and affected more than 45% of their flights [28].

(c) Updating and persisting data in BLP

(d) Updating and persisting data in BYP

Figure 1: Comparison of the BLP and BYP models of
programming for saving updated state.

this goal via static analysis of the source code.

Analyzing Recovery Code. We observe that an applica-
tion that persists state must restore it during initialization
or recovery after a crash. This leads to the main insight
of NVMOVE: any user-defined type that is created or
updated in the recovery/initialization phase must be per-
sisted. NVMOVE requires the programmer to provide
the name(s) of the top-level source function(s) that ini-
tializes the in-memory application state by reading the
previously persisted state.3 Such functions are called
load functions. This implies that the programmer needs
some knowledge of the application, but this knowledge
is minimal. Without NVMOVE, the programmer still
needs to identify the load functions when manually port-
ing the code to NVM. A programmer could manually
follow this approach to identify semantically persistent
types, but the effort is prone to errors and takes signifi-
cant time. For example, our optimized implementation of
NVMOVE visits 62 functions in Redis, and parses thou-
sands of lines of code.

We restrict our focus to applications that implement
the recovery/initialization mechanism in static code and
currently do not support applications that initialize their
state using function pointers that are dynamically fol-
lowed.

3For example, the database state in Redis is loaded by the function
rdbLoad in source file rdb.c. Using the Redis documentation, one can
easily find this function.
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NVMOVE starts the static analysis with an empty set
Ts used to store the types that are candidates for per-
sistence, and a FIFO queue Fq that stores the function
names to visit. At startup, it prompts the programmer to
provide the name(s) of the load function, and inserts it in
Fq. It then performs the following steps in a loop until
Fq is empty: it scans the source, and finds the definition
of the function f at the head of the queue Fq. It then
collects all the variables in f that are assigned or mod-
ified through assignment operators, or library calls such
as memcpy/memmove. For each such variable, it in-
spects its type t and adds it to Ts if and only if t is defined
in the application source. If t was already present in the
set Ts, then it does not need to be added again. NVMOVE
then removes f from Fq, and goes to the beginning of
the loop. This analysis is guaranteed to terminate as the
application source is finite. Upon termination, Ts con-
tains all the types defined in the application program that
NVMOVE identifies as candidates for persistence.

Note that marking all the types that are created/mod-
ified during initialization is likely to overestimate the
persistent variables and may lead to sub-optimal per-
formance. We want to focus on correctness, and hence
compromise on performance. We optimize this approach
by: (a) not parsing through application source functions
that either accept no arguments, or accept only non-
pointer built-in types, (b) using our knowledge of libc
API and treating strcpy/memcpy/memmove and simi-
lar functions as assignment operations, (c) not visiting
bodies of functions defined in libc API (fopen/fclose for
example) whose results and side-effects are known to us,
(d) analyzing each function body only once.

Back-tracking from Writes. An alternative approach
is to statically identify all the system calls that write to
the block-device4 and follow the data flow backwards to
the persistent data structures. The steps of this method
are as follows. First, system calls can be easily found
by parsing the code. Next, the intermediate buffers used
to serialize the data can be retrieved from the arguments
of the system calls.5 Using the knowledge of library
functions, such as sprintf (and its variants), we can then
back-track through the source-code — recursively visit-
ing caller function definitions — to identify the struc-
tures that were serialized into such buffers. This ap-
proach identifies struct record as persistent in Figure 1c.
However, programmers use write calls not only for seri-
alizing data to block-devices, but also for logging debug
and error messages, writing to pipes, and network sock-

4e.g., write, fwrite, pwrite.
5In Figure 1c, buf would be identified as the argument that was

persisted.

ets. Therefore, this solution produces a large number of
false positives for real applications.

NVMOVE is implemented using Clang [13] and it cur-
rently works on C programs. However, Clang supports
many C-like languages, and thus our approach could be
extended to programs in other languages.

4 Evaluation
We evaluate NVMOVE on the source code of Re-
dis [19, 33] (version 3.2.0, 64-bit), a widely-used fast
data-structure store that persists its data to block storage.
The Redis codebase currently has ≈ 50K lines of code.

We seek to answer the following questions:
• How effective is NVMOVE in identifying user-defined

types that should be persistent?
• How is Redis performance affected if all the types

identified by NVMOVE are persisted in NVM?

4.1 Type Identification
Running NVMOVE on Redis source code takes five min-
utes on average, which suggests that NVMOVE can eas-
ily handle large code bases. Apart from pointing out the
load function (rdbLoad), we did not provide NVMOVE
with any other information about the code base.

To see how effective NVMOVE is at identifying per-
sistent types, we compare the results of NVMOVE with
a manual port of Redis performed by an independent in-
dustrial team of developers. They provided us with a
list of structs that they treat as persistent in their ported
NVM-compatible version of Redis. Table 1 summarizes
the comparison of these manually identified types with
the results of NVMOVE.

Total types (structs) in Redis source 122
NVMOVE identified persistent types 25
True positives (manually identified) 14
False positives 11
False negatives 0

Table 1: Comparing manually identified persistent types
to the results of NVMOVE.

Without any in-built knowledge of Redis source code,
NVMOVE identifies all persistent types, and produces no
false negatives. Among the 11 false positives, four are it-
erators over persistent types, another four are variants of
the same type with different data alignments. We believe
that results produced by NVMOVE can be of significant
value to programmers, as they would be able to prune out
these false positives upon closer examination.
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4.2 Emulated Performance
We evaluate the performance impact of transforming Re-
dis to a BYP program, by emulating non-volatile mem-
ory latencies when accessing persistent variables identi-
fied by NVMOVE. The transformed program offers full
persistence 6, but does not have any mechanism for crash
consistency. For full persistence, every NVM write must
be followed by a cache line flush (clwb instruction) as
well as a PCOMMIT instruction, as described in Intel’s
recent ISA extensions [10].

We consider two primary NVM technologies: (1)
Phase-Change Memory (PCM) representing slower
NVM with a read/write latency of 300ns; and (2) Spin-
Transfer-Torque MRAM (STT-RAM) representing fast
NVM with read/write latency of 100 ns. We set the
PCOMMIT latency to 500 ns for PCM and 200 ns for
STT-RAM. The latency of clwb is kept constant at 40 ns.
These latencies are per cache-line, and based on recent
literature [32].

We simulate these delays by injecting configurable de-
lay functions in Redis source code after each read/write
operation of candidate variables. This is done by an
automated source-to-source transformation using Clang.
Overall, roughly around 4000 delay calls are injected in
the source. Our emulation indicates the worst-case per-
formance. We expect that performance would be bet-
ter using real hardware for the following reasons. First,
many reads can be served from the cache, but our emu-
lation assumes that all PCM reads are served from main
memory. Second, writes to the same cache line often
need to incur only the cost of a single cache line flush,
whereas in our evaluation every write incurs a cache line
flush. Third, multiple cache lines written together of-
ten only need to incur the cost of a single PCOMMIT.
Finally, the latencies of non-volatile memory reads and
writes can be overlapped better by a memory controller
that performs intelligent scheduling [17, 22, 34], which
we do not model. Our emulation is conservative in these
regards and provides an estimated performance that errs
towards the worst-case.

We consider two scenarios for performance compari-
son as Redis provides two modes of persistence:
Redis Database (RDB): RDB files are point-in-time
snapshots of data at specified intervals. Redis forks a
background process to perform serialization of data to
storage. Redis does not allow sub-second intervals for
this mode and thus can lose one second worth of data.
Append Only File (AOF): Redis appends every write
command received by the server to the end of a log. The
log is played at startup to reconstruct the original data.

6On a crash, only the last write in progress could be lost.

We first obtain practical upper bounds on performance
by running Redis with both of these modes disabled (In-
Memory Redis). We then run Redis in a RDB-only mode
that takes a snapshot every second. Next, we disable
RDB and run it with AOF that logs every write com-
mand and flushes it immediately to block storage (by
calling fsync). Finally, we disable both RDB and AOF
and run Redis under the two NVM emulation settings
listed above. We report the throughput results on a ma-
chine with 56 Intel Xeon (2.2GHz) cores, and 500 GB
DRAM. In the interest of space, we show baseline re-
sults with only SSD block-storage (throughput of AOF
with a hard-disk is around one-third of that with SSDs).
For each experiment, we report mean values of five runs.
Results on YCSB. Figure 2 compares the throughput of
Redis when run under the above configurations on the
Yahoo Cloud Serving Benchmark (YCSB) [6]. The three
workloads tested are: read-heavy (90% reads, 10% up-
dates), balanced (50% reads, 50% updates), and write-
heavy (10% reads, 90% updates). Each run first inserts
one million records (of 1 KB each) in an empty database
before starting throughput computations. The speedup
in the plot is the ratio of throughput for each setting di-
vided by the throughput of our baseline, which uses the
AOF mode on SSD, for the same workload. The actual
values (in operations/second) of baseline SSD through-
puts are: 27946 for read-heavy, 17612 for balanced,
and 6605 for write-heavy workload. As expected, Redis
without persistence gives the highest throughput. RDB
mode performance is close to optimal since checkpoint-
ing is triggered once every second at the most. However,
RDB mode could lose at least 46 MB (read-heavy), 47
MB (balanced), and 27 MB (write-heavy) of data due
to its coarse-granularity approach to persistence. Also,
for many runs, the background process saving the snap-
shot takes more than ten seconds to save the final snap-
shot after the client disconnects. Hence, in case of a
crash/power-outage the size of lost data can be much
larger. Persisting types identified by NVMOVE yields
better performance than baseline, while providing strong
durability guarantees: a crash may leave only the lat-
est write incomplete in persistent memory. Even un-
der the unfavorable delays we test that approximate the
worst case, our NVM-emulated persistent Redis with
slow PCM has higher throughput than the baseline, and
has up to 2× higher throughput with faster STT-RAM.

Results on Redis-benchmark. We also ran the Redis-
benchmark, which ships with the Redis source-code.
There are 17 workloads, many of which are read-
heavy/read-only. On several write-heavy workloads
(such as MSET,LPUSH,RPUSH), our NVM-emulated
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Figure 2: Throughput comparison on YCSB benchmark.

persistent Redis is faster by as much as 45% than the
baseline (AOF on SSD). On read-only workloads, such
as GET, our Redis is slower by 2–3%, mainly because
NVMOVE falsely detects iterators as persistent types,
which leads to a minor degradation in read performance.

5 Limitations and Future Work
NVMOVE may over-approximate results because it iden-
tifies types, not specific variables. Even if only one vari-
able among many instances needs to be persisted, the
entire type is marked as persistent. Another problem is
that many types contain volatile state in addition to non-
volatile state. For example, many applications keep ref-
erence counts of objects for memory management. If an
object’s reference count is initialized during the load of
its persisted state, then our analysis will flag the count
variable as a persistent pointer. Despite these limitations,
we believe that our tool can be of significant value to
programmers in porting a large codebase to byte-based
persistence.
Future Work. We plan to explore other approaches to
identifying persistent types to decrease the number of
false positives. We are also working on precise identi-
fication of persistent variables, not just types. In order to
do so, we plan to combine our static analysis approach
with dynamic/taint analysis. This would allow us to fol-
low the progression of the persistent variables through
the execution of the program.

Converting a BLP program into a BYP program in-
volves many changes, such as removing serialization
code and replacing allocation calls for types identified
as persistent. We also would like to update persistent
structures in a consistent manner, using techniques such
as write-ahead logging [8] and transactions [7].

6 Related Work
The vision behind NVMOVE is to allow legacy applica-
tions to use persistent memory without significant pro-
grammer effort. NVMOVE currently only identifies

persistent data structures. Updating such structures in
a consistent manner without significant programmer in-
volvement is a difficult problem. We aim to address this
problem in future work.

Atlas [3] atomically persists all updates between
lock() and unlock() in multi-threaded programs. At-
las targets legacy applications that do not durably store
state, and transparently provides atomic persistence for
such programs. In contrast, NVMOVE targets legacy ap-
plications that already have protocols to durably store
state to a block-device. NVMOVE is suitable for both
single-threaded and multi-threaded applications, and is
not limited to applications that use a locking discipline
(e.g., those employing lock-free data structures [9]).

ThyNVM [26] transparently checkpoints state of
legacy applications onto persistent memory. ThyNVM
requires special hardware support. In contrast,
NVMOVE does not require new hardware support, and
persisting the data structures identified by NVMOVE
can be done using a number of other approaches (e.g.,
[4, 30]) that also do not require specialized hardware.

Existing work that builds new systems and APIs on top
of persistent memory [4, 5, 18, 21, 23, 29, 30] is com-
plementary to NVMOVE: once NVMOVE identifies the
data structures to be made persistent, existing work can
be leveraged to persist them in a crash-consistent man-
ner. All of these systems require significant programmer
effort in rewriting the applications using a new API. A
future version of NVMOVE could help alleviate this task.

7 Conclusion
The emergence of a new technology leads to a flurry of
activity to create new applications that exploit its bene-
fits. It is equally important to consider how existing ap-
plications and use-cases can benefit from the new tech-
nology as seamlessly as possible. Many research/open-
source projects enable new applications for NVM, but
there is little work to port current applications to NVM.
Given the large number of applications written for block
storage, easing this transition is vitally important. We be-
lieve NVMOVE is the first step towards easing the transi-
tion of programs from block storage to byte-addressable
non-volatile memory. Our preliminary results show
promise, and can already be of significant value to pro-
grammers. Continued research and development in this
direction will lead to improved solutions that can further
reduce the programming effort in adopting NVM.
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