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Abstract

Specialized, transient data services are playing an in-
creasingly prominent role in data-intensive scientific
computing. These services offer flexible, on-demand
pairing of applications with storage hardware using se-
mantics that are optimized for the problem domain. Con-
current with this trend, upcoming scientific computing
and big data systems will be deployed with emerging
non-volatile memory (NVM) technology to achieve the
highest possible price/productivity ratio. Clearly, there-
fore, we must develop techniques to facilitate the conflu-
ence of specialized data services and NVM technology.

In this work we explore how to enable the composition
of NVM resources within transient distributed services
while still retaining their essential performance char-
acteristics. Our approach involves eschewing the con-
ventional shared file system model and instead project-
ing NVM devices as remote microservices that leverage
user-level threads, remote procedure call (RPC) services,
remote direct memory access (RDMA) enabled network
transports, and persistent memory libraries in order to
maximize performance. We describe a prototype sys-
tem that incorporates these concepts, evaluate its perfor-
mance for key workloads on an exemplar system, and
discuss how the system can be leveraged as a component
of future data-intensive architectures.

1 Introduction

Specialized, transient data services are playing an
increasing role in data-intensive scientific comput-
ing. Examples include Dataspaces [4], DeltaFS [30],
ADLB [26], and SDS [5]. These data services are op-
timized to facilitate analysis and computational applica-
tions that are not well served by a conventional global
storage system. Specialized services can more easily
match semantics, coherence, visibility scope, and hard-
ware capacity with individual application requirements.
Concurrent with this trend, future scientific comput-

ing [1] and big data systems are expected to be deployed
with emerging NVM technology in order to achieve
the highest possible price/productivity ratio [16]. In
this work we use the term NVM to refer to any byte-
addressible persistent memory technology.

Forward-looking services must be able to combine
these two trends: specialized data services and emerg-
ing NVM technology. The most straightforward way to
deploy NVM technology in this environment is by ex-
posing private, node-local NVM devices for each task in
an analysis or computation application. That deployment
scenario is highly efficient for applications that can uti-
lize it, but it does not address the full spectrum of multi-
node parallel application use cases:

• sharing data across tasks or ensembles
• coherence for fine-grained parallel access
• support for imbalanced workloads
• access to NVM on dedicated storage nodes
We therefore focus our study on providing efficient

remote access to NVM devices distributed across nodes
for use in on-demand data services. The use of high-
performance, byte-addressable storage devices exposes
new bottlenecks in conventional shared storage systems,
however. In this work we revisit the data models, concur-
rency mechanisms, network transports, and abstraction
layers that are needed to make effective use of this tech-
nology. Section 2 describes the design of a prototype mi-
croservice for remote access to NVM devices, Section 3
evaluates the performance of the prototype for relevant
workloads, Section 4 surveys related work, and Section 5
summarizes our conclusions.

2 Use case and design

Specialized data services are more likely to augment than
supplant conventional file systems in large-scale big data
or HPC systems. Figure 1 shows an example in which a
resource manager has assigned compute nodes (with lo-
cally attached storage resources) to distinct, and in some
cases overlapping, roles within the system. Each data
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Figure 1: Example of resource allocations and deploy-
ment scenarios for specialized NVM services.

service is scaled and scoped appropriately for the task at
hand. Data services in this environment must be “good
citizens” in terms of resource consumption, particularly
when co-located with application tasks.

Because specialized data services do not replace con-
ventional file systems or their administrative features,
they need not conform to a conventional file system data
model. Lower-level abstractions can be implemented
by using a more direct mapping of data to hardware
in order to avoid operating system block abstractions,
global directory namespace updates, and other potential
sources of overhead in conventional file system models.
In this study we constructed a proof-of-concept object
storage service to evaluate the effectiveness of deploy-
ing NVM technology for use in data-intensive scientific
services. We envision object storage services as just
one element of a suite of composable, on-demand mi-
croservices that include not only object storage but also
functionality such as key/value storage, message buses,
group membership, fault detection, and namespace man-
agement. Even conventional file system abstractions, if
needed, can be implemented by composition of simple
bulk storage and key/value services, as demonstrated by
recent work in DeltaFS [30] and WarpFS [7].

2.1 Data transfer strategy

Our prototype explores a model in which clients interact
with servers by exchanging RPC messages and data pay-
loads are transferred using server-directed RDMA op-
erations. By putting data transfer control in the hands
of servers (and therefore co-locating transfer decision-
making near critical shared resources and contention
points), we greatly simplify the implementation of the
following features for large-scale distributed services:
• flow control
• concurrency and coherency control
• access control (i.e., multiuser security)
• page-in or page-out from slower storage tiers
In contrast, a client-driven transfer model would use

remote load/store primitives or client-initiated RDMA
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Figure 2: Prototype service software components.

for remote access to byte-addressible NVM technology.
The client-driven approach would grant application pro-
cesses substantial control over server resources in order
to minimize handshaking (i.e., control plane traffic) [11],
but it provides no capability to coordinate concurrent ac-
cess. Consider an example in a many-core system in
which the ratio of application task to service daemons
is 100 or more. It would be expensive for those tasks
to make coherent distributed scheduling decisions to op-
timize (or avoid overwhelming) server-side resources.
If transfers are server directed, on the other hand, then
the server can provide flow control by limiting concur-
rent transfers, improve NUMA locality by re-ordering
transfers, and constrain resource consumption by divid-
ing large transfers into smaller RDMA operations.

2.2 Components

The low-latency properties of NVM storage are negated
if the software stack introduces unecessary memory
copies or context switches in the data path. Our pro-
totype therefore combines user-space memory device
abstractions, RDMA-capable network abstractions, and
user-level threads to minimize overhead for remote NVM
access while still maintaining portability. Figure 2 il-
lustrates the major software components that make this
possible. These components are described in greater de-
tail in the following subsections, starting with the lowest-
level server abstractions.

2.2.1 Local NVM access (NVM Library)

The NVM Library [13], or libpmem, is a collection of
libraries that provide access to memory-mapped stor-
age devices. These libraries translate persistent data
structures into virtual memory mappings and facilitate
durable and coherent updates to those data structures.
The libpmemobj library and API, in particular, present
a generalized transactional object store abstraction. The
NVM Library bypasses the virtual file system and block
device layers if it is used atop a memory-mapped device
or a file system that supports DAX extensions.



2.2.2 Network transports (CCI)

The Common Communication Interface [2], or CCI, is
a network abstraction library designed for use in large-
scale high-performance systems. CCI presents a concise,
RDMA-oriented API that focuses on lightweight expres-
sion of the most commonly used communication opera-
tions. The concise API allows CCI to be rapidly ported
to a variety of network transports. In this study, we fo-
cus on CCI’s InfiniBand Verbs transport implementation.
Note that CCI supports both busy-polling and blocking
modes of operations, but we use the latter exclusively in
this study in order to minimize the impact of our service
on co-located applications.

2.2.3 RPC services (Mercury)

Mercury is a user-space library for high-performance re-
mote procedure calls [20]. It provides functionality for
marshalling and unmarshalling RPC arguments, man-
aging the state of concurrent operations, and transfer-
ring bulk data payloads using explicit RDMA operations.
Mercury’s modular architecture enables it to operate atop
a variety of network transports (even those that do not na-
tively support RDMA), but in this study we focus on the
CCI module.

2.2.4 Concurrency (Argobots)

Our use case calls for a high degree of concurrency
while coordinating access to multiple network and stor-
age devices. However, conventional multithreaded con-
currency can introduce significant context switching and
contention overhead. We have therefore adopted user-
level, cooperative threading as provided in Argobots [18]
as our concurrency mechanism. Argobots threads are not
preemptible. Instead, they yield control when blocked on
I/O, when blocked on synchronization, or at thread com-
pletion time. User-level threads have been studied in pre-
vious work [24] as a means to retain the performance ad-
vantages of event-driven architectures while presenting
simple sequential control paths to service developers.

2.2.5 Communication bindings (Margo)

The Margo component facilitates the mapping between
Argobots threads and Mercury by way of Argobots-
aware wrappers for the Mercury API and a transpar-
ent engine to drive communication progress. The goal
of Margo is to retain the performance of the native
event-driven Mercury API while presenting a conven-
tional blocking interface and sequential control flow for
library and service developers. Each blocking communi-
cation wrapper yields control to the Argobots scheduler
when posting a Mercury operation and automatically re-
sumes once that operation is complete. Margo also uti-
lizes a custom thread scheduler for Argobots, called abt-
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Figure 3: Baseline point-to-point network bandwidth.

snoozer, that gracefully idles processing cores if all user-
level threads are waiting for I/O events.

The server daemon also uses Margo to spawn a new
user-level thread for each incoming RPC request. User-
level thread creation is exceptionally lightweight, and
many threads may be instantiated simultaneously. The
server daemon is a single-threaded application from the
operating system’s perspective, but Argobots could be
trivially reconfigured to utilize additional OS threads if
needed.

2.3 API semantics

The application-facing, client-side API presented by our
service uses a data model similar to the libpmemobj [23]
library, with one notable exception: it does not allow
client-initiated load/store access, for the reasons dis-
cussed in Section 2.1. It uses explicit byte-granular read
and write operations instead. Multiple clients may read
and write the same object simultaneously, but the results
of conflicting (i.e., overlapping at a byte level) write op-
erations are undefined. Explicit persist operations are
used to flush data and guarantee visibility to subsequent
readers. Object creation and deletion are atomic opera-
tions.

The control flow during large I/O operations is as fol-
lows. The client library registers the application I/O
buffer and sends an RPC request to the server. The server
performs an RDMA operation to transfer data and then
sends an RPC response. The client completes the I/O op-
eration by deregistering the buffer and reporting a return
code to the application. Server-side RDMA operations
transfer data directly to and from memory-mapped stor-
age devices when possible, though we will see in Sec-
tion 3.2 that alternative protocol modes can be more ef-
fective in cases where RDMA registration accounts for a
disproportionately large portion of the access latency.
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Figure 4: Median aggregate bandwidth with 8 servers.

3 Preliminary evaluation

All experiments presented in this paper were conducted
on the Cooley Linux cluster operated by the Argonne
Leadership Computing Facility. Each node contains two
2.4 GHz Intel Haswell E5-2620 v3 processors (12 cores
total) and 384 GiB of RAM, and the nodes are connected
via an FDR InfiniBand network fabric. All software was
compiled with GCC 4.4.7 and O3 optimizations. The
libpmem libraries were configured to use tmpfs volumes
(i.e., conventional DRAM) as the backing store for ex-
perimental purposes in lieu of true NVM devices. Fig-
ure 3 shows the baseline asynchronous point-to-point
network bandwidth for a logarithmic range of message
sizes as measured using the mpptest benchmark [9] and
the MVAPICH2 MPI implementation, version 2.1. This
benchmark also exhibited a one-way latency of 1.3 mi-
croseconds for the smallest message sizes.

3.1 Aggregate concurrent bandwidth
We augmented the IOR benchmark [19] to use our proto-
type object storage API in order to evaluate aggregate I/O
throughput. This action necessitated two key changes
to IOR: adding an “aiori” module for our storage ser-
vice and modifying the core benchmark to allow modules
other than the POSIX module to issue fsync() operations.

Figure 4 shows the write and read bandwidth reported
by IOR as we hold the number of server nodes (and
thus the number of server daemons) fixed at 8 and vary
the number of client nodes from 2 to 16. There are 12
processes per client node in all cases. Each experiment
was repeated 30 times; box-and-whiskers plots show the
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Figure 5: Median sequential access latency with one
client and one server.

minimum, maximum, median, first quartile, and third
quartile for each set of measurements. IOR was config-
ured with the following parameters: a block size (total
data volume per process) of 6 GiB, a transfer size of 16
MiB, fsync enabled (to flush data at the conclusion of
each write phase), data validation enabled, and file-per-
process mode (which in our service equates to one object
per process).

Our initial experiments, labeled “general node alloca-
tion,” exhibited a high degree of variability. This phe-
nomenon can be attributed to suboptimal routing within
the Infiniband switch, which is a multistage switch rather
than a true crossbar [12]. We repeated the experiments
on a set of 18 nodes explicitly chosen to be co-located
on a single leaf switch in order to confirm this behavior.
These results, labeled “leaf switch node allocation,” ex-
hibit comparatively little variability, but the switch topol-
ogy only allows us to scale up to 10 client nodes in
this configuration. We also plot the projected aggregate
bandwidth for comparison; this was calculated by mul-
tiplying the maximum baseline point-to-point bandwidth
from Figure 3 by the minimum of the number of server
or client nodes. Our prototype is capable of saturating
the network bandwidth in each tested configuration.

3.2 Single-client latency
We constructed a microbenchmark that performs a series
of sequential I/O operations from a single client to a sin-
gle object to measure latency. It does not include data
persistence or flush primitives, but each I/O access in-
cludes at least one round-trip network operation, at least
one user-level thread creation and tear-down, and at least
one libpmem memory access. The median access latency
with a 95% confidence interval (calculated using the non-
parametric method recommended in [10]) out of 10,000
samples for each access size is shown in Figure 5. We
also plot the round-trip latency of a noop request on the
left side of the x axis for comparison.

We also annotate two protocol crossover points in the



plot at 2 KiB (C1) and 256 KiB (C2). For message sizes
less than C1, the data payload is eagerly copied into the
RPC request or RPC response message with no explicit
RDMA transfer. The eager mode size limit is determined
by the maximum message size of the Mercury transport
plugin. For message sizes between C1 and C2, the proto-
type uses RDMA to transfer data, but the data is copied
to and from a pre-registered pool of memory on both the
client and the server. For message sizes greater than C2,
RDMA memory is registered on demand for each opera-
tion with no intermediate copies. The C2 crossover point
was chosen empirically as the point at which memory
registrations become more efficient than memory copies
on our test platform.

The median noop latency is 5.8 microseconds, though
the baseline measurements in Figure 3 indicate that 2.6
microseconds should be possible by projecting the 1.3
microsecond one-way latency to a round-trip cost. This
performance gap can be attributed to a combination of
signaling cost (recall from Section 2.2.2 that our proto-
type idles gracefully rather than busy-polling on the net-
work) and software protocol overhead. We also observed
significant tail latencies in some cases even though the
median confidence intervals are narrow. Out of 10,000
noop measurements, for example, we observed 17 sam-
ples that exceeded 10 microseconds, including one that
exceeded 70 microseconds. We will investigate the cause
of these outliers in future work.

4 Related work

Adapting software and data abstractions to high-
performance network and NVM architectures has been
an active research topic in recent years. We aim to in-
corporate emerging best practices and design decisions
presented in these works.

NVM-focused storage systems, such as Aerie [21],
NOVA [28], SCMFS [27], BPFS [3], Mnemosyne [22],
NV-Heaps [3], and NV-Tree [29], while differing signif-
icantly in design, nonetheless exhibit a number of key
themes. NVM devices are amenable to log-structuring
data and metadata because of their exceptional random-
read performance. The comparatively high level of soft-
ware overhead in traditional storage layers has led to ex-
plorations of low-level abstractions on which filesystems
and other types of stores are built. These new abstrac-
tions have typically focused on more direct address space
management (e.g., explicit allocation) and lightweight
namespacing capabilities. Additionally, techniques such
as copy-on-write and shadow paging are used for crash
resiliency and as a wear-leveling mechanism, although
these are by no means unique to NVM approaches.

Recent works in projecting data models across high-
performance networks have approached maximization of

current-gen hardware potential through careful mapping
of service semantics to architectural features. MICA [17]
focuses on concurrent tag matching, affinity/NUMA
management, and kernel bypass for high-throughput
UDP traffic serving lossy hash indices; and HERD [14]
additionally performs a careful construction of Infini-
Band verbs primitives to maximize concurrent through-
put while minimizing trip counts. Follow-on work from
the same group further investigates low-level architecture
behaviors [15]. FaRM [6] applies similar design consid-
erations to develop key-value and graph data models atop
an RDMA-enabled shared memory address space. Addi-
tional recent works have explored different areas of the
design space with similar themes [25].

Other related works have incorporated these lessons
into the HPC domain. MDHIM projects a collection of
LevelDB key-value store instances across nodes through
MPI with user-defined deterministic partitioning func-
tions [8]. DiDAFS [11] proposes extensions to the
memory-management units of nodes to enable direct re-
mote storage access as well as fine-grained, epoch-based
caching and consistency semantics to manage distributed
storage resources. DataSpaces [4] projects a key-
value-like multidimensional address space with RDMA-
capable access for code-coupling scientific workflows.

5 Conclusions and future work

Our proposed strategy to enable the use of NVM in
data-intensive scientific services shows promise in terms
of both software practice and empirical performance.
The prototype makes use of existing runtime abstrac-
tions for NVM, network, RPC, and CPU resources to en-
able cross-platform portability with minimal effort. We
have also demonstrated that an RPC-based service with
server-directed RDMA transfers can achieve single-digit
non-persistent microsecond remote access latencies and
saturate the aggregate bandwidth of high-performance
networks.

Our study also highlights a variety of opportunities for
future work. We will continue to adopt best-in-class op-
timizations from previous studies and integrate perfor-
mance metrics that facilitate root cause analysis of per-
formance problems. We will also investigate methods to
present the same API for both remote NVM access and
local NVM access so that they can be used interchange-
ably depending on deployment scenarios and application
requirements.

We will also extend our work by exploring more
application-oriented use cases and contrasting our ser-
vice implementation with other products. Moreover, we
will investigate the behavior of our service in conjunction
with true NVM devices in place of DRAM.
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