
USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 29

K-Scope: Online Performance Tracking for Dynamic Cloud Applications

Li Zhang Xiaoqiao Meng Shicong Meng Jian Tan
IBM TJ Watson Research Center

{zhangli, xmeng, smeng, tanji}@us.ibm.com

1 Introduction

Cloud computing is an ongoing technology evolution
that reshapes every aspects of computing. Cloud pro-
vides on-demand, flexible and easy-to-use resource pro-
visioning. It is also an open platform where Cloud users
can share software components, resources and services.
These features give rise to several emerging Cloud ap-
plication development and deployment paradigms, rep-
resented by continuous delivery and shared platform ser-
vices.

Continuous Delivery [3], coined by Amazon, is a new
way of releasing software wherein a Cloud application
(e.g., Amazon web services) is delivered through fre-
quent incremental updates. Cloud enables this paradigm
by allowing developers to easily create a pipeline of au-
tomated application building, testing and deployment.
For instance, application developers can quickly produce
multiple application deployment for different develop-
ment stages through virtual machine replication. Contin-
uous delivery provides tremendous benefits in improving
user experience and reduces the risk of each individual
release substantially.

Shared Platform Services are commonly used in
Cloud applications, and rapidly gaining popularity with
increasing Platform-as-a-Service offers from Cloud ser-
vice providers. Perhaps the most widely used plat-
form service today is database or datastore services (e.g.,
SimpleDB from Amazon and Cloud SQL from Google)
which are large-scale multi-tenant databases or datas-
tores shared by multiple Cloud applications through a set
of data access APIs. Enterprise users sometimes also de-
ploy their own database/datastore servers shared by mul-
tiple applications in their virtual private Cloud (VPC).
These shared data services reduce the management bur-
den for application developers.

Despite the enormous convenience and great potential
of these new paradigms, they also introduce new perfor-
mance management challenges due to the volatility em-

bedded in these techniques as well as the lack of well-
defined performance requirements. For instance, updates
in continuous deployment often change the behavior and
the performance characteristics of an application, which
may lead to performance degradation and service level
agreement (SLA) violations. Similarly, due to the shar-
ing nature of data services, one may experience fluctua-
tion in data access performance when the overall work-
loads of the data service change. We refer to Cloud appli-
cations utilizing these features as dynamic Cloud appli-
cations to distinguish them from applications using tra-
ditional development life cycle and dedicated software
components.

These challenges call for a fundamental piece missing
from today’s Cloud services, that is the ability to con-
tinuously, efficiently and accurately capture the most up-
to-date performance characteristics of a dynamic Cloud
application. Existing performance modeling approaches,
however, do not readily provide this continuous mod-
eling ability, primarily because they are designed with
a traditional static deployment in mind where an appli-
cation runs on dedicated machines and its implementa-
tion does not change during the modeling process. Some
of them [9] must run offline with long model training
time and high cost. Others [8, 12, 10] cannot explic-
itly model multiple request types or multiple functional
layers which are common for Cloud applications. There
are also techniques [1, 2] that can capture performance
changes at different functional layers, but require instru-
mentation of the application.

In this paper, we introduce the first online, multi-
request, multi-layer application performance modeling
approach. It is non-intrusive in the sense that it in-
fers critical performance model metrics such as re-
quest service time at different functional layers (e.g,
web/application/database servers), which are usually un-
observable, only from basic monitoring information such
as end-to-end response time and CPU utilization, with-
out instrumenting applications. Furthermore, it utilizes

30 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

Kalman filters [7] to continuously adjust model metrics
to keep the model consistent with the dynamic Cloud ap-
plication. As a result, an up-to-date performance model
is always ready for users to query and perform tasks
such as capacity planning and auto-scaling. For instance,
it can quantitatively predict how much resources are
needed at different functional layers to maintain a given
performance, even when the application is constantly un-
dergoing software updates.

2 Approach Overview

We consider a Cloud application consisting of multi-
ple functional layers, e.g., web server layer, application
server layer and database server layer. Such an appli-
cation processes a number of different types of requests,
each of which can be quite different in terms of execution
time and resource consumption. Furthermore, the appli-
cation has a targeted performance goal or service level
agreement (SLA), e.g., the average response time should
be smaller than 500ms. We assume the available mon-
itoring data for these Cloud applications are basic sys-
tem utilization metrics (e.g., CPU utilization), through-
put and response time. These information are readily
available on most Cloud platforms [6].

We choose to use non-intrusive modeling techniques
that provide an easy-to-use performance model that can
predict application resource utilization and performance,
rather than using instrumentation based tracing tech-
niques. Specifically, we use the queuing network model
as the basic framework as it is general enough to model
multi-layer multi-request applications. To cope with the
changing performance characteristics in dynamic Cloud
applications, in particular, the request service time which
is the time a server spent to process a request, we need
an agile, online model parameter estimation technique,
rather than traditional constrained optimization based of-
fline estimation techniques. Kalman filter, as a time-
tested technique for estimating potentially changing fu-
ture states, falls nicely into our design.

2.1 Queueing Network Model

Queueing network models are commonly used to capture
the performance of complex computer systems [4]. They
have been shown to provide accurate characterization of
request level and system level performance metrics [5,
11]. Well calibrated queueing network models are the
basis for performance sizing and capacity planning. Here
we also use a general queueing network model for Cloud
applications.

We will use a 3-class, 2-tier system to illustrate our
performance modeling and tracking methodology. It can
easily be extended to a general n class k tier system. We

first define a set of variables for the model:

λi = Arrival rate of class i jobs.
Si j = Average service time of class i jobs at tier j.
di = Additional delay for class i jobs in system.

u0 j = Background utilization for tier j.
u j = Average utilization for tier j.
Ri = Average response time for class i jobs in system.

Under appropriate assumptions, the system perfor-
mance and resource utilization can be approximated by
the queueing analytic relations below.

u j = u0 j +λ1S1 j +λ2S2 j +λ3S3 j, j ∈ {1,2} (1)

Ri = di +
Si1

1−u1
+

Si2

1−u2
, i ∈ {1,2,3} (2)

In vector form: z := (u1,u2,R1,R2,R3)
T = h(x).

The assumptions for the above formulate to hold are
quite general. For example, under Poisson arrivals and
processor sharing policy at each server, the formulate
are exact. Processor sharing policy can reasonably ap-
proximate the scheduling behaviors in modern operating
systems. Numerous studies have demonstrated that the
queueing model above provides a good approximation to
the real system.

It is relatively easy to measure the aggregate system
utilization u1,u2, the request throughput λ1,λ2,λ3, and
the end-to-end response times R1,R2,R3. The delay and
service time parameters, however, are very difficult to
measure directly. These parameters are the key quanti-
tative information of the system model. In our 3-class
2-server example, the system parameters are

x = (u01,u02,d1,d2,d3,S11,S21,S31,S12,S22,S32)
T (3)

an 11-dimension vector. The important problem we need
to solve now is to estimate the system parameters x
based on the measurement data z = (u1,u2,R1,R2,R3)

T .
The off-line parameter estimation problem has been ad-
dressed in [11] by formulating the problem as an opti-
mization problem.

Below we address this on-line parameter estimation
problem with noisy measurement data. The challenge is
how to efficiently and accurately estimate x on line from
a continuous stream of measurements z. Kalman filter
theory is a perfect tool to tackle this problem.

2.2 Kalman Filter
Kalman filter is developed by Rudolf E. Kalman around
1960. It is commonly used to estimate the values of hid-
den state variables of a dynamic system that is excited
by stochastic disturbances and stochastic measurement
noise. In real systems, all the variables are functions of

2

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 31

time. Measurements will change over time. Parameter
values will have estimates that are updated over time.
The dynamics of the system following the Kalman filter
framework is

x(t) = F(t)x(t −1)+w(t) = x(t −1)+w(t), (4)
z(t) = H(t)x(t −1)+v(t). (5)

Here x is the state variable that is not observed. F(t)
is the state transition model that describes the evolu-
tion of the state over time. w(t) is the process noise
which is assumed to be a zero mean, multi-variate Nor-
mal distribution with certain covariance matrix Q(t), i.e.
w(t) ∼ N (0,Q(t)). z(t) is the measurement vector.
H(t) is the observation model which maps the true state
space into the observed space. v(t) is the observation
noise which is assumed to be a zero mean, multi-variate
Normal distribution with certain covariance matrix R(t),
i.e. v(t)∼ N (0,R(t)). The covariance matrices Q and
R are not directly measurable. They will be tuned based
on best practice heuristics.

Since the measurement model is a non-linear function
of the system state parameters (due to the utilization u
in the denominator), we must use the ‘Extended’ ver-
sion of the Kalman filter. H(t) is computed as, H(t) =[

∂h
∂x

]
(x(t)) Since we don’t really know x at time t, we

will estimate it based on all the information we have be-
fore time t. H(t) =

[
∂h
∂x

]
(x̂(t|t − 1)) Here x̂(t|t − 1) is

the estimate of x(t) given all the information up to time
t −1.

The state of the filter is represented by two variables:
• x̂(t|t) is the estimate of state at time t given obser-

vations up to and including time t.
• P(t|t) is the error covariance matrix (a quantita-

tive measure of estimated accuracy of the state esti-
mate).

Here are the two sets of equations for the Kalman filter
algorithm:
Predict:

x̂(t|t −1) = F(t)x̂(t −1|t −1) (6)
P(t|t −1) = F(t)P(t −1|t −1)FT (t)+Q(t) (7)

Update:

H(t) =

[
∂h
∂x

]
(x̂(t|t −1)) (8)

S(t) = H(t)P(t|t −1)HT (t)+R(t) (9)
K(t) = P(t|t −1)HT (t)S−1(t) (10)

x̂(t|t) = x̂(t|t −1)+K(t)(z(t)−h(x̂(t|t −1)))(11)
P(t|t) = (I−K(t)H(t))P(t|t −1) (12)

In our 3-class 2-server queueing network example, the

Jacobian is given by, ∂h
∂x =

[
J11 J12 J13 J14
J21 J22 J23 J24

]
The

algorithm iterates between the predict and update steps
as new measurement data arrives.

2.3 Applications
K-Scope has a wide range of applications, including per-
formance diagnosis, answering what-if queries, capacity
planning and performance-driven dynamic provisioning.

Performance Diagnosis. Performance diagnosis for
multi-layer applications is painful as generic monitoring
provides only end-to-end performance statistics which
offer little insight on the performance of individual func-
tional layers. K-Scope explicitly estimates request ser-
vice time at different layers, and provides a clear break-
down of the response time.

Answering What-If Queries. A simple approach is
that we first apply the model to track the system in a sta-
ble period; with all the model parameters estimated, the
question can be generally solved by varying certain pa-
rameters and re-calculate the other parameters.

Capacity Planning. K-Scope also simplifies capacity
planning as application developers can leverage the per-
formance model produced by K-Scope to virtually ex-
plore a large number of deployment options and predict
the corresponding performance.

Dynamic Provisioning. As K-Scope provides a
breakdown of request execution time at different layers,
it can guide dynamic provisioning to the bottlenecked
layer. In addition, dynamic provisioning can query K-
Scope to find out how many additional virtual instances
are needed to maintain the targeted performance, and
quickly adds the required number of instances in a single
batch to minimize the window of performance violation.

3 Evaluation
We apply K-Scope to a real-world multi-layer applica-
tion. In addition, we describe a simple usage scenario in
which the model is used for capacity planning.

The tested workload is SOABench, an IBM internal
benchmark widely used to measure the performance of
Web servers. Our testbed consists of a client and a
server machine. Each machine is equipped with an In-
tel 1.6GHz 8-core Xeon processor. The client machine
runs the SOABench workload generator, a Java program
that could spawn multiple threads to simulate concur-
rent Web service users. The server machine runs IBM
WAS(WebSphere Application Server). Each Java thread
in the workload generator sends a service request to the
WAS server. Upon receiving the response, the thread
continues to send another request. Three types of service
requests are sent by the generator: for Type 1, both the
request and the response have 3K Byte payload. Type
2 and 3 have 10K and 1M Byte payload respectively.
This SOABench testbed follows the three-class two-tier
model in the previous sections.

3

32 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

0 100 200 300 400 500 600 700 800 900
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time (sec)

R
eq

ue
st

s
Pe

r S
ec

on
d

Type 1
Type 2
Type 3

Figure 1: Workload charasterics in SOABench testbed

0 100 200 300 400 500 600 700 800 900
30

40

50

60

70

80

90

100

Time (sec)

U
til

iz
at

io
n

(%
)

Client Mea
Server Mea
Client Est
Server Est

(a) CPU utilizations

0 100 200 300 400 500 600 700 800 900
0

1

2

3

4

5

6

7

8
x 10−3

Time (sec)

R
es

po
ns

e
Ti

m
e

(S
ec

on
d)

Type 1 Mea
Type 2 Mea
Type 3 Mea
Type 1 Est
Type 2 Est
Type 3 Est

(b) Response time

Figure 2: Measured and Predicted Results

In our first experiment, we want to use the model to
track the performance of SOABench when the system
resources are close to full utilization. To this end, we
increase the number of threads on the client until either
the client or the server has a saturated CPU usage. At
this saturation point, the workload generator spawns 24
threads: 8 threads for each request type. Figure 1 shows
the throughput for each request type. We run the exper-
iment for about 15 minutes. The first 3 minutes are a
warm-up period. After the warm-up, all the performance
metrics become stable. We then collect data for the ob-
servable performance metrics, feed the data to the pro-
posed model, and measure the model accuracy by com-
paring the predicted CPU utilization and response time to
their actual values. Figure 2(a) compares the measured
and estimated CPU utilization. Figure 2(b) compares the
measured and the estimated response time for each re-
quest type. All these comparisons clearly show that the
model can precisely track the performance.

Now we describe a case in which the model is used
to address a simple capacity planning issue. The WAS
server has eight cores and all these cores are dedicated
to the WAS application. If the server allocates fewer
cores to the WAS, how will this impact the throughput
and response time? Such a typical what-if question can
be easily answered by applying the model. In principle,
if fewer CPU cores are allocated to a task, the task pro-
cessing time should increase. We approximately assume
that if the allocated core number on the server is reduced
to 1

x of the original core number, the service time for each
request, namely, S12, S22 and S32, should be multiplied by
x respectively. Now if the server keeps the same utiliza-

1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

3000

3500

4000
Predicted and Measured Throughput

Number of cores on server

Th
ro

ug
hp

ut
 (r

eq
ue

st
 p

er
 s

ec
)

Type 1 mea
Type 1 pred
Type 2 mea
Type 2 pred
Type 3 mea
Type 3 pred

(a) Predicted throughput when reduc-
ing CPU cores on server

1 2 3 4 5 6 7 8
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
Predicted and Measured Response Time

Number of cores on server

R
es

po
ns

e
tim

e
(s

ec
)

Type 1 mea
Type 1 pred
Type 2 mea
Type 2 pred
Type 3 mea
Type 3 pred

(b) Predicting response time when re-
ducing CPU cores on server

Figure 3: Application in Capacity Planning

tion ratio, according to Equation (1), λ1, λ2 and λ3 are
reduced to 1

x of their original values respectively. After
computing the adjusted u1 from (1), we can further com-
pute the new response time from (2). To evaluate the ac-
curacy of this simple computation, we vary the allocated
core number on the server from 1 to 8, and for each set-
ting, we restart the WAS server. Figure 3(a) compares the
computed throughput and the actual measurements. Fig-
ure 3(b) compares the response time. On both aspects,
the estimation follows the ground truth.

References
[1] BARHAM, P., ISAACS, R., MORTIER, R., AND NARAYANAN,

D. Magpie: Online modelling and performance-aware systems.
In HotOS (2003), pp. 85–90.

[2] FONSECA, R., PORTER, G., KATZ, R. H., SHENKER, S., AND
STOICA, I. X-trace: A pervasive network tracing framework. In
NSDI (2007).

[3] HUMBLE, J., AND FARLEY, D. Continuous Delivery: Reliable
Software Releases through Build, Test, and Deployment Automa-
tion. Addison-Wesley, 2010.

[4] KLEINROCK, L. Queueing Systems. Wiley, 1976.

[5] KUMAR, D., OLSHEFSKI, D. P., AND ZHANG, L. Connec-
tion and performance model driven optimization of pageview re-
sponse time. In MASCOTS (2009), IEEE, pp. 1–10.

[6] MENG, S., WANG, T., AND LIU, L. Monitoring continuous state
violation in datacenters: Exploring the time dimension. In ICDE
(2010), pp. 968–979.

[7] SIMON, D. Optimal State Estimation: Kalman, H Infinity, and
Nonlinear Approaches. Wiley, 2006.

[8] SOLOMON, B., IONESCU, D., LITOIU, M., AND MIHAESCU,
M. A real-time adaptive control of autonomic computing envi-
ronments. In CASCON (2007), pp. 124–136.

[9] URGAONKAR, B., PACIFICI, G., SHENOY, P. J., SPREITZER,
M., AND TANTAWI, A. N. Analytic modeling of multitier inter-
net applications. TWEB 1, 1 (2007).

[10] WOODSIDE, C. M., ZHENG, T., AND LITOIU, M. Service
system resource management based on a tracked layered perfor-
mance model. In ICAC (2006), pp. 175–184.

[11] ZHANG, L., XIA, C. H., SQUILLANTE, M. S., AND III, W.
N. M. Workload service requirements analysis: A queueing net-
work optimization approach. In MASCOTS (2002), IEEE.

[12] ZHENG, T., WOODSIDE, C. M., AND LITOIU, M. Performance
model estimation and tracking using optimal filters. IEEE Trans.
Software Eng. 34, 3 (2008), 391–406.

4

