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Abstract

MapReduce is designed as a simple and scalable frame-
work for big data processing. Due to the lack of resource
usage models, its implementation Hadoop hands over re-
source planning and optimizing works to users. But user-
s also find difficulty in specifying right resource-related,
especially memory-related, configurations without good
knowledge of job’s memory usage. Modeling memory
usage is challenging because there are many influencing
factors such as framework’s dataflow, user-defined pro-
grams, large space of configurations and memory man-
agement mechanism of JVM. In order to help both user-
s and the framework to analyze, predict and optimize
memory usage, we propose a Fine-grained Memory
Estimator for MapReduce jobs called FMEM. FMEM
contains a dataflow estimator which can predict the da-
ta volume flowing among map/reduce tasks. Based on
dataflow and rules of memory utilization learnt from a lot
of jobs, FMEM uses a rules-statistics method to estimate
fine-grained memory usage in each generation of task’s
JVM. Representative benchmarks show that FMEM can
predict diverse jobs’ memory usage within 20% relative
error. Furthermore, FMEM will be promoted to find op-
timum dataflow and memory related configurations.

1 Introduction

Google MapReduce [7] framework and its open-source
implementation Hadoop have been widely adopted to
process big data. This framework divides the costly data
processing job into small independent map/reduce tasks
and runs them in parallel. Users only need to specify
map and reduce functions to develop data-intensive ap-
plications, regardless of distributed issues. Users can al-
so write SQL-like scripts which can be transformed in-
to MapReduce jobs automatically by high-level frame-
works such as Pig [15], Hive [18] and Sawzall [16].

Although MapReduce helps users focus on job’s func-
tion implementation, we find its three-isolated-layer ar-
chitecture causes users’ difficulty in configuration, re-
source planning and performance optimization. In us-
er layer, users are required to write programs, prepare

dataset and also specify appropriate memory-related con-
figurations. In framework layer, besides defining job’s
data processing steps (dataflow [5]) in map and reduce
stage, framework is also responsible to schedule, launch
and maintain map/reduce tasks. In execution layer, each
task runs as a separate JVM instance, performs data pro-
cessing steps and executes concrete map/reduce func-
tions. Since JVM divides memory into small spaces and
manages them separately, only execution layer knows the
actual fine-grained memory usage. Framework just treat-
s memory as a large contiguous space without modeling
its consumption. So inappropriate configurations may
lead to job’s OutOfMemory error, performance degrada-
tion or resource waste. At the highest layer and facing
large space of configurations, users usually feel hard to
analyze, predict and optimize memory usage. Howev-
er, new scheduling frameworks such as YARN [6] and
Mesos [12] not only require users to specify the memory
usage but also schedule tasks according to it.

It is challenging to model and predict job’s memory
usage with variable dataset, limited logs and large space
of configurations. Fortunately, MapReduce dataflow pat-
tern is relatively fixed with only black-box map/reduce
functions. Our proposed memory estimator (FMEM) us-
es simulation method to model dataflow pattern and s-
tatistical methods to model intermediate data volume.
Memory usage is more complex to model because of
multiple factors such as dataflow, configurations and
garbage collection (GC). In order to build this model, we
integrate the different views of memory consumption in
all layers, study the memory management mechanism of
JVM, analyze a lot of jobs’ logs, and then summarize
rules of fine-grained memory usage. Statistical methods
are used to estimate the size of in-memory objects. Fi-
nally, FMEM profiles a job using sample data and then
predict its dataflow and memory usage on real big data.

Our contributions are as follows: 1) We provide a
detailed analysis of job’s memory usage, considering
dataflow and memory management from user-level to in-
ner JVM. 2) We also introduce a fine-grained memory es-
timator which can predict job’s memory usage in a large
space of configurations.
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2 Memory Usage Analysis
Each mapper/reducer runs as an independent process in
MapReduce framework. In Hadoop, one process is one
JVM instance which isolates the framework from man-
aging the physical memory directly. Memory allocation
and GC are controlled by specific algorithms. JVM di-
vides the whole heap space into two parts: new genera-
tion for storing newly-generated objects and old genera-
tion for storing long-term objects. We find task’s memo-
ry consumption mainly comes from the following items:

Memory Buffers. In mapper, spill buffer always occu-
pies a large fixed space in old generation. It is set by
io.sort.mb and used to cache map() outputs. Enlarging
this buffer may reduce spill times and disk I/O. In reduc-
er, data shuffled from map outputs are kept as in-memory
segments in a logical shuffle buffer. This buffer cannot
exceed a threshold (default 70%) of JVM’s total heap, or
else segments are merged onto disk. In JVM, segments
are first allocated in new generation and some of them
are transferred into old generation if GC occurs. In addi-
tion, Java’s input/output/flush/compress streaming class-
es contain small-sized buffers.

Records. Since each task has to read <K, V> record-
s, process them, merge intermediate records and output
new records, records definitely occupy a large space in
JVM. In mapper, map() outputs records into spill buffer.
In reducer, shuffled records are first kept as segments in
shuffle buffer, though they may be merged onto disk lat-
er. Streaming records in map() and reduce() occupy lim-
ited space unless many of them are kept purposely into
in-memory data structure.

Temporary Objects (TmpObjs). While processing and
producing records, user-defined programs or framework
itself may generate temporarily referenced objects such
as char[], byte[], String, ArrayList and so on. Most of
them are auxiliary objects of input/output records, allo-
cated in new generation first and then reclaimed by GC.
For example, A WordCount mapper produces massive
java.nio.HeapCharBuffer objects. Objects’ number e-
quals the number of map() output records, but their size
is more than 7 times the size of map() input records.

Others. The native libraries used in task’s JVM may
consume small memory space. JVM also keeps a small
area to store programs’ Class, Object and Method infor-
mation. Other program-related items such as code seg-
ment and thread pool also have small space in memory.

3 System Overview
To predict jobs’ <Memory Usage mu> under specific
<Dataset d, Configuration c>, we build an integrated
system illustrated in Figure 1. We first profile the sample
job running on sample dataset (SData) and then estimate

big job’s mu on big dataset (BData). Conf stands for
Configuration.
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Figure 1: System Architecture of FMEM

Built-in Monitor: To monitor dataflow, we add many
fine-grained dataflow counters into Hadoop’s task logs.
For example, we add each spill piece’s Records/Bytes S-
tatistics (RBS) before and after spilling, each partition’s
RBS before and after merging and so on. We also use
Jstat [4] to record each generation’s memory usage ev-
ery N seconds. Users can turn on or off built-in monitor
through configuration. This monitor has low overhead
and only used for sample jobs.

Profiler: After a sample job finishes, log collector will
fetch each task’s execution time, configuration, dataflow
volume and memory usage. Dataflow profiler calcu-
lates task’s RBS in map, spill&merge, shuffle, sort and
reduce phase. Similarly, memory profiler calculates
max/min/average memory usage in each phase.

Dataflow Estimator: Though we can get RBS from the
sample job, it is non-trivial to predict big job’s dataflow
in a large configuration space. Many configurations such
as input split size, spill buffer and reducer number can af-
fect dataflow volume. To tackle them, we actually build
a simulator of MapReduce framework to model dataflow
in each processing step. Statistical methods are used to
model and estimate the I/O ratio. When big job’s BDa-
ta and Conf2 are specified, mapper dataflow model in
our simulator uses sample mappers’ profiles to estimate
new mappers’ dataflow. Then, reducer dataflow model
can compute new reducers’ profiles based on the sample
ones.

Memory Estimator: To estimate new tasks’ memory
profiles, we first compute the size of their memory-
consuming items. We get memory buffer size from Con-
f2, get records’ size from dataflow estimator, and com-
pute TmpObjs according to dataflow and memory pro-
files of sample tasks. Next, we use rules summarized
from tremendous jobs’ profiles to estimate memory us-
age in each generation for each task. The rules are for-
malized as NGU/OGU ≈ f (Conf,Records, TmpObjs).
Finally, memory estimator selects the maximum (x)
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memory usage of all the new mappers to represent map-
per’s mu. In detail, mapper’s xNGU represents maxi-
mum memory usage in new generation of all mappers.
So does reducer’s. xOU stands for that in old generation.
xHeapU denotes heap usage (i.e., NGU + OU).

4 Evaluation
Because each task runs as an independent JVM instance
and processes its own data, task’s memory usage is not
so sensitive to cluster scale as job’s execution time. We
evaluate FMEM’s accuracy on a local cluster of 10 n-
odes. Each node has four Intel i7-2600 cores, 16GB
RAM and 2TB disk space. OS is Ubuntu-11.04 x86_64
and JDK is HotSpot 64-Bit Server VM (build 1.6.0_27).
Hadoop version is 0.20.2 which is similar to the latest
1.1.2. YARN does not change dataflow pattern either.
One node act as JobTracker. The others are slave nodes,
each of which has 4 map slots and 2 reduce slots.

We use diverse applications (Table 1) to evaluate
FMEM. Combine denotes whether combine() is used.
Compress denotes whether spill pieces and segments are
compressed. SeqBlock means Block compression in Se-
quenceFile. For each application, we run 180 sample
jobs (processing 1GB sample dataset) and 180 big job-
s (processing big dataset) with different combinations
of <split, ismb, RN, Xmx, Xms> (SIRXX). These five
configurations are often adjusted to better performance,
though our models involve many other configurations. S-
plit is input split size (set to 64, 128 or 256MB). ismb is
io.sort.mb (set to 200, 400, 600 or 800MB). Sample job-
s’ RN (reducer number) is 2 or 4, while big jobs’ RN is
9 or 18. JVM’s maximum heap size Xmx is set to 1000,
2000, 3000 or 4000MB. Minimum heap size Xms is not
set or set equal to Xmx. So the number of sample/big
jobs is 192. Twelve of them are abortive jobs because
of memory overflow. Next, we use a sample job with
specific <split, ismb, RN, Xmx, Xms> to estimate a big
job’s mu with another SIRXX. So there are 180 * 180
= 32,400 estimated memory usage <emu>. Finally, we
compare each big job’s estimated <emu> and real <rmu>
using relative error as follows:

relative error =
∣∣∣ emu − rmu

rmu

∣∣∣ ∗ 100%

If rmu = 0, we set relative error to 100%. The sample
job randomly selects several splits (totally 1GB) from all
the input splits of big dataset as sample dataset.

Table 1: Representative MapReduce Applications

Applications Dataset Combine Compress
WikiWordCount 9.4 GB Y N
BuildInvertedIndex 9.4 GB N SeqBlock
UserVisits_Aggre-pig 75 GB Y N
TwitterBiEdgeCount 24.4 GB N N
TeraSort 36 GB N Y

WikiWordCount (WWC): This application uses stan-
dard WordCount program from Hadoop Examples. We
preprocess enwiki-20110405-pages-articles.xml and get
9.4GB plain text as input big dataset.

BuildInvertedIndex (BII): This application simulates
building inverted index of Web pages, which is widely
used in search engines. The source code is from [1]. In-
put dataset is as same as that in WWC.

UserVisits_Aggre-pig (UVA): This application is actu-
ally a Pig script which is used to analyze user-visited logs
in websites. We get this script from Hive Performance
Benchmark in [3]. It has Group By operator and uses
program-generated dataset.

TwitterBiEdgeCount (TBEC): It counts the number of
bilateral edges of Twitter graph from [13]. This large
sparse graph has more than 40 million nodes and 1.5 bil-
lion edges.

TeraSort (TS): This application also uses standard
TeraSort program and sorts program-generated 36 GB
dataset. Note that this job uses identity map() and re-
duce(). Thus, the I/O ratio of them is 1:1.

4.1 Evaluating Memory Estimator
Each job’s memory usage is represented by mapper’s
mu and reducer’s mu. We evaluate them separately.
Each histogram in Figure 2 shows the average relative
error from 32,400 comparisons of big jobs’ <emu, r-
mu>. Four metrics (xOU, xNGU, xHeapU and RSS)
are used as concrete mu for both mappers and reduc-
ers. Suppose a big job has n mappers, this job’s map-
per xOU = max1≤i≤n(OUi). Others are computed in
the same way. HeapU represents total memory usage
of JVM, while RSS (Resident Set Size) stands for non-
swapped physical memory usage in Linux. Sometimes
there is a small difference between them. The top part
shows mapper’s relative error. Compared with xOU, xN-
GU has higher error rate. One reason is that NGU is more
variable and affected by multiple factors. Another is that
our estimating condition is very harsh. We only use a
single sample job with one configuration to estimate a
big job with another configuration. xHeapU and RSS are
better but their standard deviations are a little high. The
bottom part shows reducer’s relative error. Since reduc-
er’s mu is related to the size of shuffled records, large d-
ifference of dataflow may cause high error rate of mu. So
WWC’s xOU and xNGU have high error rate. But for the
other applications, xNGU and xOU have low error rates
which indicate our memory usage rules are effective.

5 Related Work
Many researchers have studied job’s performance mod-
el and optimizing methods. Some are concerned about
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Figure 2: Relative error with standard deviation of <emu,rmu>

jobs’ execution time estimation. Morton et al. [14]
present an online heuristic method to predict the progress
of MapReduce job pipelines. This method borrows
some ideas from progress indicators for SQL queries in
DBMSs. Verma et al. [19] propose a theoretical bound
time model which analyzes each phase of MapReduce
dataflow carefully. They also discuss how to allocate
right resource (slots) to guarantee job’s runtime [20].
Ganapathi et al. [8] use Kernel Canonical Correlation
Analysis to model the relationship between Hive queries’
features and queries’ performance metrics (only runtime
is validated). This method does not focus on the actual
MapReduce job and treats the dataflow as a black box.

Other researchers optimize job’s configurations. S-
tarfish project [11, 10] proposes a cost-based optimiz-
er to find job’s optimum configuration. The What-if en-
gine in this project can predict job’s performance (mainly
for runtime) with different configurations. Hadoop per-
formance models are discussed in [9] but fine-grained
memory usage is not studied.

Few works focus on job’s memory usage. Singer et
al. [17] design a fork-join MapReduce Java Framework
(MRJ) for multi-core machines. They use machine learn-
ing approach to finding most suitable GC policy for MRJ,
but memory usage is not studied. This method does not
concentrate on distributed MapReduce framework like
Hadoop either.

6 Conclusion

Memory is more precious compared with disk for big da-
ta processing. YARN and Mesos schedule tasks accord-
ing to CPU and memory requirement. To help users an-
alyze, predict and optimize resource usage, we develop
FMEM which can estimate MapReduce job’s dataflow

and memory usage in a large configuration space. It us-
es sample job’s profiles to estimate big job’s resource
usage. FMEM models the complex relationship among
dataflow, memory usage, GC and configurations. It can
also be promoted to tackle other resource-related prob-
lems. To the best of our knowledge, this is the first
approach that tries to model the memory usage of dis-
tributed MapReduce tasks. Our project is now available
at github [2].
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