
USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 279

Preemptive ReduceTask Scheduling for Fair and Fast Job Completion

Yandong Wang∗ Jian Tan† Weikuan Yu∗ Li Zhang† Xiaoqiao Meng†

Auburn University∗ IBM T.J Watson Research†

{wangyd,wkyu}@auburn.edu {tanji,zhangli,xmeng}@us.ibm.com

Abstract
Hadoop MapReduce adopts a two-phase (map and re-
duce) scheme to schedule tasks among data-intensive ap-
plications. However, under this scheme, Hadoop sched-
ulers do not work effectively for both phases. We reveal
that there exists a serious fairness issue among jobs of
different sizes, leading to prolonged execution for small
jobs, which are starving for reduce slots held by large
jobs. To solve this fairness issue and ensure fast com-
pletion for all jobs, we propose the Preemptive Reduc-
eTask mechanism and the Fair Completion scheduler.
Preemptive ReduceTask is a mechanism that corrects the
monopolizing behavior of long reduce tasks from large
jobs. The Fair Completion Scheduler dynamically bal-
ances the execution of different jobs for fair and fast
completion. Experimental results with a diverse collec-
tion of benchmarks and tests demonstrate that these tech-
niques together speed up the average job execution by as
much as 39.7%, and improve fairness by up to 66.7%.

1 Introduction
MapReduce [10] is a simple yet powerful program-

ming model that is increasingly deployed at many data
centers for the analysis of large volumes of unstructured
data. Hadoop [1] is an open-source implementation of
MapReduce. It divides a MapReduce job into two types
of tasks, map tasks (MapTasks) and reduce tasks (Re-
duceTasks), and assigns tasks to multiple workers called
TaskTrackers for parallel data processing.

To support many users and jobs (large batch jobs and
small interactive queries), Hadoop MapReduce adopts a
two-phase (map and reduce) scheme to schedule tasks for
data-intensive applications. The Hadoop Fair Scheduler
(HFS) [4] and Hadoop Capacity Scheduler (HCS) [3]
have focused on fairness among MapTasks. These sched-
ulers strive to maximize the use of system capacity and
ensure fairness among different jobs. However, they do
not work effectively for both phases. What complicates
the matter is the distinct execution behaviors of Map-

Figure 1: Unfair Execution among Different Size Jobs

Tasks and ReduceTasks. Unlike MapTasks which are
launched one group after the other to process data splits,
ReduceTasks have a different execution pattern. Once a
ReduceTask is launched, it occupies the reduce slot until
completion or failure.

We have examined the performance of Hadoop sched-
ulers using a synthetic workload of jobs submitted to
a shared MapReduce cluster. Jobs are divided into 7
groups based on their increasing data sizes; jobs in the
same group are identical. They arrive according to a
Poisson random process. Figure 1 shows the comparison
of the normalized execution time, which is defined as the
ratio between a job’s actual execution time and its stand-
alone execution time (the time when a job is running in
the system alone). As shown in the figure, the stand-
alone execution time of jobs in each group increases in
proportion to their input data size. However, the com-
pletion of these jobs varies dramatically with HFS. Jobs
in the smaller groups have much worse normalized ex-
ecution times, indicating that they must wait very long
(as much as 52× longer than the stand-alone execution
time). Such scheduling behavior contradicts users’ intu-
itive expectation that smaller jobs should be completed
faster and turned around more quickly.

To address this fairness issue and ensure fast com-
pletion for jobs of various sizes, we design a combi-
nation of two techniques: the Preemptive ReduceTask

1

280 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

mechanism and the Fair Completion Scheduler. Pre-
emptive ReduceTask is a solution to correct the monop-
olizing behavior of long ReduceTasks. By enabling a
lightweight working-conserving option to preempt Re-
duceTasks, Preemptive ReduceTask offers a mechanism
to dynamically change the allocation of reduce slots. On
top of this preemptive mechanism, the Fair Completion
Scheduler is designed to allocate and balance the reduce
slots among jobs of different sizes. In summary, we make
the following contributions on the scheduling of jobs in
data centers for fair and fast job completion.

• We examine the unfairness issue of MapReduce
jobs execution in detail and identify the key short-
comings of existing schedulers in balancing the al-
location of reduce slots among jobs.

• We introduce the Preemptive ReduceTask mecha-
nism for lightweight, work-conserving preemption,
on top of which we design the Fair Completion
Scheduler that improves both the fairness and ex-
ecution of MapReduce jobs.

• We have conducted a systematic evaluation of Fair
Completion Scheduler. Our results demonstrate that
it can reduce the average execution time of work-
loads by up to 39.7% and improves the fairness by
as much as 66.7%, when compared to HFS.

2 Background and Motivation
In this section, we first provide a brief overview of

Hadoop job scheduling, then discuss the issues within
existing schedulers.

2.1 Job Scheduling in Hadoop
In Hadoop, the JobTracker assigns available map and re-
duce slots separately to jobs in the queue, one slot per
task. Figure 2 shows an example of scheduling three
jobs (represented by shaped blocks in three colors) on
a system with three reduce slots and five map slots. The
scheduling policy is based on the Hadoop Fair Scheduler.
A job when running alone can satisfy its needs with all
reduce slots, but it has to share the slots when other jobs
arrive. Once granted a slot, a ReduceTask has to fetch
data produced by all MapTasks before it completes. In
the figure, Job 1 first arrives by itself. It grabs 3 map
slots and 2 reduce slots for itself and completes execu-
tion. Job 2 then takes the rest of map and reduce slots.
When Job 2 needs more map or reduce slots, it has to
share, because Job 3 has arrived.

Each map output file has a partition for every Reduc-
eTask, the current Hadoop scheduler greedily launches
as many ReduceTasks as permitted for each job to max-
imize the chance of overlapping the shuffling of avail-
able intermediate data with the execution of future Map-
Tasks. Hadoop also allows a configuration parameter

Figure 2: An Example of Scheduling Slots among Jobs

(slowstart.completed.maps) to delay the launch of Re-
duceTasks so that small jobs after large jobs can have
chances to share the reduce slots.

2.2 Profiling of Unfair Slot Allocation
To closely examine the fairness issue between different
jobs, we conduct an experiment on a cluster of 20 nodes.
40 map slots are created on 10 nodes, and 20 reduce slots
on the other 10 nodes. 8 jobs are sequentially submitted
into the cluster every 60 seconds. Job 3 is a large job
that requires 20 ReduceTasks. Figure 3 shows the usage
of map and reduce slots by 8 jobs. Map slots are shared
among jobs over time as jobs arrive and leave, but re-
duce slots are all occupied by Job 3. As a result, Jobs
4-8 cannot get a share until Job 3 completes, even if they
have successfully finished all their MapTasks. On aver-
age, Jobs 4-8 are significantly delayed compared to their
stand-alone execution times. This reveals that Hadoop
Fair Scheduler is not able to achieve fair normalized ex-
ecution times for all jobs. A similar behavior was also
reported by an IBM study [15]. Note that there exists a
dramatic variance among the normalized execution time
for different jobs in the same pool and in different tests
(c.f. Figure 1 and Figure 3). More importantly, when the
generation rate of intermediate data is low, even if long
running ReduceTasks are occupying the slots, they do not
efficiently utilize the resources, and ReduceTasks peri-
odically enter into the idle state, causing severe resource
underutilization. In this experiment, on average, during
87.6% of Job 3’s ReduceTasks execution time, CPUs and
disks are idle and waiting for the intermediate data, and
network is highly underutilized.

2.3 Proposed Solutions
The monopolizing behavior of ReduceTasks has been
documented earlier as a reason to cause small jobs starve
for reduce slots [17, 15, 18]. Hadoop provides a slowstart
configuration option that can delay the launch of Reduc-
eTasks and mitigate this situation, but at the cost of slow-
ing down the shuffle phase, thus it can significantly pro-
long the execution times of small jobs. Zaharia et al. [18]

2

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 281

Figure 3: Run-Time Allocation Profile of Map and Re-
duce Slots.

proposed a copy-compute splitting mechanism, but it
does not fully resolve this issue. Tan et al. [15] pro-
posed a coupling scheduler to launch reducers gradually
by coupling the progresses of map and reduce tasks in
the same job. With this scheduler, a large job can spare
reduce slots for other jobs when its map phase has not
progressed much. But when a large job finishes its map
phase, it still takes all available reduce slots and causes
the starvation of small jobs. Like the slowstart option, the
coupling scheduler delays and mitigates the monopoliza-
tion of reduce slots by large jobs. But it does not solve
the monopolization, instead let it progressively happen.

In this study, we examine the job fairness and effi-
ciency issues in data centers and investigate the feasi-
bility of lightweight task preemption and automated pre-
emptive scheduling policy for fair and fast job comple-
tion under MapReduce context. Two techniques are de-
signed accordingly to tackle these issues: the Preemptive
ReduceTask mechanism and the Fair Completion Sched-
uler. Preemptive ReduceTask allows ReduceTasks to be
preempted in a work-conserving manner (without losing
previous I/O or computation work, or causing high over-
head) during shuffle or reduce phases. The Fair Comple-
tion Scheduler builds on top of preemptive ReduceTask
to automatically monitor job progresses and dynamically
balance the usage of reduce slots, thereby speeding up
the execution of small jobs and ensuring fairness among
a large number of jobs on a shared Hadoop cluster.

3 Preemptive ReduceTask
A preemptive mechanism needs to be efficient and

lightweight so that it can react fast enough to dynamic
system workloads. But a ReduceTask often consumes
the bulk of processing time due to its main responsibil-
ities of fetching and merging intermediate data from all
MapTasks and performing user-defined reduce computa-
tion on the merged data. In this section, we introduce our
Preemptive ReduceTask mechanism that can preempt a
ReduceTask at any time during its execution, with low
overhead and negligible delay to the job progress.

3.1 Work-Conserving Self Preemption
Preemption is usually an OS utility to threads and pro-
cesses running on a system. Operating systems such as
Linux are equipped with a sophisticated thread/process
table along with virtual memory to record the progresses
of threads/processes and support lightweight preemp-
tion. However, there is no such utility in Hadoop to keep
the ReduceTask around as a process after its preemption.
Although Hadoop currently provides a killing based pre-
emption mechanism, our results show that killing is a
poor preemption option that can significantly delay the
progress of entire job. A naive checkpoint/start mecha-
nism is also not suitable because it dumps all memory of
a ReduceTask (it can be several GB) to persistent stor-
age and incurs very high costs. Instead we introduce a
work-conserving self preemption mechanism. When re-
quested, a ReduceTask will conserve its work and then
preempt itself, i.e., exit and release reduce slot. Note
that our preemptive ReduceTask keeps current APIs of
Hadoop and HDFS [14] intact, all existing Hadoop ap-
plications can still function without any modification.

During the shuffle phase, a ReduceTask fetches all the
segments that belong to it from all intermediate map out-
puts. According to the sizes of the segments, Reduc-
eTask stores them either to local disks or in memory.
Meanwhile, multiple merging threads merge fetched seg-
ments into larger segments and store them to the persis-
tent storage. During the reduce phase, a ReduceTask or-
ganizes all the segments in a Minimum Priority Queue
(MPQ, which has a heap structure), in which the seg-
ment that has the minimum first <key,value> pair is po-
sitioned at the head of MPQ. As the reduce phase pro-
gresses, <key,value> pairs are continually popped out
from the MPQ and supplied to the reduce function.

3.1.1 Preemption during Shuffle Phase

Figure 4: Preemption during Shuffle Phase

Figure 4 shows our design of work-conserving pre-
emption when a ReduceTask is in the shuffle phase. Be-

3

282 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

fore preemption, a ReduceTask has a mixture of one on-
disk segment and two in-memory segments, organized in
a heap. Preserving the state of shuffle phase is to keep
track of the shuffling status of all segments. Upon re-
ceiving a preemption request, this ReduceTask merges
the in-memory segments and flushes the results to the
disks (Step 1) while leaves on-disk segments untouched.
The parent TaskTracker maintains an index record on the
locations of fetched segments, one per preempted Reduc-
eTask. Then the ReduceTask preempts itself and releases
the slot. When the ReduceTask is later resumed (Step 2),
it retrieves the index record from the parent TaskTracker,
then restores the heap structure before the preemption.
After that, this ReduceTask continues to fetch the rest
segments from remaining map outputs (Step 3).

3.1.2 Preemption during Reduce Phase

Figure 5: Preemption during Shuffle Phase

To conserve the work before preemption in the reduce
phase, a ReduceTask needs to store the current results
to HDFS besides recording the positions of input seg-
ments in the MPQ. In other words, ReduceTask needs
to preserve the state of reduce computation at the end of
each intermediate <key,val> pair, and remember the in-
dex of the last intermediate <key,val> pair at the time
of preemption. Figure 5 shows our strategy for work-
conserving preemption during the reduce phase. A Re-
duceTask is drawing <key,val> pairs from the MPQ
that consists of three segments. When it receives a pre-
emption request, it stops the reduce computation at the
boundaries of <key,val> pairs (Step 1). Available re-
sults for previous <key,val> pairs are stored to HDFS.
The parent TaskTracker again helps in this process by
storing an index record for a preempted ReduceTask,
and later provides it for preempted ReduceTask to re-
sume its execution (Step 2). After resumption, the Re-
duceTask restores the MPQ again and proceeds further
from the next <key,val> pair without any loss or rep-
etition of reduce computation and intermediate data re-

shuffling (Step 3). During this process, to allow multi-
ple preempted/resumed ReduceTasks to write to HDFS,
we let the TaskTracker maintain the output streams to
HDFS, therefore they can be shared by many Reduc-
eTasks. Only the last ReduceTask closes the stream. In
addition, Task migration is also possible for a preempted
ReduceTask but it requires data to be re-fetched over the
network.

4 Fair Completion Scheduler

Algorithm 1 FCS: Selecting ReduceTask to Preempt

1: Lrunning: {a list of running jobs of decreasing remain-
ing work.}

2: Ji: {a job requesting new reduce slots.}
3: Demand(Ji) ← {Ji’s demand for reduce slots.}
4: if Available reduce slots < Demand(Ji) then
5: m ← Demand(Ji) - Available reduce slots
6: for all j ∈ Lrunning ∧ IsPreemptable(Jj) ∧(m > 0)

do
7: if (Jj.Trs > Ji.Trs) ∨ ((Jj.Trs == Ji.Trs) ∧

(Jj.Rle f t > Ji.Rle f t) then
8: RLn ← {Jj’s list of running ReduceTasks}
9: for all r ∈ RLn ∧(m > 0) do

10: preempt r
11: m ← m−1
12: end for
13: end if
14: end for
15: end if

To efficiently balance the reduce slots among a large
number of jobs of different sizes, we introduce a novel
preemptive ReduceTask scheduling policy based on the
remaining ReduceTasks workload of all the jobs. Map-
Tasks are scheduled under independent scheduling poli-
cies, such as max-min fair sharing, or FLEX [17]. Be-
cause of its benefits in achieving fairness for jobs of dif-
ferent sizes (c.f. Section 5), we refer to it as Fair Com-
pletion Scheduler (FCS).

As a preemptive scheduler, FCS must be equipped
with two algorithms: one to automatically select a Re-
duceTask to preempt and the other to select a Reduc-
eTask to launch. We first describe the selection policy for
preemption. To select a suitable ReduceTask and achieve
fair execution, we need to evaluate the run-time progress
of jobs. However, the relative progress and the remaining
processing time of ReduceTasks are not available before
they start. We choose the following approximations to
estimate the progress.

Remaining shuffle time: This is estimated as Trs

through the function: Trs = (
Mle f t
Mrate

)×Tmavg, where Mle f t
stands for the number of remaining MapTasks, Mrate is
the average rate in completing MapTasks, and Tmavg is

4

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 283

the average execution time of MapTasks that have com-
pleted or in progress. As a job makes progress in its exe-
cution, we dynamically update Mrate accordingly.

Remaining reduce data: This is estimated as Rle f t
through the function: Rle f t = Rtotal −Rdone, where Rtotal
stands for the total intermediate data to reduce, and Rdone
the data that has been reduced. The latter is available
during the progress of reduce phase, and the former is
available when the reduce phase starts.

Execution Slackness: This is estimated as Eslack
through the function: Eslack =

Ttotal
Test

, where Ttotal is a Re-
duceTask’s total execution time since its beginning and
Test is its estimated execution time based on its progress
without preemption. We calculate it as Test =

Tsvc
Cpctg

, where
Tsvc is the actual execution time excluding preemption
and Cpctg is the percentage of completed work.

FCS is designed with policies to balance reduce slots
between small jobs and large jobs. It compares a job j
that has the largest amount of remaining work to a job
i requesting reduce slots, as shown in Line 7 of Algo-
rithm 1. Job j’s ReduceTasks are preempted if it has
more work than Job i (Line 10). Essentially, this allows
small jobs to preempt large jobs, solving the monopoliz-
ing behavior of long-running jobs and reducing the delay
of small jobs. On the other hand, we monitor the exe-
cution slackness of a ReduceTask since its beginning. If
its execution slackness has reached a configurable upper-
bound (5 by default), a ReduceTask will not be preempt-
able, i.e. IsPreemptable returns false. This enables large
jobs with an option to escape preemption–keeping their
reduce slots–and avoid starvation. Note that the execu-
tion slackness is a calculated number at run-time, which
offers a better choice than a static parameter, for exam-
ple, the number of times a ReduceTask can be preempted.
Its sole purpose is to guarantee that a long job would not
get seriously delayed because of frequent preemptions
by other jobs. Besides taking into account of execution
slackness, we avoid preempting a newly launched Re-
duceTask or a ReduceTask whose progress has gone over
70% to avoid overhead.

Then we describe briefly the policy for selecting a Re-
duceTask to launch, which is shown as Algorithm 2. In
making this selection, FCS favors the jobs with the least
amount of remaining work as shown in Line 2 of Al-
gorithm 2. Jobs are firstly sorted according to their Trs
values, when two Trs values are equal, they are sorted
according to Rle f t . In addition, it takes the data locality
into account, trying to launch a preempted ReduceTask
on the same node that it has executed before (Line 4).
A preempted ReduceTask that cannot achieve data local-
ity will be delayed (Line 16). However, if a preempted
ReduceTask has been delayed for too long because it is
not able to resume on its previous node (Line 11), then
FCS migrates it to another node that has available reduce

Algorithm 2 FCS: Selecting ReduceTask to Launch

1: {Receiving a heartbeat from node n with an empty
slot.}

2: Lrem: {a sorted list of jobs of increasing remaining
work.}

3: for all j ∈ Lrem do
4: if (Task r is j’s reduce task either preempted from

n or never launched) then
5: r.migration = 0
6: launch r on n
7: return
8: end if
9: Tprt ← {j’s preempted ReduceTasks (oldest first)}

10: for all r ∈ Tprt do
11: if r.migration >D then
12: migrate r to n
13: r.migration = 0
14: return
15: end if
16: r.migration += 1
17: end for
18: end for

slots (Line 12). In this algorithm, D is an approxima-
tion of −M× ln(1−L

1+(1−L)), a similar parameter employed
in the delay scheduling [19], where M is the number of
nodes in the cluster and L is the expected data locality.
For example, on a cluster of 20 nodes, with the expected
data locality L = 0.95, then D ≈ 61. With this algorithm,
we fit the same delay scheduling policy (and its param-
eter D) nicely into FCS, and delay the launching of a
ReduceTask for a future possibility to resume it on the
node it was preempted, i.e., better locality. This param-
eter allows us to consider the tradeoff between the need
of resuming ReduceTask for data locality and the need of
migrating ReduceTasks for free slot utilization. In Sec-
tion 5.2.1, we show that careful tunning of D can indeed
lead to a good tradeoff between these two factors.

5 Evaluation Results
This section presents a systematic performance eval-

uation of Fair Completion scheduler (FCS) using a di-
verse sets of workloads, including Map-heavy workload,
Reduce-heavy workload. Furthermore, we conduct stress
tests through Gridmix2 [2]. We compare the perfor-
mance of FCS to the Hadoop Fair Scheduler (HFS) and
Hadoop Capacity Scheduler (HCS). Several versions of
Hadoop are available. Particularly, YARN as a successor
of Hadoop provides a new framework for task manage-
ment. However, through code examination and perform
evaluation, we have found that YARN adopts the same
task schedulers, thus facing the same fairness issues as

5

284 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

Hadoop. In addition, YARN is still not yet ready for
large-scale stable execution. Therefore, our evaluation
is based on the stable version Hadoop 1.0.4.

5.1 Experimental Environment
Cluster Setup: Experiments are conducted in a cluster
of 46 nodes. One node is dedicated as both the NameN-
ode of HDFS and the JobTracker of the Hadoop. Each
node is equipped with four 2.67GHz hex-core Intel Xeon
X5650 CPUs, 24GB memory, and two 500GB Western
Digital SATA hard drives.

Hadoop Setup: We configure 8 map slots and 4 re-
duce slots per node, based on the number of cores and
memory available on each node. We assign 1024MB
heap memory to each map and reduce task, respectively.
The HDFS block size is set to suggested 128MB [19] to
balance the parallelism and performance for MapTasks.

Benchmarks: We employ the well-known GridMix2
and Tarazu benchmarks [6] to demonstrate that FCS is
suitable for various types of workloads.

Tarazu benchmarks represent typical jobs in produc-
tion clusters. Meanwhile, Different benchmarks empha-
size different workload characteristics. Map-heavy jobs
generate a small amount of intermediate data, thus re-
sulting in lighter ReduceTasks compared to the relatively
heavier MapTasks. This group includes Wordcount, Ter-
mVector, InvertedIndex and Kmeans. On the other hand,
Reduce-heavy jobs generate a large amount of interme-
diate data, thus causing heavy network shuffling and re-
duce computation at the ReduceTasks. This group in-
cludes TeraSort, SelfJoin, SequenceCount, and Ranked-
InvertedIndex. it is worth mentioning that we configure
the submission of GridMix2 jobs as a Poisson random
process with a configurable arriving interval.

Evaluation Metrics: A number of performance met-
rics used in our presentation are listed as follows.
• Average execution time: This is the plain average

of execution time among a group of jobs, reflecting
the efficiency of schedulers to a system.

• Maximum slowdown: We refer to slowdown as the
normalized execution time, which is defined earlier.
Maximum slowdown is then the biggest slowdown
among a group of jobs. This reflects the fairness to
jobs of different characteristics.

• ReduceTask wait time: It is defined as the time
spent by a ReduceTask in waiting for reduce slots
after the same job’s MapTasks (i.e. the entire map
phase) have all completed. If the ReduceTask gets
a slot before that, then the wait time is 0. This aims
to reflect the delay experienced by ReduceTasks.

• Average preemption times: This is the average
number of preemptions experienced by a group of
jobs with similar job sizes. This quantifies the dis-
tribution and frequency of preemptions to jobs of

different groups that differ in job sizes.

5.2 Evaluating Design Choices of FCS
The design of FCS includes a couple of important design
choices such as the threshold parameter that allows task
migration to resume a preempted ReduceTask, and the
choice of Preemptive ReduceTask instead of killing as
the preemption mechanism. In this section, we conduct
tests to evaluate these design choices and elaborate their
importance.

5.2.1 Opportunistic ReduceTask Migration

Figure 6: Effectiveness of ReduceTask Migration

As mentioned in section 4, FCS is designed with an
opportunistic parameter D that controls the tradeoff be-
tween keeping ReduceTasks on their original node for
data locality and migration ReduceTasks to other avail-
able slots for resource utilization. A very large D allows a
ReduceTask to be delayed many times and become sticky
to their original nodes, achieving better data locality for
the resumed ReduceTask but at the cost of underutiliza-
tion of other reduce slots. In contrast, a very small D
leads to better resource utilization but also incurs more
data movement. In this section, we assess the impact of
D by executing a pool of Gridmix2 jobs. Also, job sub-
mission is configured to follow a Poisson random process
with an average inter-arrival time of 30 seconds.

In the experiment, we increase D from 20 to 140, and
compare the performance results of FCS with migration
to that of FCS without migration. As shown in Fig-
ure 6, FCS with migration can lead to the best average
execution time when D equals 60, with an improvement
of 9.6%. Neither a small D of 20 or a large D of 140
can achieve a good balance between data locality and
resource utilization. This experiment confirms that op-
portunistic task migration as controlled by D can lead to
good system performance. In the rest of the section, we
use 60 as the value for D.

5.2.2 Benefits of Preemptive ReduceTask

We investigate the efficiency of FCS when preemption
is enabled with either the Preemptive ReduceTask or the
killing-based approach. We use three GridMix2 work-
loads of different numbers of jobs (80 for Workload-

6

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 285

Figure 7: Benefit of Preemptive ReduceTask

1, 130 for Workload-2 and 180 for Workload-3). Fig-
ure 7 shows the results. Compared to FCS with killing-
based preemption, FCS with Preemptive ReduceTask ef-
fectively reduces the average execution time by 11.3%,
21.8% and 25.7% for three workloads, respectively. This
demonstrates that FCS performs more efficiently with
Preemptive ReduceTask than with the killing approach.
In the rest of this paper, we focus on further evaluation
of FCS with the Preemptive ReduceTask mechanism.

5.3 Results for Map-heavy Workload

Table 1: Job Composition of Map-heavy Workload

Group Benchmark Maps Reduces Jobs
1 WordCount 10 1 50
2 TermVector 20 2 40
3 InvertedIndex 50 4 30
4 TermVector 100 8 20
5 Kmeans 500 10 10
6 TermVector 1000 20 8
7 Kmeans 5000 20 6
8 InvertedIndex 10000 60 4
9 TermVector 15000 120 2

10 InvertedIndex 20000 180 1
Total Jobs 171

Table 2: Performance of Map-heavy Workload

In Seconds FCS HFS HCS
Average Execution Time 247 359 1061

We now present the evaluation results on Map-heavy
workload. The workload composition is shown in Ta-
ble 1, featuring two basic characteristics. First, as shown
in empirical trace studies [9, 12], realistic workloads ex-
hibit a heavy-tailed distribution for job sizes, accordingly
the number of MapTasks among jobs. Second, to cap-
ture the effect that jobs arrive to the MapReduce cluster
according to a random process, i.e., their arrival inter-
val follows a Poisson random process with an average
inter-arrival time of 30 seconds. For ease of presenta-
tion, we sort the jobs according to their input sizes and
the requested number of tasks, then divide them into 10

Figure 8: Average Execution Times of Jobs in Different
Groups of Map-heavy Workload

different groups of increasing sizes. This categorization
helps the interpretation of scheduling effects on jobs of
different sizes.

Table 2 shows the average execution time for all
jobs in Map-heavy workload with different schedulers.
Both FCS and HFS significantly outperform HCS, which
groups jobs into a small number of job queues, within
each queue, HCS adopts FIFO scheduling policy that is
known to bias against small jobs and cause long aver-
age execution times. Thus we focus on the comparisons
between FCS with HFS in the rest performance tests on
Map-heavy workload. Overall, FCS speeds up the aver-
age execution time by 31% compared to HFS.

Figure 9: Average ReduceTask Wait Times of Jobs in
Different Groups of Map-heavy Workload.

To shed light on how FCS treats jobs of different sizes,
we examine the average execution times for the 10 dif-
ferent job groups inside workload. Figure 8 shows that
FCS effectively reduces the average execution time for
the first 8 groups compared to HFS, achieving up to 2.4×
speedup for jobs in group 2. Only jobs in Group 9 are
negatively affected by FCS, at an average ratio of 0.79.
Such performance results match the design goal of FCS,
i.e., trading long running large jobs for fast completion
of small jobs.

FCS improves system performance by mitigating the
starvation of small jobs. It prioritizes jobs whose shuffle
phases are about to complete, thus reducing the Reduc-
eTask wait times. Figure 9 shows the average Reduc-

7

286 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

eTask wait time for all jobs in 10 groups. As we can
see, the average wait time is dramatically cut down for
the first eight groups by as much as 32.2× for group 5.
Only for the last two groups, the wait times are stretched
slightly, indicating that FCS yields reduce slots for the
small jobs.

To further obtain insights on how FCS has triggered
preemptions to different jobs, we record the preemptions
experienced by all ReduceTasks. Figure 10 shows the
distribution of preemptions to different groups of jobs in
the workload. As shown in the figure, no preemptions
have happened to Groups 1-4. Groups 5-10 have experi-
enced a small number of preemptions. This demonstrates
that FCS can be effective in delivering fair and fast com-
pletion without imposing excessive preemptions.

Figure 10: Preemption Frequency

Figure 11: Fairness of Map-heavy Workload

We have measured the maximum slowdown of all jobs
to evaluate the fairness of schedulers to different jobs. As
shown in Figure 11, FCS efficiently improves the fairness
by up to 66.7%, compared to HFS, and achieves nearly
uniform maximum slowdown across 10 groups. In con-
trast, HFS causes serious unfairness to small jobs. In the
worse case, a job in Group 3 is slowed down by as much
as 16 times.

Taken together, these results confirm the benefits we
expect from the design of FCS. They adequately demon-
strate the strengths of FCS for Map-heavy workload.

5.4 Results for Reduce-heavy Workload
Map-heavy workload represents jobs that generate small
amount of intermediate data. In this section, we continue
our evaluation with Reduce-heavy workload, in which

Table 3: Job Composition of Reduce-heavy Workload

Group Benchmark Maps Reduces Jobs
1 TeraSort 10 2 50
2 SelfJoin 20 4 40
3 SequenceCount 50 8 30
4 TeraSort 100 16 20
5 SelfJoin 500 32 10
6 RankInvertedIdx 1000 64 8
7 TeraSort 5000 128 6
8 SequenceCount 10000 256 4
9 TeraSort 15000 512 2

10 SequenceCount 20000 1024 1
Total Jobs 171

Table 4: Performance of Reduce-heavy Workload

In Seconds FCS HFS HCS
Average Execution Time 978 1364 8829

Figure 12: Average Execution Times of Jobs in Different
Groups of Reduce-heavy Workload

jobs generate a large amount of intermediate data, result-
ing in long running ReduceTasks. The ratio of interme-
diate data size to input size of those jobs is from 1 : 1 to
3 : 1. The job composition in the workload is listed in
Table 3. We adopt the same distributions for job sizes
and their arrival times as described in section 5.3.

We conduct the same set of experiments for Reduce-
heavy workload as done for the Map-heavy workload to
demonstrate that FCS can schedule different workloads
effectively. Many results exhibit similar performance to
those in Map-heavy workload. Thus, for succinctness,
we avoid redundant description, omit some figures, and
only highlight the differences. Table 4 shows the overall
performance under three schedulers. FCS speeds up the
average execution time of the workload by 28% when
compared to the HFS, and HCS still performs worse than
the other two.

Figure 12 illustrates that FCS speeds up the average
execution times of 10 different groups in the workload.
This differs from the Map-heavy workload, in which 8
out of 10 groups achieves obvious acceleration. In ad-
dition, we observe that FCS improves the completion
rate not only for small and medium jobs, but effectively

8

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 287

for the large jobs in the last three groups as well. This
is because in Reduce-heavy workload, map phases of
large jobs run much longer to generate intermediate data
than their counterparts in Map-heavy workload. When
small jobs arrive, they preempt long running Reduc-
eTasks from jobs that have not progressed much in the
reduce phase. As a result, such preemptions impose lit-
tle performance impact on the execution of these Reduc-
eTasks in large jobs, because those long running Reduc-
eTasks periodically enter into the idle mode to wait for
the availability of intermediate data. On the contrary,
these preemptions are greatly beneficial to small jobs
that can efficiently utilize the reduce slots to accelerate
their execution. Moreover, as small jobs quickly leave
the cluster, resource contention is gradually ameliorated.
Therefore, long running large jobs obtain resources dur-
ing the reduce phases and achieve faster job completion.

Similar to the Map-heavy workload, significantly
shortened ReduceTask wait time contributes to the fast
job completion of Reduce-heavy workload. Figure 13
compares the average ReduceTask wait times between
FCS and HFS. For Groups 9 and 10, FCS leads to a
slightly longer delay, up to 15%. For Groups 3 and 8,
FCS and HFS are comparable. Group 1 has zero wait
time in both cases. FCS drastically reduces the wait
time down to 0 for Groups 2 and 4, and effectively cuts
down the average ReduceTask wait time for Groups 5,6
and 7, ranging from 9.8× to 84.5×. Interestingly, even
FCS delays the launch of long running ReduceTasks in
Group 9 and 10, their job execution is not affected. In
such scenario, more intermediate data is buffered. Once
launched, ReduceTasks spend more of their execution on
data fetching. Faster completion of all jobs in all groups
directly leads to better fairness. Figure 14 shows that
FCS efficiently improves the fairness by 35.2% on av-
erage when compared to the HFS for the Reduce-heavy
workload. Note that FCS still maintains low preemption
frequency for different groups of jobs, in particular for
large jobs. Because it bears strong resemblance to that of
Map-heavy workload, we omit the preemption frequency
result here.

Figure 13: Average ReduceTask Wait Times of Jobs in
Different Groups of Reduce-heavy Workload

Figure 14: Fairness of Reduce-heavy Workload

5.5 Scalability

The workloads submitted to a production cluster vary
substantially over different periods of time. Thus, the ca-
pability of efficiently scheduling a large number of ran-
domly arriving jobs is critical for Hadoop schedulers, es-
pecially when the system is heavily loaded. To investi-
gate the scalability of FCS, we employ Gridmix to as-
sess the performance of Hadoop when the system is un-
der stress. We vary the number of GridMix jobs from
60 to 300 and maintain the same distribution of job size
throughout different tests.

The experimental results are shown in Figure 15.
Compared to HFS, FCS consistently reduces the average
execution times across different experiments. On aver-
age, FCS reduces the average execution time by 39.7%.
More importantly, FCS shows stable performance im-
provement when the number of jobs in the workload in-
creases. The improvement ratio rises from 10% to 28%
when the number of jobs increases from 60 to 300. In the
workload with 60 jobs, small jobs are dominant with very
few large jobs arriving very late. In such a scenario, the
demands for reduce slots from small small jobs can be
satisfied in time, leading to shortened ReduceTasks wait-
ing time. As a result, it leaves less optimization spaces
for FCS to improve. Furthermore, during the tests, when
the number of jobs increases, no noticeable scheduling
overhead in terms of CPU utilization is observed in the
JobTracker.

Figure 15: Scalability Evaluation with GridMix2

9

288 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

6 Related Work
Many MapReduce schedulers have been proposed

over the past few years trying to maximize the re-
source utilization in the shared MapReduce clusters.
Zaharia et al. introduced delay scheduling [19] that
speculatively postpones the scheduling of the head-of-
line tasks and ameliorate the locality degradation in the
default Hadoop Fair scheduler [4]. In addition, Za-
haria also proposed Longest Approximate Time to End
(LATE) [20] scheduling policy to mitigate the deficiency
of Hadoop scheduler in coping with the heterogeneity
across virtual machines in a cloud environment. But nei-
ther of these two scheduling policies supports task pre-
emption for jobs in the same pool, thus unable to cor-
rect the monopolizing behavior of long-running Reduc-
eTasks.

Mantri [7] was designed to mitigate the impact of out-
liers in MapReduce cluster, it monitors task execution
with real-time remaining work estimation, and accord-
ingly take measures such as restarting outliers, placing
tasks with network awareness and conserving valuable
work from the tasks. But Mantri does not identify the re-
source monopolizing issue among large number of con-
current jobs caused by long-running ReduceTasks and
does not provide lightweight preemption solution. Ah-
mad [6] proposed communication-aware placement and
scheduling of MapTasks and predictive load-balancing
for ReduceTasks as part of Tarazu to reduce the network
traffic of Hadoop on heterogeneous clusters. But it also
does not address the fairness and monopolization issues.
Isard et al. [11] introduced the Quincy scheduler, which
adopts min-cost flow algorithm to achieve a balance be-
tween fairness and data locality for the Dryad. But their
use of killing as preemption mechanism can cause sig-
nificant resource waste.

Verma [16] introduced ARIA to allocate appropriate
amount of resources to MapReduce job so that it can
meet SLO. Based on ARIA, Zhang et al. [21] further
studied the estimation of required resources for complet-
ing a Pig program to meet SLO. Lama [13] proposed
AROMA to automatically determine the system configu-
ration for Hadoop jobs to achieve quality of service goal.
FLEX [17] aims to optimize different given scheduling
metrics based on a performance model between slots
and job execution time. However, none of above four
work considers the resource contention issue (reduce slot
contention) among continuously incoming jobs in shared
MapReduce clusters.

In [8], Ananthanarayanan proposed Amoeba which
supports lightweight elastic tasks that can release the
slots without losing previous I/O and computation. This
bears strong similarity to our preemptive ReduceTask.
However, it imposes many constraints such as safe points

on task processing so that tasks can be interfered without
losing previous work. However no overhead measure-
ment is reported in the article. In addition, no corre-
sponding scheduling policy is designed to leverage the
benefits provided by elastic task.

Recently, YARN [5] has been proposed by Yahoo!
as the next generation MapReduce. It separates the
JobTracker into ResourceManager and ApplicationMan-
ager, and removes task slot concept. Instead, it adopts
resource container concept that encapsulates the gen-
eral resources, such as memory, CPU and disk I/O into
the schedulable unit (current YARN only supports mem-
ory). But our initial evaluation discovers that monopo-
lization behavior of long-running ReduceTasks still exist
in such framework as long as schedulers greedily allocate
as many resources as permitted to one job. Therefore, our
Preemptive ReduceTasks and Fair Completion Scheduler
can be very beneficial in the new framework. In future,
we plan to incorporate our techniques into the YARN.

7 Conclusion
In this paper, we have revealed that there exists a se-

rious fairness issue for the current MapReduce sched-
ulers due to the lack of a lightweight preemption mech-
anism for ReduceTasks. Accordingly, we have designed
and implemented the Preemptive ReduceTask as a work-
conserving preemption mechanism, on top of which we
have designed the Fair Completion Scheduler. The intro-
duction of the new preemption mechanism and the novel
ReduceTask scheduling policy have solved the fairness
issue to small jobs, resulting in improved resource uti-
lization and fast average job completion for all jobs. Our
design of Fair Completion Scheduler, compared to the
Hadoop Fair Scheduler and Capacity Scheduler, can re-
duce the average job execution time by up to 39.7% and
88.9%, respectively. Furthermore, the Fair Completion
Scheduler improves the fairness among different jobs by
up to 66.7%, compared to the Hadoop Fair Scheduler.

Acknowledgments
This work is funded in part by a National Science Foun-
dation award CNS-1059376 and by an Alabama Gover-
nor’s Innovation Award.

References
[1] Apache Hadoop Project. http://hadoop.apache.org/.

[2] Gridmix2. http://hadoop.apache.org/mapreduce/docs/
current/gridmix.html.

[3] Hadoop Capacity Scheduler. http://hadoop.apache.
org/common/docs/r0.19.2/capacity scheduler.html.

[4] Hadoop Fair Scheduler. http://hadoop.apache.org/
mapreduce/docs/r0.21.0/fair scheduler.html.

10

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 289

[5] Next Generation Hadoop MapReduce. http://had
oop.apache.org/docs/current/index.html.

[6] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and
T. N. Vijaykumar. Tarazu: optimizing mapreduce
on heterogeneous clusters. In Proceedings of the
seventeenth international conference on Architec-
tural Support for Programming Languages and Op-
erating Systems, ASPLOS ’12, pages 61–74, New
York, NY, USA, 2012. ACM.

[7] G. Ananthanarayanan, S. Agarwal, S. Kandula,
A. G. Greenberg, I. Stoica, Y. Lu, B. Saha, and
E. Harris. Reining in the Outliers in Map-Reduce
Clusters Using Mantri. In Proceeding OSDI’10
Proceedings of the 9th USENIX conference on Op-
erating systems design and implementation, Van-
couver, BC, Canada, October, 2010. ACM.

[8] G. Ananthanarayanan, C. Douglas, R. Ramakrish-
nan, S. Rao, and I. Stoica. True elasticity in multi-
tenant data-intensive compute clusters. In Proceed-
ings of the Third ACM Symposium on Cloud Com-
puting, SoCC ’12, pages 24:1–24:7, New York, NY,
USA, 2012. ACM.

[9] Y. Chen, S. Alspaugh, and R. H. Katz. Interac-
tive query processing in big data systems: A cross
industry study of mapreduce workloads. Tech-
nical Report UCB/EECS-2012-37, EECS Depart-
ment, University of California, Berkeley, Apr 2012.

[10] J. Dean and S. Ghemawat. Mapreduce: Simpli-
fied data processing on large clusters. Sixth Symp.
on Operating System Design and Implementation
(OSDI), pages 137–150, Dec. 2004.

[11] M. Isard, V. Prabhakaran, J. Currey, U. Wieder,
K. Talwar, and A. Goldberg. Quincy: fair schedul-
ing for distributed computing clusters. In Proceed-
ings of the ACM SIGOPS 22nd symposium on Op-
erating systems principles, SOSP ’09, pages 261–
276, New York, NY, USA, 2009. ACM.

[12] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan.
An analysis of traces from a production mapre-
duce cluster. In Proceedings of the 2010 10th
IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing, CCGRID ’10, pages
94–103, Washington, DC, USA, 2010.

[13] P. Lama and X. Zhou. Aroma: automated re-
source allocation and configuration of mapreduce
environment in the cloud. In Proceedings of the
9th international conference on Autonomic comput-
ing, ICAC ’12, pages 63–72, New York, NY, USA,
2012. ACM.

[14] K. Shvachko, H. Kuang, S. Radia, and R. Chansler.
The hadoop distributed file system. In Proceedings
of the 2010 IEEE 26th Symposium on Mass Stor-
age Systems and Technologies (MSST), pages 1–10,
Washington, DC, USA, 2010. IEEE Computer So-
ciety.

[15] J. Tan, X. Meng, and L. Zhang. Delay tails in
mapreduce scheduling. In Proceedings of the 12th
ACM SIGMETRICS/PERFORMANCE joint inter-
national conference on Measurement and Modeling
of Computer Systems, SIGMETRICS ’12, pages 5–
16, New York, NY, USA, 2012. ACM.

[16] A. Verma, L. Cherkasova, and R. H. Campbell.
Aria: automatic resource inference and allocation
for mapreduce environments. In ICAC, pages 235–
244, 2011.

[17] J. Wolf, D. Rajan, K. Hildrum, R. Khandekar,
V. Kumar, S. Parekh, K.-L. Wu, and A. balmin.
Flex: a slot allocation scheduling optimizer for
mapreduce workloads. In Proceedings of the
ACM/IFIP/USENIX 11th International Conference
on Middleware, Middleware ’10, pages 1–20,
Berlin, Heidelberg, 2010. Springer-Verlag.

[18] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmele-
egy, S. Shenker, and I. Stoica. Job scheduling for
multi-user mapreduce clusters. Technical Report
UCB/EECS-2009-55, EECS Department, Univer-
sity of California, Berkeley, Apr 2009.

[19] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmele-
egy, S. Shenker, and I. Stoica. Delay scheduling: a
simple technique for achieving locality and fairness
in cluster scheduling. In Proceedings of the 5th Eu-
ropean conference on Computer systems, EuroSys
’10, pages 265–278, New York, NY, USA, 2010.
ACM.

[20] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz,
and I. Stoica. Improving MapReduce performance
in heterogeneous environments. In Proceedings of
the 8th USENIX conference on Operating systems
design and implementation, OSDI’08, pages 29–
42, Berkeley, CA, USA, 2008. USENIX Associa-
tion.

[21] Z. Zhang, L. Cherkasova, A. Verma, and B. T. Loo.
Automated profiling and resource management of
pig programs for meeting service level objectives.
In Proceedings of the 9th international conference
on Autonomic computing, ICAC ’12, pages 53–62,
New York, NY, USA, 2012. ACM.

11

