
USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 265

Zoolander: Efficiently Meeting Very Strict, Low-Latency SLOs

Christopher Stewart, Aniket Chakrabarti
The Ohio State University

Rean Griffith
VMWare

Abstract

Internet services access networked storage many times
while processing a request. Just a few slow storage ac-
cesses per request can raise response times a lot, making
the whole service less usable and hurting profits. This
paper presents Zoolander, a key value store that meets
strict, low latency service level objectives (SLOs). Zo-
olander scales out using replication for predictability, an
old but seldom-used approach that uses redundant ac-
cesses to mask outlier response times. Zoolander also
scales out using traditional replication and partitioning.
It uses an analytic model to efficiently combine these
competing approaches based on systems data and work-
load conditions. For example, when workloads under
utilize system resources, Zoolander’s model often sug-
gests replication for predictability, strengthening service
levels by reducing outlier response times. When work-
loads use system resources heavily, causing large queu-
ing delays, Zoolander’s model suggests scaling out via
traditional approaches. We used a diurnal trace to test
Zoolander at scale (up to 40M accesses per hour). Zo-
olander reduced SLO violations by 32%.

1 Introduction

Internet services built on top of networked storage expect
data accesses to complete quickly all of the time. Many
companies now include latency clauses in the service
level objectives (SLOs) given to storage managers. Such
SLOs may read, “98% of all storage accesses should
complete within 300ms provided the arrival rate is be-
low 500 accesses per second [12, 35, 39].” When these
SLOs are violated, Internet services become less usable
and earn less revenue. Consider e-commerce services.
SLO violations delay web page loading times. As a rule
of thumb, delays exceeding 100ms decrease total rev-
enue by 1% [30]. Such delays are costly because rev-
enue, which covers salaries, marketing, etc., far exceeds
the cost of networked storage. A 1% drop in revenue can
cost more than an 11% increase in compute costs [38].

Many networked storage systems meet their SLOs by
scaling out, i.e., when access rates increase, they add new
nodes. The most widely used scale-out approaches par-
tition or replicate data from old nodes to new nodes and
divide storage accesses across the old and new nodes,

reducing resource contention and increasing through-
put [12, 15, 24]. However, background jobs, e.g., write-
buffer dumps, garbage collection, and DNS timeouts,
also contend for resources. These periodic events can
increase access times by several orders of magnitude.

Our key-value store, called Zoolander, masks slow
storage accesses via replication for predictability, a his-
torically dumb idea whose time has come [29]. Repli-
cation for predictability scales out by copying the exact
same data across multiple nodes (each node is called a
duplicate), sending all read/write accesses to each dupli-
cate, and using the first result received. Historically, this
approach has been dismissed because adding a duplicate
does not increase throughput. But duplicates can reduce
the chances for a storage access to be delayed by a back-
ground job, shrinking heavy tails1 Very recent work has
used replication for predictability but only sparingly with
ad-hoc goals [2, 9, 39]. Zoolander fully supports replica-
tion for predictability at scale.

Zoolander can also scale out by reducing the accesses
per node using partitioning and traditional replication.
Its policy is to selectively use replication for predictabil-
ity only when it is the most efficient way to scale out
(i.e., it can meet SLO using fewer nodes than the tra-
ditional approaches). Zoolander implements this policy
via a biased analytic model that predicts service levels
for 1) the traditional approaches under ideal conditions
and 2) replication for predictability under actual condi-
tions. Specifically, the model assumes that accesses will
be evenly divided across nodes (i.e., no hot spots). As
a result, the model overestimates performance for tradi-
tional approaches. In contrast, our model predicts the
performance of replication for predictability precisely,
using first principles and measured systems data. Despite
its bias, our model provided key insights. First, replica-
tion for predictability allows us to support very strict, low
latency SLOs that traditional approaches cannot attain.
Second, traditional approaches provide efficient scale out
when system resources are heavily loaded, but replica-
tion for predictability can be the more efficient approach
when resources are well provisioned.

We implemented Zoolander as a middleware for exist-
ing key-value stores, building on prior designs for high

1In this paper, we use the term heavy tailed to describe probability
distributions that are skewed relative to normal distributions. Some-
times these distributions are called fat tailed.

1

266 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

throughput [16,18,39]. Zoolander extends these systems
with the following features:
1. High throughput and strong SLO for read and write
accesses when clients do not share keys. Zoolander also
supports shared keys but with lower throughput.

2. Low latency along the shared path to duplicates via
reduced TCP handshakes and client-side callbacks.

3. Reuse of existing replicas to reduce bandwidth needs.

4. A framework for fault tolerance and online adaptation.
We used write- and read-only benchmarks to vali-

date Zoolander’s analytic model for replication for pre-
dictability under scale out. The model predicted ac-
tual service levels, i.e., the percentage of access times
within SLO latency bounds, within 0.03 percentage
points.Replication for predictability increased service
levels significantly. On the write-only workload using
4 nodes, Zoolander achieved access times within 15ms
with a 4-nines service level (99.991%). Using the same
number of nodes, traditional approaches achieved a ser-
vice level of only 99%—Zoolander increased service
levels by 2 orders of magnitude.

We set up Zoolander on 144 EC2 units and issued up
to 40M accesses per hour, nearly matching access rates
seen by popular e-commerce services [4, 7, 17]. We also
varied the access rate in a diurnal pattern [34]. By us-
ing both replication for predictability and traditional ap-
proaches, Zoolander provided new, cost effective ways
to scale. At night time, when arrival rates drop, Zoolan-
der decided not to turn off under used nodes. Instead,
it used them to reduce costly SLO violations. Zoolan-
der’s approach reduced nightly operating costs by 21%,
given cost data from [17,38]. With better data migration,
Zoolander could have reduced costs by 32%.

This paper is arranged as follows: Section 2 presents
Zoolander’s analytic model on SLO under replication for
predictability. Section 3 describes Zoolander itself and
compares achieved SLOs to model predictions. Section 4
offers model-driven insights on when to use replication
for predictability. Section 5 studies Zoolander at scale on
EC2. Section 7 concludes.

2 Replication for Predictability

Traditional approaches to scale out networked storage
share a common goal: They try to reduce accesses per
node by adding nodes. While such approaches improve
throughput, there is a downside. By sending each access
to only 1 node, there is a chance that accessess will be
delayed by background jobs on the node [9]. Normally,
background jobs do not affect access times, but when
they do interfere, they can cause large slowdowns. Con-
sider write buffer flushing in Cassandra [16]. By default,

replica 1

Traditional Replication

1. Get(A)

replica 2

2. Get(B)
3. Get(C)Fin. (1)

Fin. (2)
Fin. (3)

processing

write-buffer flush processing

processing

duplicate 1

Replication for Predictability

1. Get(A)

duplicate 2

2. Get(B)

3. Get(C)Fin. (1) Fin. (2) Fin. (3)

processing

write-buffer flushprocessing

processing

processing

ignored

processing

{speedup

Figure 1: Replication for predictability versus traditional
replication. Horizontal lines reflect each node’s local time.
Numbered commands reflect storage accesses. Get #3 depends
on #1 and #2. Star reflects the client’s perceived access time.

writes are committed to disk every 10 seconds by flush-
ing an in-memory cache. The cache ensures that most
writes proceed at full speed without incurring delay due
to a disk access. However, if writes arrive randomly and
buffer flushes take 50ms, we would expect buffer flushes
to slow down 0.5% of write accesses (50ms

10s).
Figure 1 compares replication for predictability

against traditional, divide-the-work replication. The lat-
ter processes each request on one node. When a buffer
flush occurs, pending accesses must wait, possibly for a
long time. However, by sending all accesses to N nodes
and taking the result from the fastest, replication for pre-
dictability can mask N −1 slow accesses, albeit without
scaling throughput. In this section, we generalize this
example by modelling replication for predictability. Our
analytic model outputs the expected number of storage
accesses that complete within a latency bound. It allows
us to compare replication for predictability to traditional
approaches in terms of SLO achieved and cost.

2.1 First Principles
Our model is based on the following first principles:
1. Outlier access times are heavy tailed. Background
jobs can cause long delays, producing outliers that are
slower and more frequent than Normal tails.

2. Outliers are non-deterministic with respect to dupli-
cates. To mask outliers, slow accesses on 1 duplicate can
not spread to others. Replication for predictability does
not mask outliers caused by deterministic factors, e.g.,
hot spots, convoy effects, and poor workload locality.

To validate our first principles, we studied storage ac-
cess times in our own local, private cloud. We use a
112 node cluster, where each node is a core with at least
2.4 GHz, 3MB L2 cache, 2GB of DRAM memory, and
100GB of secondary storage. Our virtualization software

2

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 267

0.1 1 10 100 1000

0%

25%

50%

75%

100%

Reads
ZK=1

Wr i tes
ZK=1

Wr i tes
ZK=3

Normal
Dist

C
D

F

Latency (ms)

(a)

0% 50% 100%

0%

50%

100%

P
e

rc
e

n
ti
le

 i
n
 D

u
p
lic

a
te

 1

Percentile in Duplicate 2

(b)

Figure 2: Validation of our first principles. (A) Access times
for Zookeeper under read- and write-only workloads exhibit
heavy tails. (B) Outlier accesses on one duplicate are not al-
ways outliers on the other.

is User-Mode Linux (UML) [13], a port of the Linux op-
erating system that runs in user space of any X86 Linux
system. Thus, RedHat Linux (kernel 2.6.18) serves as
our VMM. Custom PERL scripts designed in the mold
of Usher [26] allow us to 1) run preset virtual machines
on server hardware, 2) stop virtual machines, 3) create
private networks, and 4) expose public IPs. Our cloud
infrastructure is compatible with any public cloud that
hosts X86 Linux instances. Later in this paper, we will
scale out on Amazon EC2.

We set up Zookeeper [18] and performed 100,000 data
accesses one after another. Zookeeper is a key-value
store that is widely used to synchronize distributed sys-
tems. It is deployed as a cluster with ZK nodes. Writes
are seen by ZK

2 +1 nodes. Reads are processed by only 1
node. Figure 2(a) plots the cumulative distribution func-
tion (CDF) for Zookeeper under read-only and write-
only workloads. The coefficient of variation (σ

|µ|), or
COV, shows the normalized variation in a distribution.
Generally, COV equal or below 1 is considered low vari-
ance. We compared the plots in Figure 2(a) by 1) com-
puting COV before the tail, i.e., up to the 70th percentile
and 2) computing COV across the whole CDF. Before
the tail, COV was below 1. Across the entire distribu-
tion, COV was much higher, ranging from 1.5–8.

To visually highlight the heaviness of the tails, Fig-
ure 2(a) also plots a normal distribution with standard
deviation and mean that were 25% larger than 90% of
write times in ZK=1. Note, COV in an normal distribu-
tion is 1. The tails for both reads and writes under ZK=1
overtake the normal distribution, even though the nor-
mal distribution has a larger mean. We also found that
tails became heavier as complexity increased. Writes in
a single-node Zookeeper led to local disk accesses that
didn’t happen under reads. Writes in 3-node Zookeeper
groups send network messages for consistency.

We can also interpret each (x,y) point in Figure 2(a) as
a latency bound and an achieved service level. If access
times followed a normal distribution, a latency bound
that was 3 times the mean would provide a service level

of 99.8%. Figure 2(a) shows that Zookeeper’s service
levels were only 98.8% of reads,96.0% of 1-node writes,
and 91.5% of 3-node writes under that latency bound. To
support a strict SLO that could cover 99.99% of data ac-
cesses, the latency bound would have risen to 16X, 26X,
and 99X relative to the means.

Heavy tails affect many key value stores, not just
Zookeeper. Internal data from Google shows that a ser-
vice level of 99.9% in a default, read-only BigTable setup
would require a latency bound that is 31X larger than the
mean [9]. Others have noticed similar results on produc-
tion systems [6,17]. We also measured read access times
in a single Memcached node, a key-value widely used
in practice and in emerging sustainable systems [4, 31].
We saw a coefficient of variation of 1.9, and, under a lax
latency bound, only a 98.3% service level was achieved.
Finally, we ran the same test with Cassandra [16], an-
other widely used key-value store, deployed on large
EC2 instances. The coefficient of variation was 6.4.

Figure 2(b) highlights principle #2. Across two
Zookeeper runs that receive the same requests under no
concurrency, we show the percentile of each storage ac-
cess. If slow service times were workload dependent,
either the bottom right or upper left quartiles of this plot
would have been empty, i.e., slow accesses on the first
run would be slow again on the second. Instead, every
quartile was touched.

2.2 Analytic Model

This subsection references the symbols defined in Ta-
ble 1. Our model characterizes the service level pro-
vided by N independent duplicates running the exact
same workload. The latency bound (τ) for the SLO is
given as input. Written in plain english, our model pre-
dicts that ŝ percent of requests will complete within τ ms.

ŝ Expected service level
N Number of duplicates used to mask anomalies
τ Target latency bound

Φn(k) Percentage of service times from duplicate n
with latency below k

λ Mean interarrival rate for storage accesses
µnet Mean of network latency between duplicates

and storage clients
µrep Mean delay to duplicate a message one time

plus the delay to prune a tardy reply
µn Mean service time for duplicate n (derived)

Table 1: Zoolander inputs.

Using principles #1 and 2, we first model the proba-
bility that the fastest duplicate will meet an SLO latency
bound. Recall, writes are sent to all duplicates, so any
duplicate can process any request. Handling failures is

3

268 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

treated as an implementation issue, not a modelling is-
sue. The probability that the fastest duplicate responds
within latency bound is computed as follows:

ŝ =
N−1

∑
n=0

[Φn(τ)∗
n−1

∏
i=0

(1−Φi(τ))]

To provide intuition into this result, consider Φi(τ) is the
probability that duplicate i meets the τ ms latency bound.
If N = 2, Φ1(τ)∗(1−Φ0(τ)) is the probability that dupli-
cate 1 masks a SLO violation for duplicate 0. Intuitively,
as we scale out in N, each term in the sum is the probabil-
ity that the nth duplicate is the firewall for meeting SLO,
i.e., duplicates 0..(n − 1) take too long to respond but
n meets the bound. When all duplicates have the same
service time distribution, we can reduce the above equa-
tion to a geometric series, shown below. (Note, as N
approaches infinity, ŝ converges to 1.)

ŝ = ∑
n=0

Φn(τ)∗ (1−Φn(τ))n = 1− (1−Φn(τ))N

Queuing and Network Delay: SLOs reflect a client’s
perceived latency which may include processing time,
queuing delay, and network latency. Since duplicates ex-
ecute the same workload, they share access arrival pat-
terns and their respective queuing delays are correlated.
Similarly, networking problems can affect all duplicates.
Here, we lean on prior work on queuing theory to answer
two questions. First, does the expected queuing level
completely inhibit replication for predictability? And
second, how many duplicates are needed to overcome the
effects of queuing? The key idea is to deduct the queuing
delay from τ in the base model. Intuitively, requiring all
duplicates to reduce their expected service time in pro-
portion to the expected queuing delay.

τn = τ − (
1+C2

v
2

∗ ρ
1−ρ

∗µn)−µnet

ŝ =
N−1

∑
n=0

[Φn(τn)∗
n−1

∏
i=0

(1−Φi(τi))]

We used an M/G/1 queuing model to derive the expected
queuing delay, reflecting the heavy-tail service times ob-
served in Figure 2(a). To briefly explain the first equation
above, an M/G/1 models the expected queuing delay as
a function of system utilization (ρ), distribution variance
(C2

v), and mean service time. Utilization is the mean ar-
rival rate divided by the mean service time. Note, that
the new τ may be different for each node (parameteriz-
ing it by n). An M/G/1 assumes that inter-arrivals are
exponentially distributed. This may not be the case in all
data-intensive services. A G/G/1 with some constraints
on inter-arrival may be more accurate. Alternatively, an
M/M/1 would have simplified our model, eliminating the
need for the squared coefficient of variance (C2

v). Prior

work has shown that multi-class M/M/1 can sometimes
capture the first-order effects of M/G/1.

We deduct the mean time lost to network latency.
Here, network latency is the average delay to send a TCP
message between any two nodes.
Multi-cast and Pruning Overhead: Replication for
predictability incurs overhead when messages are re-
peated to all duplicates and when unused messages are
pruned. These activities become more costly as the num-
ber of duplicates increase. We use a linear model to cap-
ture this. Note, we expect emerging routers to provide
multi-cast support that reduces this overhead a lot. How-
ever, storage systems that use software multi-cast, like
Zoolander, should consider this overhead.

τn = τ − (
1+C2

v
2

∗ ρ
1−ρ

∗µn)−µnet −N ∗µrep

Discussion: With a nod toward systems builders, we
kept the model simple and easy to understand. Most in-
puts come from CDF or arrival-rate data that can be col-
lected using standard tools. The model does not capture
non-linear correlations between outliers, resource depen-
dencies, or the root causes of SLO violations.

3 Zoolander

Zoolander is middleware for existing key-value stores.
It adds full read and write support for replication for
predictability. Figure 3 highlights the key components
of Zoolander. In the center of the figure, we show that
keys are stored in duplicates and partitions. A duplicate
abstracts an existing key-value store, e.g., Zookeeper or
Cassandra. As such, a duplicate may span many nodes
but it does not share resources with other duplicates.

A partition comprises 1 or more duplicates. Storage
accesses are sent to all duplicates within a partition—
i.e., duplicates implement replication for predictability.
Storage accesses are sent to only 1 partition. There is no
cross-partition communication. A global hash function
maps keys to partitions. All of the keys mapped to a
partition comprise a shard.

Zoolander can scale out by reducing storage accesses
per node via partitioning. It can also scale out by adding
duplicates. At the top of Figure 3, we highlight the Zo-
olander manager which uses our analytic model to scale
out efficiently. The manager takes as input a target ser-
vice level and latency bound. It also collects CDF data
on service times, networking delays, and arrival rates per
shard. The manager then uses our model from Section 2
to find a replication policy that meets the target SLO. It
finds a policy by iteratively 1) moving a shard from one
partition to another, 2) placing a shard on a new partition,
and 3) adding/removing duplicates from a partition. The
first and second options change the arrival rate for each

4

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 269

 Zoolander Key-Value Store

Zoolander Manager

Analytic Model

(p=0, d=0)

SLA
details

Systems
data

Application
data shards

k1=v1

k2=v2 k3=v3

k4=v4 k5=v5

k6=v6

Multicast partition #0

Duplicate

(p=1, d=0)

Multicast partition #1

Duplicate
(p=1, d=1)

Duplicate
(p=1,d=m)

Duplicate

(p=0, d=1)

Duplicate
(p=0, d=n)

Duplicate

remap add/remove
partitions

add/remove
duplicates

Montioring/
Feedback

Figure 3: The Zoolander key value store. SLA details include
a service level and target latency bound. Systems data samples
the rate at which requests arrive for each partition, CPU usage
at each node, and network delays. We use the term replica-
tion policy as a catch all term for shard mapping, number of
partitions, and the number of duplicates in each partition.

partition and are captured by our queuing model. The
third option is captured by our geometric series.

3.1 Consistency Issues

A read after write to the same key in Zoolander returns
either a value that is at least as up to date as most recent
write by the client (read my own write) or the value of an
earlier, valid write (eventual). We can also support strong
consistency funneling all accesses through a single mul-
ticast node. However, we rarely use strong consistency in
any Zoolander deployments. As many prior works have
noted [12, 18, 24, 39], read-my-own writes and eventual
consistency normally suffice.

To support read-my-own-write consistency, each du-
plicate processes puts in FIFO order. Gets (reads) may be
processed out of order. Clients accept reads only if the
version number exceeds the version produced by their
last write. For eventual consistency, Zoolander clients
ignore version numbers. Figure 4 clearly depicts the sup-
ported consistency. Read my own write avoids stale data
but gives up redundancy.
Propagating Writes: To ensure correct results, writes
must propogate to every duplicate and every duplicate
must see writes in the same order. Zoolander achieves
this by using multicast. Zoolander’s client side library
keeps IP addresses for the head node of each duplicate.
When client’s issue a put request, the library issues D
identical messages to each duplicate in a globally fixed
order. In the future, we hope to replace this library with
networking devices with hardware support for multicast.

Software multicast ensures that writes from a single
client arrive in order, but writes from different clients can
arrive out of order. We assume that multiple clients rac-

5. Client 0
 Get(A)

A = 1

duplicate 1

Eventually Consistent Reads

duplicate 2

version 0

ver-

version 2

version 0

1. Client 0
 Put(A,1)

2. Client 1
 Put(A,2)

version 1

sion 1

3. Client 0
 Get(A)

 A = 1

4. Client 0
 Put(A,3)

ver 2buffer flush

Read-My-Own-Write Reads

5. Client 0
 Get(A)

A = 3

duplicate 1

duplicate 2

version 0

ver-

version 2

version 0

1. Client 0
 Put(A,1)

2. Client 1
 Put(A,2)

version 1

sion 1

3. Client 0
 Get(A)

 A = 1

4. Client 0
 Put(A,3)

ver 2buffer flush

Figure 4: Version based support for read-my-own-write and
eventual consistency in Zoolander. Clients funnel puts through
a common multicast library to ensure write order. The star
shows which duplicate satisfies a get. Gets can bypass puts.

ing to update the same key is not the common case. As
such, Zoolander provides a simple but costly solution. To
share keys, clients funnel writes through a master multi-
cast client. This approach sacrifices throughput but en-
sures correct results (see Figure 4).
Choosing the Right Store: By extending existing key
value stores, Zoolander inherits prior work on achiev-
ing high availability and throughput. The downside is
that there are many key value stores; each tailored for
high throughput under a certain workload. Zoolander
leaves this choice to the storage manager. In our tests,
the default store is Zookeeper [18] because of its wait-
free features. However, for online services that need high
throughput and rich data models [7, 8, 14], we extend
Cassandra [16]. We have also run tests with in-memory
stores Redis and Memcached.

3.2 Implementation Issues
Overhead: Our software multicast is on the datapath of
every write; It must be fast. Our multicast library avoids
TCP handshakes by maintaining long-standing TCP con-
nections between clients and duplicates. Also, Zoolander
eschews costly RPC in favor of callbacks. Clients append
a writeback port and IP to every access that goes through
our multicast library. Duplicates respond to clients di-
rectly, bypassing multicast. We measured the maximum
number of writes, read-my-own reads, and eventual reads
supported per second in Zoolander with Zookeeper as
the underlying store. Table 2 compares the results to the
throughput of Zookeeper by itself [18]. These tests were
conducted on our private cloud.
Bandwidth: Each duplicate receives the same workload
and uses the same network bandwidth. At scale, du-
plicates could congest datacenter networks. Zoolander
takes 2 steps to use less bandwidth. First, writes return
only “OK” or “FAIL”, not a copy of data. Second, for

5

270 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

Relative Throughput & Processing Overhead
Writes Read-my-own-write Reads Eventual Reads

95%(48us) 94%(52us) 99%(<1us)

Table 2: Zoolander’s maximum throughput at different con-
sistency levels relative to Zookeeper’s [18]. In parenthesis, av-
erage latency for multicast and callback.

reads, Zoolander re-purposes replicas set up for fault tol-
erance as duplicates. Such replicas are common in pro-
duction [12, 39]. Figure 5(A) compares the bandwidth
used by naive support for replication for predictability
against Zoolander’s approach. The baseline is the band-
width consumed by a 3-node quorum system [12, 39].
Our approach lowers bandwidth usage by 2X.
Dyanamic Systems Data: Zoolander continuously col-
lects data using sliding windows. To keep overhead low,
we collect data for only a random sample of storage ac-
cesses. For each sampled access, we collect response
time, service time, accessed shard number, and network
latency. A window is a fixed number of samples.

We compute the mean network latency and arrival rate
for each window. We use the information gain metric
to determine if our CDF data has diverged. If we de-
tect that the CDF may have diverged, we collect samples
more frequently, waiting for the information gain metric
to converge on new CDF data. Figure 5 demonstrates
the benefits of service time windows. First, we ran our
e-science workload (Gridlab-D), then we injected an ad-
ditional write-only workload on the same machine, and
finally we added a read-only workload also. Our sliding
windows allow us to capture accurate service time distri-
butions shortly after each injection, as shown by conver-
gence on information gain.
Fault Tolerance: Zoolander can tolerate duplicate, par-
tition, software multicast, and client failures. Duplicate
failures are detected via TCP Keep Alive by the software
multicast. Every duplicate receives every write, so be-
tween storage accesses, software multicast can simply
remove any failed duplicate from the multicast list.

A partition fails when its only working duplicates fails.
When this happens, Zoolander manager uses transaction
logs from the last surviving duplicate to restart the parti-
tion. This takes minutes but is automated. Software mul-
ticast is a process in the client-side library. On restart, it
updates its multicast list with Zoolander manager. This
process takes only milliseconds. However, when soft-
ware multicast is down, the entire partition is unavail-
able.

3.3 Model Validation & System Results
Thus far, we have developed an analytic model for repli-
cation for predictability. We have also described the sys-

1 3 5 7 9 11 13 15 17

0

2

Sliding Window for
CDF Data

R
e

la
ti
v
e

C
h

a
n
g

e

New write
workload

New read
workload

Convergence

1 2 3 4 5 6 7 8 9

0

4

8

12

R
e
la

ti
v
e

B
a

n
d
w

id
th

of Duplicates

Quorums (Baseline)
Naive Rep. For Pred
Zoolander

(A) (B)

Figure 5: (A) Zoolander lowers bandwidth needs by re-
purposing replicas used for fault tolerance. (B) Zoolander
tracks changes in the service time CDF relative to internal sys-
tems data. Relative change is measured using information gain.

tem design for Zoolander, a key value store that fully
supports replication for predictability at scale. Here, we
show that Zoolander achieves performance expected by
our model and that the model has low prediction error.

We deployed Zoolander on the private cloud described
in Section 2. We used Zookeeper as the underlying key-
value store. We focus on data sets that fit within memory
(i.e., in-memory key-value stores backed up with local
disk). We used 1 partition for these tests. We issued
1M write accesses in sequence without any concurrency.
We used the 90th percentile of the collected service time
distribution as the default latency bound (τ=5ms). The
average response time in this setup was 3ms, so our la-
tency bound allowed only 2ms for outliers. The SLO for
Zookeeper without Zoolander was: 90% of accesses will
complete within 5ms.

We added duplicates to Zoolander one at a time, is-
suing the same write workload each time we scaled
out. Figure 6(a) shows Zoolander’s performance, i.e.,
achieved service level, as duplicates increase. Specifi-
cally, the achieved service level grew as duplicates were
added. For example, under 8 instances, Zoolander could
support the following SLO: 99.96% of write accesses
will complete within 5ms. The graph also shows that Zo-
olander had absolute error (i.e., actual service level mi-
nus predicted) below 0.002 in all cases. This is a key
result: Scaling out via replication for predictability
strengthens SLOs without raising latency bounds.

In our next test, we set the number of duplicates to
8. We used the same service time distribution from
above. We then changed the latency bound (τ) to dif-
ferent percentiles in the single-node distribution, from
the 75th to 99.5th. High percentiles led to several-nine
service levels in Zoolander, forcing our model to be ac-
curate with high precision. Low percentiles required Zo-
olander to accurately model more accesses. Figure 6(b)
shows our model’s accuracy as the latency bound in-
creased. Absolute error was within 0.0001 for high and
low percentiles. In Figure 2(a), we observed that write
access times had a heavy-tail distribution that started
around the 96th percentile. Figure 6(b) shows a steeper

6

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 271

1 2 4 8

90.0%

92.5%

95.0%

97.5%

100.0%

0.000

0.002

0.004

0.006

0.008

0.010

Observed

Estimated

Absolute

Error

Servers Used

A
c
h

ie
v
e
d

 S
e

rv
ic

e
 L

e
v
e
l

Writes Accesses

P
re

d
ic

tio
n

 E
rro

r

(a) Achieved service levels against Zoolander predictions as du-
plicates increase. Observed and estimated lines overlap.

99.5
%

99%

98%

96%

94%

92
%

91%

90%

85
%

7
5
%

99.90%

99.92%

99.94%

99.96%

99.98%

100.00%

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Observed

Estimated

Absolute
Error

Target Latency Bound (τ)
(shown as a percentile of the single-node distribution)

A
c
h

ie
v
e
d

 S
e
rv

ic
e

 L
e
v
e
l Writes Accesses (8 duplicates)

P
re

d
ic

tio
n

 E
rro

r

(b) Service levels as the target latency bound changes.

99.5%99%98%97%96%95%94%93%92%91%

0

1

2

3

4
Zoolander
Prediction

Observed

Target Latency Bound (τ)
(shown as a percentile of the single-node distribution)

A
c
h

ie
v
e
d

 S
e
rv

ic
e

 L
e
v
e

l
(n

u
m

b
e
r

o
f

n
in

e
s
)

Read Accesses (0.0001)

(0.0002)(0.0003)

(0.0005)

(0.0092)(0.0001) (0.031)

(0.0011)

(0.0083)(0.001)

(c) Service levels achieved on read-only accesses. 2 duplicates
used.

99.5%99%98%97%96%95%94%93%92%91%

0

1

2

3

4 Zoolander
Prediction

Observed

Target Latency Bound (τ)
(shown as a percentile of the single-node distribution)

A
c
h

ie
v
e
d

 S
e
rv

ic
e

 L
e
v
e

l
(n

u
m

b
e
r

o
f

n
in

e
s
)

3-Node Zookeeper Groups (0.0001)

(0.0002)(0.0007)

(0.001)(0.0016)

(0.001)

(0.0028) (0.0011)(0.0001)

(0.0006)

(d) Service levels achieved under 3-node Zookeeper deploy-
ment. 2 duplicates used.

Figure 6: Validation Experiments

slope (strong gains) for latency bounds after the 96th per-
centile. For instance, setting the latency bound to the
99th percentile of single-node distribution (τ=15ms), RP
Zookeeper achieved 99.991% service level using only 4
duplicates. In other words, adding duplicates scaled the
service level by two orders of magnitude.
Diverse Workloads: Figures 6(c) and 6(d) shows the
number of nines achieved under read accesses and under
larger Zookeeper cluster size. On our cloud platform,
reads completed in microseconds [18]. Sometimes our

1 node Base Geom. w/ Sliding Full model
CDF Series window w/ µnet & µrep

60.0000 0.0835 0.0494 0.0103

Table 3: Percentage-point error of different versions of Zo-
olander’s model (x100). Results for 16-node, shared L2 test.

software repeater had not finished broadcasting accesses
before a duplicate finished the job. Figure 6(c) shows the
results with just 2 duplicates. As we varied the latency
bound, Zoolander accurately estimated service level. We
focus on the number of nines because it is a common
metric in practice for SLAs. Zoolander and our model
agreed on the number of nines.

Figure 6(d) shows results where we set the cluster size
to 3 under a write workload. Zookeeper uses an atomic
broadcast to issue cluster writes. Communication within
duplicate clusters increases anomalies. Despite this in-
crease, Zoolander met our model’s expectations across
all tested latency bounds.
Heterogeneous Platforms: In our toughest test for Zo-
olander, we made a fundamental, runtime change to our
cloud platform: We allowed instances to share the L2
cache. We started Zoolander with a CDF based on pri-
vate L2 caches and used our continuous monitoring to
discover the new CDF (window size was 10,000). We
ran a total of 1M accesses. Our input latency bound (τ)
was set to the 60th percentile of single-node, private-L2
service time distribution (just 3ms). A 16-instance Zo-
olander achieved a service level of 99.916% under this
latency bound. Our full model predicted 99.927%. Ta-
ble 3 shows the absolute percentage point error of differ-
ent versions of the Zoolander model. The geometric se-
ries and continuous monitoring improve accuracy most.

4 Model-Driven SLO Analysis

Zoolander can scale out via replication for predictabil-
ity or via partitioning. The analytic model, presented
in Section 2, helps Zoolander manager choose the most
efficient replication policy. The analytic model can also
provide marginal analysis on the SLO achieved as key in-
put parameters vary. Specifically, we varied the request
arrival rate and used our model to predict SLO achieved.
We fixed the number of nodes (4) and we fixed the sys-
tems data. We compared 3 replication policies: 1) using
only replication for predictability (i.e., 1 partition with 4
duplicates), 2) using only traditional approaches (i.e., 4
partitions with 1 duplicate each), and 3) using a mixed
approach (i.e., 2 partitions and 2 duplicates each). Note,
our model predicts the same service levels under a k-
duplicate partition with arrival rate λ as it does under
N k-duplicate partitions with arrival rate N ∗ λ , making
our results relevant to larger systems.

7

272 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

Recall, our model is biased toward partitioning. We
naively assume that each partition divides workload
evenly with no internal hot spots or convoy effects. Thus,
we are really comparing accurate predictions on replica-
tion for predictability to best-case predictions for parti-
tioning. More generally, our model makes best-case pre-
dictions for any approach that reduces accesses per node
by dividing work, including replication for throughput.

The results of our marginal analysis are shown in Fig-
ures 7(a–b). The y-axis in these figures is “goodput”, i.e.,
the fraction of requests returned within SLO. The x-axis
for these figures is the normalized arrival rate, i.e., the
arrival rate over the maximum service rate. In queuing
theory terminology, the normalized arrival rate is called
system utilization. The latency bound changes across the
figures. The results show arrival rates under which the
studied replication heuristics excel. Specifically:
1. Zoolander’s mixed approach, using both replication
for predictability and partitioning, offers the best of both
worlds. Replication for predictability alone increased
service levels but only under low arrival rates. Partition-
ing alone supported high arrival rates but with low ser-
vice levels. The mixed approach supported high arrival
rates (>40% utilization) and achieved high SLO.

2. As the latency bound increased, replication for pre-
dictability supported higher arrival rates, and similarly,
partitioning provided higher service levels.

3. Replication for predictability performs horribly un-
der high arrival rates. Recall, all duplicates have the
same queuing delay, once this delay exceeds the latency
bound, replication for predictability offers no benefit. It’s
performance falls of a cliff.

4. Divide-the-work approaches simply can’t achieve
high service levels under tight latency bounds. When we
set τ = 3.5ms, goodput under traditional only fell below
94%. A mixed approach achieved 99% goodput.

Cost Effectiveness: SLO violations can be costly. For
online e-commerce services, violations reduce sales and
ad clicks. For data processing services, violations de-
prive business leaders of data needed to make good, prof-
itable choices. All else being equal, reducing SLO viola-
tions means reducing costs. Replication for predictabil-
ity reduces SLO violations but it uses more nodes. Nodes
also cost; They use energy, their components (memory
and disk) wear out, and they have management over-
heads. We used our model to study the cost effectiveness
of using more nodes to reduce SLO violations.

We set a latency bound (τ) of 7ms and used systems
data taken from our private cloud. We computed the
number of SLO violations as the arrival rate changed. To
provide intuition, the number of SLO violations is essen-
tially the product of x and (1− y) for (x,y) pairs in Fig-

0 0.5 1

95%

96%

97%

98%

99%

100%

0 0.5 1

95%

96%

97%

98%

99%

100%

N
o

rm
a
li

z
e
d

 G
o

o
d

p
u

t

Normalized Arrival Rate, i.e., Accesses Received
Max Accesses

Modeled Service Levels across Different Latency Bounds

Τau = 7ms Τau = 15ms

A
c
c
e

s
s
e
s
 R

e
c
e

iv
e

d
R

e
s
p

o
n
s
e

s
 w

it
h
in

 S
L
O

Rep. for Pred. Only

Traditional only

Mixed

(A) (B)

Figure 7: Trading throughput for predictability. For replica-
tion for predictability only, λ = x and N = 4. For traditional,
λ = x

4 and N = 1. For the mixed Zoolander approach, λ = x
2

and N = 2. Our model produced the Y-axis.

0 0.5 1

1

10

100

0 0.5 1

1

10

100

N
o

rm
a
li

z
e
d

 C
o

s
t

SLO Violation = I * 10-3

Normalized Arrival Rate, i.e., Accesses Received
Max Accesses

SLO Violation = I * 10-4

Modeled Cost of Replication

across Different SLO Violation Costs

Do Nothing
Traditional
Rep for Pred.

(A) (B)

Figure 8: Cost of a 1-node system, 2 partition system, and 2
duplicate system across arrival rates. Lower numbers are better.

ure 7b. The rate of violations (λ vio) is shown below. Fzk
represents our model with systems data from Zookeeper.

λ vio = λ ∗ (1−Fzk(τ,λ))

We used a linear model to assess cost effectiveness.
Total cost was the sum of 1) SLO violations (λ vio) mul-
tiplied by cost per violation (cpv) and 2) nodes used (N)
multiplied by the cost per node per unit time (cpn). The
model is shown below.

cost = N ∗ cpn+λ vio ∗ cpv

The cost per violation and cost per node vary from ser-
vice to service. We studied the relative cost between
these parameters. Specifically, we set cpn = 1 and varied
cpv, as shown in Figures 8(a-b).

We compared three replication policies. The default
approach, or “do nothing”, did not scale out. It used
1 1-duplicate partition (N = 1) and allowed SLO vi-
olations to increase with the arrival rate. The replica-

8

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 273

tion for predictability approach used 1 2-duplicate parti-
tion (N = 2) and reduced SLO violations under low ar-
rival rates. The traditional approach used 2 1-duplicate
partitions (N = 2). Note, N refers to the number of
duplicates—each duplicate could comprise many nodes.
We found the following insights:
1. When 100 SLO violations cost more than a node,
replication for predictability is cost effective, until queu-
ing delay exceeds the latency bound and service levels
fall of the cliff.

2. If SLO violations are cheap, e.g., a node costs more
than 10,000 violations, replication for predictability is
never cost effective, even under low arrival rates.

3. If arrival rates change, the most cost effective ap-
proach will also change. When SLO violations are nei-
ther cheap nor expensive, all three approaches can be cost
effective under certain rates.

The exact cost of an SLO violation depends on the ser-
vice. Online services have found ways to compute cpv
for their workloads. It is harder to compute cpv in emerg-
ing services, e.g., Twitter trend analysis or smart-grid
power management. In these services, violations map
only indirectly to revenue. However, if such violations
lead to stale results that lead to poor decisions, the real
cost of such violations can be very high.

5 Zoolander in Action

For this section, we studied Zoolander under intense ar-
rival rates, e.g., workloads produced by online services.
These tests used up to 144 Amazon EC2 units. EC2 is
widely used by e-commerce sites and web portals. It’s
prices are well known. Our goal was to compare Zoolan-
der scaling strategies and to highlight real world settings
where replication for predictability is cost effective.

Many online services see diurnal patterns in the ar-
rival rates of user requests [4, 34]. Request arrival rates
can fall by 50% between 12am–4am compared to daily
peaks between 9am–7pm. As a result, fewer nodes are
needed in the night than in the day time. Nonetheless,
services must buy enough nodes to provide low response
times under peak arrival rates. Some services save en-
ergy by using only a fraction of their nodes during the
night, turning off unused nodes. However, in datacenters,
energy costs are low at night (because demand for elec-
tricity is low). Nighttime energy prices below $0.03 are
common. The typical service would save only $0.12 per
night by turning off a 1KW server during this period. Zo-
olander can exploit underused nodes in a different way;
Turning them into duplicates to reduce SLO violations.

We compared the opportunity costs of reducing SLO
violations against turning off machines. Figure 9 shows

the competing replication policies. During the daytime,
each node is needed for high throughput and operates un-
der its max arrival rate. However, at nighttime, the arrival
rate drops by 50%, allowing us to place 2 shards on 1
node or to use replication for predictability. To save en-
ergy at night, our replication policy consolidates shards,
using as few nodes as possible without exceeding the
peak per-node arrival rate. Our workload accesses all
shards evenly, i.e., no hot spots.

Replication for predictability can be applied naively
on top the energy saving approach by using idle nodes as
duplicates. SCADS manager adopted this approach [39].
However, our findings in Section 4 suggest that arrival
rates on nodes that use replication for predictability
should be low. We decided to use replication for pre-
dictability more sparingly, keeping arrival rates low for
the duplicates. For every 6 nodes, we placed 4 shards
on 2 nodes (like in the energy saving approach). The re-
maining 4 nodes hosted 2 shards via 2 2-duplicate parti-
tions. Our approach had 9.7% fewer violations compared
to the naive approach described above.

To make the test realistic, we setup Zoolander on EC2
and tried to mimic the scale of TripAdvisor’s workload.
Public data [14] shows that TripAdvisor receives 200M
user requests per day. On average, each user request ac-
cesses the back-end Memcached store 7 times, translat-
ing to 1.4B storage accesses per day. Learning from re-
cent studies, we assumed the arrival rate would drop by
50% [4]. Our goal was to support 29M accesses per hour.

We used 48 clients that issued a mix of 15% Gets
and 85% Puts across 96 shards. Gets/Puts were issued
in batches of 20, reflecting correlated storage accesses
within user requests. Each batch arrived independently,
leading to exponentially distributed inter-arrival times.
Note, our clients followed a realistic, open-loop work-
load model. Duplicates in these tests were 1-node Cas-
sandra [16]. In a 4 hour test, our clients issued over 160M
key-value lookups (40M per hour).

During our tests, Zoolander achieved high throughput
and fault tolerance. While these metrics do not reflect
Zoolander’s contribution, they are not weak spots either!
To support 40M lookups per hour, Zoolander used 48
EC2 compute units with Cassandra as the underlying
key-value store. Peak throughput was 431 lookups per
second per EC2 unit, about 20% higher than the aver-
age achieved by Netflix operators [7]. We encountered
546 whole partition failures across the 144 nodes where
either Cassandra or the software multicast crashed. Dur-
ing those failures, 2,929 lookups failed. Multicast, dupli-
cates or callbacks caused 1,200 of those failed lookups.

SLO violations also occur when Zoolander migrated
data to its nighttime setup. Migrations periods are shown
in Figure 10(a). The figure is based on a trace from [34].
Moving to from the daytime setup to Zoolander’s night-

9

274 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

node
id daytime setup

night time
energy saver

night time
Zoolander

0

1

2

3

4

5

accesses/hr = 1.6M
hosted shard(s) = A

NOT USED

NOT USED

NOT USED

accesses/hr = 0.8M
hosted shard(s) = E

accesses/hr = 0.8M
hosted shard(s) = E

accesses/hr = 1.6M
hosted shard(s) = B

accesses/hr = 1.6M
hosted shard(s) = C

accesses/hr = 1.6M
hosted shard(s) = D

accesses/hr = 1.6M
hosted shard(s) = E

accesses/hr = 1.6M
hosted shard(s) = F

accesses/hr = 1.6M
hosted shard(s) = A,B

accesses/hr = 1.6M
hosted shard(s) = C,D

accesses/hr = 1.6M
hosted shard(s) = E,F

accesses/hr = 1.6M
hosted shard(s) = A,B

accesses/hr = 1.6M
hosted shard(s) = C,D

accesses/hr = 0.8M
hosted shard(s) = F

accesses/hr = 0.8M
hosted shard(s) = F

Figure 9: Replication strategies during the nighttime workload
for an e-commerce service.

time setup needed 4 shard migrations(see Figure 9).
Moving back to daytime setup needed 2 more migra-
tions. Zoolander used existing techniques for shard mi-
gration. We measured migration-induced violations un-
der load and added these to Zoolander’s costs.

We used the cost model in Section 4 to compare the
nighttime replication policies in Figure 9. We studied
two different cost per node settings. In the private cloud
setting, the cost of a node is a function of its energy us-
age only. We assumed a cost of $0.03KWh and that each
node (an EC2 unit) used 100W, thus cpn = $0.003. In the
public cloud setting, the cost of a node includes every-
thing provided by EC2 (i.e., high availability, EBS, etc).
As of this writing, cpn of a small EC2 unit was $0.085
(20X more than energy only costs). The energy saving
approach used 3 nodes, whereas the Zoolander approach
used 6. We set the SLO latency bound (τ) for a batch of
lookups to 150ms. Out of 160M requests the Zoolander
approach incurred only 57K SLO violations compared to
85K in the energy saving approach—a reduction of 32%.

Figure 10(b) plots relative cost as a function of cost
per 1000 violations (cpv). Lower numbers are better for
Zoolander. The x-axis is log scale base 10. As SLO costs
increase, the Zoolander approach becomes more cost ef-
fective. Without considering migration costs, the relative
cost converges to 68% quickly in the private cloud setting
where cpn is very low. Migration costs increase relative
cost by 16%, but Zoolander remains highly cost effec-
tive in private clouds. Figure 10(b) shows that Zoolander
spends $0.79 to every dollar spent by energy saver ap-
proach, saving 21%. The public cloud setting requires
higher cpv to be cost effective.

In their fiscal statement for the 4th quarter of 2011, Tri-
pAdvisor earned $122M from click- and display-based
advertising. We divided this number by 200M daily user
requests to get revenue per 1,000 page views of $6.81.
Using prior research, we estimated that each SLO viola-
tion (a 100ms delay) would lead to a 1% loss in prof-

10 11 12 13 14 15 16

30%

40%

50%

60%

70%

80%

90%

0

2

4

6

8

10

12

Arrival Rate

Energy Saving

Zoolander

 Nighttime
 Hours
(light load)

 11pm 1am 3am 5am 0.0001 0.0010 0.0100 0.1000 1.0000

0%

50%

100%

150%

200%

Private Cloud w/o Migration

Private Cloud, Zoolander

Public Cloud, Zoolander

R
e
la

ti
v
e
 C

o
s
t

Cost of SLO Violations (x1000)

Estimated cost
for TripAdvisor

S
L
O

 V
io

la
ti
o

n
s
 (

x
1
0
0

0
)

R
e

la
ti
v
e
 A

rr
iv

a
l
R

a
te

(A) (B)

Figure 10: (A) Zoolander reduced violations at night. From
12am-1am and 4am-5am, Zoolander migrated data. We mea-
sured SLO violations incurred during migration. (B) Zoolan-
der’s approach was cost effective for private and public clouds.
Relative cost is (zoolander

energy saver)

its [30], meaning cpv = $0.068. Under this setting, the
Zoolander approach was cost effective for private set-
tings and broke even with the energy savings approach
under public cloud settings. When we consider migra-
tion costs for the energy savings approach, Zoolander is
cost effective even for public clouds.
Model-Driven Management The nighttime policy for
the EC2 tests was a heuristic based on insights from Sec-
tion 4. Heuristics derived from principled models under-
lie many real world systems. Alternatively, Zoolander’s
model can be queried directly to find good policies.

We used systems data from Zookeeper and set τ to
3.5ms, a very low latency bound. We studied the hourly
arrival rates (λ) shown in Table 4. For each rate, our
model computed the expected SLO under 8 policies: 8
partitions(p) each with 1 duplicate(d), 4p with 2d, 2p
with 4d, 6p with 1d, 3p with 2d, 2p with 3d, 4p with
1d, and 2p with 2d. Table 4 shows the policy that met
SLO using the fewest nodes. The 5 policies shown all
differ, including policies with more than 2 duplicates.

Target SLO: 98% of accesses complete in 3.5ms
Accesses/Hour: 2K 850K 1M 1.5M 1.9M

Best Policy: 4p/1d 2p/2d 2p/3d 3p/2d 4p/2d

Table 4: Best replication policy by arrival rate

6 Related Work

Zoolander improves response times for key value stores
by masking outlier access times. Contributions include:
1) a model of replication for predictability that is blended
with queuing theory, 2) full, read-and-write support for
replication for predictability, and 3) experimental results
that show the model’s accuracy and cost effective appli-
cation of replication for predictability. Related work falls
into the categories outlined below.
Replication for predictability and cloning: Google’s
BigTable re-issues storage accesses whenever an initial

10

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 275

access times out (e.g., over 10ms) [9, 10]. Outliers will
rarely incur more than 2 timeouts. This approach applies
replication for predictability only on known outliers, re-
ducing its overhead compared to Zoolander. Writes
present a challenge for BigTable’s approach. If writes
that are not outliers are sent to only 1 node, duplicates
diverge. If instead, they are sent to all nodes re-issued
accesses would not mask delays because they would de-
pend on slow nodes. Zoolander avoids these problems
by sending all writes to all replicas.

SCADS revived replication for predictability, not-
ing its benefits for social computing workloads [3].
SCADS sent every read to 2 duplicates [39] and sup-
ported read-only or inconsistent workloads. Replica-
tion for predictability strengthened service levels by 3–
18%. Zoolander extends SCADS by scaling replication
for predictability, modelling it, and supporting consistent
writes. Section 5 showed that, as arrival rates increase,
our model can find replication policies that outperform
the fixed 2-duplicate approach.

Data-intensive processing uses cloning to mask out-
lier tasks. Early Map-Reduce systems cloned tasks when
processors idled at the end of a job [11]. Mantri et al. [2]
used cloning throughout the life of a job to guard against
failures. In both cases, the number of duplicates were
limited. Also, map tasks issue only read accesses. Re-
cent work used cloning to mask delays caused by out-
lier map tasks [1], providing a topology-aware adaptive
approach to save network bandwidth. Like Zoolander,
this work focused on cost effective cloning. Zoolander’s
model advances this work, allowing managers to under-
stand the effect of budget policies in advance. Another
recent work [21] sped up data-intensive computing via
replication for predictability. This work defines budgets
in terms of reserve capacity and uses recent models on
map-reduce performance [41].
Adaptive partitioning and load balancing: Heavy tail
access frequencies also degrade SLOs. Hot Spots are
shards that are accessed much more often than typical
(median) shards. Queuing delays caused by hot spots
can cause SLO violations. Further, hot spots may shift
between shards over time. SCADS [39] threw hardware
at the problem by migrating the hottest keys within a
shard via partitioning and replication. Other works have
extended this approach to handled differentiated levels
of service [33] and also for disk based systems [27].
Consistent hashing provides probabilistic guarantees on
avoiding hot spots [36,42]. [19] extends consistent hash-
ing by wisely placing data for low cost migration in the
event that a hot spot arises. Locality aware placement
can also reduce the impact of hot spots [23].

Both replication for predictability and power-of-two
load balancing [28] involve sending redundant messages
to nodes. However, in load balancing, the nodes do not

share a consistent view of data. Just-idle-queue load bal-
ancing includes a related sub problem where an idle node
must update exactly 1 of many queues [25]. Here, taking
the smallest queue is like taking the fastest response in
replication for predictability and reduces heavy tails.
Removing performance anomalies: Background jobs
are not the only root cause of heavy tails, performance
bugs that manifest under rare runtime conditions also
degrade response times. Removing performance bugs
requires tedious and persistent effort. Recent research
has tried to automate the process. Shen et al. use “ref-
erence executions” to find low level metrics affected
by bug manifestations, e.g., system call frequency or
pthread events [32]. These metrics uncovered bugs in
the Linux kernel. Attariyan et al. used dynamic instru-
mentation to find bugs whose manifestation depended on
configuration files [5]. Recent works have found bugs
at the application level [22,40]. Debugging performance
bugs and masking their effects, as Zoolander does, are
both valuable approaches to make systems more pre-
dictable, but neither is sufficient. Some root causes, like
cache misses [4], should be debugged. Whereas, other
root causes manifest sporadically but, if they were fixed,
could unmask bigger problems [35].

The operating system and its scheduler are a major
reason for heavy tails. Two recent studies reworked
memcached, removing the operating system from the
datapath via RDMA [20, 37]. While many companies
can not run applications like memcached outside of ker-
nel protection, these studies suggest that the OS should
be redesigned to reduce access-time tails.

7 Conclusion

This paper presented Zoolander, middleware that fully
supports replication for predictability on existing key
value stores. Replication for predictability redundantly
sends each storage access to multiple nodes. By do-
ing so, it sacrifices throughput to make response times
more predictable. Our analytic model explained the
conditions where replication for predictability outper-
forms traditional, divide-the-work approaches. It also
provided accurate predictions that could be queried to
find good replication policies. We tested Zoolander with
Zookeeper and Cassandra. Its overhead was low. Our
largest test (spanning 144 EC2 compute units) showed
that Zoolander achieved high throughput and strength-
ened SLOs. By wisely mixing scale-out approaches, Zo-
olander reduced operating costs by 21%.
Acknowledgements: Thanks to Arif Merchant, John
Douceur, Jian Yin, Kai Shen, and Daiyi Yang for early
feedback. Nan Deng and Jaimie Kelley provided valu-
able feedback on Zoolander’s interface. This work was
funded by NSF EAGER 1230776.

11

276 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

References

[1] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and
I. Stoica. Effective straggler mitigation: Attack of
the clones. In USENIX NSDI, 2013.

[2] G. Ananthanarayanan, S. Kandula, A. Greenberg,
I. Stoica, Y. Lu, B. Saha, and E. Harris. Reining in
the outliers in map-reduce clusters using mantri. In
USENIX OSDI, 2010.

[3] M. Armbrust, A. Fox, D. Patterson, N. Lanham,
H. Oh, B. Trushkowsky, and J. Trutna. Scads:
Scale-independent storage for social computing ap-
plications. 2009.

[4] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale
key-value store. In ACM SIGMETRICS, 2012.

[5] M. Attariyan, M. Chow, and J. Flinn. X-ray:
Automating root-cause diagnosis of performance
anomalies in production software. In USENIX
OSDI, 2012.

[6] P. Bailis. Doing redundant work to speed up dis-
tributed queries. http://www.bailis.org/
blog/.

[7] A. Cockcroft and D. Sheahan. Benchmarking cas-
sandra scalability on aws - over a million writes per
second. http://techblog.netflix.com,
Nov. 2011.

[8] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakr-
ishnan, and R. Sears. Benchmarking cloud serving
systems with ycsb. In SoCC, 2010.

[9] J. Dean. Achieving rapid response times in large
online services, 2012.

[10] J. Dean and L. Barroso. The tail at scale. 2013.

[11] J. Dean and S. Gemawat. Mapreduce: simplified
data processing on large clusters, Dec. 2004.

[12] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: amazons
highly available key-value store. In ACM SOSP,
2007.

[13] J. Dike. User-mode linux.

[14] A. Gelfond. Tripadvisor architecture - 40m visitors,
200m dynamic page views, 30tb data. http://
highscalability.com, June 2011.

[15] J. Gray. Transaction Processing: Concepts and
Techniques. 1993.

[16] E. Hewitt. Cassandra: The definitive guide, 2011.

[17] S. Hsiao, L. Massa, V. Luu, and A. Gel-
fond. An epic tripadvisor update: Why
not run on the cloud? the grand exper-
iment. http://highscalability.com/
blog/2012/10/2/.

[18] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
Zookeeper: Wait-free coordination for internet-
scale systems. In USENIX, 2010.

[19] J. Hwang and T. Wood. Adaptive performance-
aware distributed memory caching. In IEEE ICAC,
2013.

[20] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker,
and A. Vahdat. Chronos: Predictable low latency
for data center applications. In ACM SOCC, 2012.

[21] J. Kelley and C. Stewart. Balanced and predictable
networked storage. In International Workshop on
Data Center Performance, 2013.

[22] M. Kim, R. Sumbaly, and S. Shah. Root cause de-
tection in a service-oriented architecture.

[23] M. Kozuch, M. Ryan, R. Gass, S. Schlosser,
D. O’Hallaron, J. Cipar, E. Krevat, J. Lpez,
M. Stroucken, and G. R. Ganger. Tashi: Location-
aware cluster management. In First Workshop
on Automated Control for Datacenters and Clouds
(ACDC’09), 2009.

[24] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky.
SILT: A memory-efficient, high-performance key-
value store. In ACM SOSP, Cascais, Portugal, Oct.
2011.

[25] Y. Lu, Q. Xie, G. Kilot, A. Geller, J. Larus, and
A. Greenburg. Join-idle-queue: A novel load bal-
ancing algorithm for dynamically scalable web ser-
vices. In PERFORMANCE, 2011.

[26] M. McNett, D. Gupta, A. Vahdat, and G. M.
Voelker. Usher: An Extensible Framework for
Managing Clusters of Virtual Machines. In Pro-
ceedings of the 21st Large Installation System Ad-
ministration Conference (LISA), November 2007.

[27] A. Merchant, M. Uysal, P. Padala, X. Zhu, S. Sing-
hal, and K. Shin. Maestro: quality-of-service in
large disk arrays. In IEEE ICAC, 2011.

[28] M. mitzenmacher. The power of two choices in
randomized load balancing. IEEE Transactions on
Parallel and Distributed Systems, 2001.

12

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 277

[29] J. C. Mogul. Tcp offload is a dumb idea whose time
has come. In HotOS, 2003.

[30] rigor.com. Why performance matters to your
bottom line. http://rigor.com/2012/09/
roi-of-web-performance-infographic.

[31] N. Sharma, S. Barker, D. Irwin, and P. Shenoy.
Blink: managing server clusters on intermittent
power. In ACM ASPLOS, Mar. 2011.

[32] K. Shen, C. Stewart, C. Li, and X. Li. Reference-
driven performance anomaly identification. In
ACM SIGMETRICS, 2009.

[33] D. Shue, M. J. Freedman, and A. Shaikh. Perfor-
mance isolation and fairness for multi-tenant cloud
storage, 2012.

[34] C. Stewart, T. Kelly, and A. Zhang. Exploiting non-
stationarity for performance prediction. In EuroSys
Conf., Mar. 2007.

[35] C. Stewart, K. Shen, A. Iyengar, and J. Yin. En-
tomomodel: Understanding and avoiding perfor-
mance anomaly manifestations. In IEEE MAS-
COTS, 2010.

[36] I. Stoica, R. Morris, D. Liben-Nowell, D. R.
Karger, M. F. Kaashoek, F. Dabek, and H. Balakr-
ishnan.

[37] P. Stuedi, A. Trivedi, and B. Metzler. Wimpy
nodes with 10gbe: leveraging one-sided operations
in soft-rdma to boost memcached. In Proceedings
of the 2012 USENIX conference on Annual Techni-
cal Conference, 2012.

[38] TripAdvisor Inc. Tripadvisor reports fourth quarter
and full year 2011 financial results, Feb. 2012.

[39] B. Trushkowsky, P. Bodk, A. Fox, M. J. Franklin,
M. I. Jordan, and D. A. Patterson. The scads di-
rector: Scaling a distributed storage system under
stringent performance requirements. In USENIX
FAST, 2011.

[40] W. Yoo, K. Larson, L. Baugh, S. Kim, and
R. Campbell. Adp: Automated diagnosis of perfor-
mance pathologies using hardware events. In ACM
SIGMETRICS, 2012.

[41] Z. Zhang, L. Cherkasova, A. Verma, and B. Loo.
Automated profiling and resource management of
pig programs for meeting service level objectives.
In IEEE ICAC, Sept. 2012.

[42] T. Zhu, A. Gandhi, M. Harchol-Balter, and M. A.
Kozuch. Saving cash by using less cache. In
USENIX Workshop on Hot Topics in Cloud Com-
puting, 2012.

13

