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Abstract

The Internet of Things (IoT) is the next big wave in com-
puting characterized by large scale open ended heteroge-
neous network of things, with varying sensing, actuating,
computing and communication capabilities. Compared
to the traditional field of autonomic computing, the IoT
is characterized by an open ended and highly dynamic
ecosystem with variable workload and resource avail-
ability. These characteristics make it difficult to imple-
ment self-awareness capabilities for IoT to manage and
optimize itself. In this work, we introduce a methodol-
ogy to explore and learn the trade-offs of different de-
ployment configurations to autonomously optimize the
QoS and other quality attributes of IoT applications. Our
experiments demonstrate that our proposed methodology
can automate the efficient deployment of IoT applica-
tions in the presence of multiple optimization objectives
and variable operational circumstances.

1 Introduction

No doubt, recent advances in ICT have changed our
verve enormously. Out of many emerging technologies
there is a continuous rise of highly distributed ambient
computing environments such as the Internet of Things
(IoT) and the Machine-to-Machine (M2M) communica-
tion paradigm. IoT is an open ended network infrastruc-
ture with self-configuring capabilities fueled by low cost
wireless communication and efficient network perfor-
mance. It is a dynamic network of uniquely identifiable
fixed or mobile communicating objects. These objects
collect data, relay information to one another, process the
information collaboratively, and take actions in an auto-
nomic way without human intervention. Smart homes
and offices, smart health, assisted living, smart cities
and transportation are only a few examples of possible
application scenarios where IoT is playing a vital role.
Also in this domain many significant self-* challenges

exist. For example, one challenge on self-optimization
is how to change the behavior of a system to achieve a
desired functionality, while maintaining a balance with
Quality of Service (QoS) and resource usage [21]. Self-
optimization in the Internet of Things shifts the focus
from design and deployment of a single or a few elements
operating autonomously to a large complex ecosystem of
a network of autonomous elements [16].

Most of the existing software platforms for IoT are
highly domain-specific prohibiting seamless interoper-
ability of objects across multiple vertical domains. The
FP7 BUTLER project1 aims to address this concern by
achieving a secure, context-aware horizontal architecture
for IoT by offering common functionality on three plat-
forms - Smart Object, Smart Mobile and Smart Server. In
this work we aim to predict and control the global system
behavior resulting from self-optimization of the compo-
nents deployed among these three different platforms.
The dynamic deployment of software components in an
IoT system has to take into account the resource char-
acteristics of the application components and the plat-
forms used for deployment in terms of processing power,
bandwidth, battery life and connectivity [1]. Each plat-
form has its own capabilities and limitations to achieve
Quality of Service (QoS) requirements. The heterogene-
ity makes it more complex and challenging to cope with
QoS requirements.

The main objective of our work is to find optimal
distributed deployments and configurations of applica-
tion components. We use annotated component graphs
to model application compositions and Pareto-curves to
represent the optimization options for each (type of) plat-
form, i.e. the Smart Object, Smart Mobile and Smart
Server. The resource optimization objectives are cho-
sen with respect to the QoS requirements and the trade-
offs on the computation vs. communication cost-benefits.
For the runtime (re)configuration and (re)deployment,

1http://www.iot-butler.eu/
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we use Markov Decision Processes to achieve the self-
optimization capabilities of the system.

After discussing related work in section 2, we present
some motivating use cases in the healthcare and wellbe-
ing domain in section 3 from which we elicit relevant
functional and non-functional requirements. We briefly
outline our self-optimization approach in section 4. It is
based on an offline exploration phase to collect relevant
profiling information for optimization before actual de-
ployment, and a runtime phase to autonomously adapt
the deployment and configuration towards changing op-
erational circumstances. In section 5 we evaluate the de-
ployment and optimization trade-offs in our work, and
finally conclude this paper with possible directions for
future work in section 6.

2 Related work

The autonomic computing paradigm has been around for
almost a decade with a primary vision of computing sys-
tems that can manage themselves [10, 8]. This vision
is now gaining inroads into the Internet of Things (IoT),
with many typical optimization criteria:

• increase the performance by deploying heavyweight
application components on faster hardware.

• reduce the amount of communication and network
latencies between distributed components.

• optimize the overall energy consumption of the ap-
plication components on the different platforms.

Utility functions are often used to achieve self-
optimization in distributed autonomic computing sys-
tems, both for the initial deployment of an application
and its dynamic reconfiguration. Tesauro et al. [19]
explored utility functions as a way to enable a collec-
tion of autonomic elements to continually optimize the
use of computational resources in a dynamic, heteroge-
neous environment. Later work by Deb et al. [5] in-
vestigated how utility functions can be used to achieve
self-optimized deployment of computationally intensive
scientific and engineering applications in highly dy-
namic and large-scale distributed computing environ-
ments. Utility functions have also found their way into
the cloud computing space [7, 11] where they are used to
manage virtualized computational and storage resources
that can scale on demand.

The problem with utility functions is that their defini-
tions require a fair amount of domain-specific knowledge
to be effective. To address this challenge, reinforcement
learning is often considered to automatically infer op-
timal deployment strategies. Tesauro [17, 18] explored
reinforcement learning for an online resource allocation

task in a distributed multi-application computing envi-
ronment with independent time-varying load in each ap-
plication. Similar work was proposed by Vengerov [20]
using reinforcement learning in conjunction with fuzzy
rulebases to achieve the desired objective. However, long
training times is a reoccurring concern that often out-
weighs the potential benefits of reinforcement learning.

Organic Computing is another paradigm that focuses
on distributed systems that exhibit self-* properties.
In [3], a generic observer/controller architecture is pro-
posed to introduce self-organization in complex systems
such as traffic light controllers. The observer collects rel-
evant data, pre-processes and analyzes it to discover pat-
terns which might affect the performance of the system.
The controller explores the parameter space to discover
settings that would suit the future states of the system,
but also matches the appropriate parameter settings to the
current state of the system. For the traffic controller use-
case, an evolutionary algorithm-based approach is used
to explore and optimize the solution space and discover
appropriate parameter settings. The controller then com-
pares the performance of the discovered parameter set-
tings in a simulation environment and deploys the most
appropriate setting at runtime.

Similarly, in [15] the authors propose a new frame-
work for self-organizing systems, albeit for improving
the efficiency in terms of functional requirements of the
system. In line with the observer/controller architecture
proposed in [3], an advisor (a high-level agent) monitors
the performance of other agents in a distributed environ-
ment and provides suggestions to improve their perfor-
mance. The main focus of the paper is to improve the
overall efficiency of the system considering the openness
and autonomy of the system along with low observability
and controllability of the agents (such as in the domain of
pick-up and delivery). The advisor gathers data, analyzes
and extracts recurring tasks and optimizes the solutions
for those recurring tasks. In the aforementioned use case,
exception rules are generated based on the current envi-
ronmental conditions in order to improve the efficiency
of the pick-up/delivery systems.

The focus of both the papers [3, 15] is on optimizing
the functionality of the system while considering scala-
bility and robustness requirements of the system. Con-
trary to our approach, the optimal system configuration
for the architecture in [3] is completely determined on-
line. Such an approach may require considerable re-
sources at runtime and hamper the feasibility on resource
constrained devices. Although [15] relaxes the need of
continuous monitoring by providing some autonomy to
the application for a limited amount of time, it does not
address the performance/efficiency trade-offs which is of
utmost importance in resource constrained IoT systems.
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Figure 1: Component-based composition of the activity recognition application

Given the aforementioned optimization criteria, ef-
ficient deployment of application components in an
IoT environment is often a multi-objective optimization
problem [6, 13]. Note that these optimization objectives
may conflict with one another (e.g. performance vs. en-
ergy consumption). In such cases, there does not exist
a single solution that simultaneously optimizes each ob-
jective and resource trade-offs are to be made [9]. Pareto
optimization [4, 22] is a technique that identities a set of
Pareto-optimal solutions involving more than one objec-
tive function to be optimized simultaneously. We say that
a solution − i.e. an allocation of resources − is Pareto-
optimal if there exists no other alternative that would im-
prove upon one objective function without deteriorating
in at least one of the other objective functions.

On the one hand, the problem with utility functions (or
optimization objectives) and Pareto-optimal solutions is
that the Internet of Things is an open ended ecosystem
of heterogeneous resources, making the crisp definition
of Pareto-optimal solutions difficult due to an incomplete
view on the external factors and uncertain circumstances
that might influence the optimality. On the other hand,
the applicability of the above learning approaches in an
Internet of Things environment is usually hampered by
the time and computational resources required to find a
feasible or better solution. To address this concern, we
aim to explore the feasibility of finding reasonable results
in a reasonable amount of time by combining Pareto-
optimization with reinforcement learning.

3 Scenarios and requirements for wellness
and independent living

In this section, we will use some motivating scenarios
from the healthcare and wellness domain as prototypical
examples of IoT applications, and derive functional and
non-functional requirements.

3.1 Use cases and components
Analysis of physical fitness and several health monitor-
ing techniques revolve around the inference and pre-
diction of human behavior. Accelerometer sensor data
helps to analyze the human behavior in an effective
way [14, 12]. We have implemented a variety of process-
ing components in a modular fashion to enable a flexible
deployment composition on the following platforms:

• Smart Object: Small appliances, sensors or ac-
tuators with limited computational power, storage
capacity, communication capability, energy supply
and primitive user interface are categorized as smart
objects (e.g. RFID tagged objects, motion detectors,
heating regulators).

• Smart Mobile: Devices with multi-modal user in-
terfaces to enable user mobility through remote ser-
vices are categorized as smart mobiles (e.g. smart
phones, smart TVs). They usually have better re-
source provisions than smart objects.

• Smart Server: The aggregation and complex anal-
ysis of data from smart objects and smart mobiles
are realized as services on smart servers (e.g. a lo-
cal server or remote cloud computing set-up).

3.1.1 Use case 1 - motion activity recognition

In our first use case, we monitor the physical activity of
the user by learning and classifying the activity of the
user (e.g. standing, walking, running). We track the num-
ber of steps taken each day as a measure for wellbeing,
and use it as input to classify higher levels of activity
(e.g. cooking, watching TV, presenting at a meeting).

3.1.2 Use case 2 - fall detection for elderly

Another important parameter that characterizes the qual-
ity of independent life is the safety of the users in their
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own homes. Ageing can affect all domains of life leading
to physical infirmity and loss of mental or cognitive abil-
ities necessitating safety monitoring applications. Our
second use case specifically focuses on fall detection as
a common safety monitoring application within an Am-
bient Assisted Living (AAL) environment.

3.1.3 Application components

Both use cases leverage a tri-axial accelerometer, a com-
mon mobile embedded inertial sensor found in most
smartphones, but rely on different sampling rates and
processing algorithms. A conceptual overview of the
software components is provided in Figure 1, with an ex-
planation of some of them below.

• Accelerometer: It produces a continuous stream of
X,Y,Z acceleration data by sampling the sensor at a
certain rate (see Figure 2).

• Low-pass filter: For mobility tracking we are inter-
ested in acceleration peaks that arrive at a frequency
of maximum 5Hz (i.e. max 5 steps per second). We
use the ’moving average’ as a simple low-pass filter
to remove high-frequency noise (see Figure 2).

Figure 2: Accelerometer data and magnitude of signal
after low-pass filter

Figure 3: Peaks in magnitude signal and detected steps

• Magnitude filter: The orientation of the sensor is
subject to change while moving around. Therefore,
we carry out the signal analysis on the overall mag-
nitude of the acceleration signal (see Figure 2).

• Peak filter: A single step is characterized by a pat-
tern of several maxima and minima in the time do-
main of the acceleration signal. This component ex-
tracts these features in the signal for further analysis
(see Figure 3).

• Step detector: It identifies the correct maxima/min-
ima to correctly count the number of steps and
to differentiate between standing still, walking and
running (i.e. the peak rate) (see Figure 3).

Although this application is still fairly small in size and
number of components, it manifests some interesting
properties in the sense that the computational demands
of certain components (e.g. the peak filter and step de-
tector components) vary depending on the actual motion
behavior of the user.

3.2 Requirements

The major (high-level) functional and non-functional re-
quirements can be summarized as follows:

1. The system should be able to capture and store rele-
vant sensor data and context information of the user
to model, learn, classify and predict the physical
activity of the users.

2. The system should have modular building blocks
for data processing and activity recognition on all
three platforms for flexible distributed deployment.

3. The deployment and configuration of the applica-
tion components must be adaptive at runtime to op-
timize for performance, latency, network communi-
cation (or QoS in general).

For example, delaying or offloading the accelerometer
data processing will help to optimize the autonomy of
battery powered sensors or mobiles.

Many opportunities for optimization may exist,
i.e. different distributed deployments of the application
components and different configurations per component.
The challenge is to find and analyze the different op-
timization trade-offs in an open ended and dynamic
IoT ecosystem of Smart Objects, Smart Mobiles and
Smart Servers, each with varying sensing, communica-
tion, computation and storage capabilities.
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Figure 4: Overview of the self-optimization approach il-
lustrating the offline and runtime phases

4 Conceptual overview of the deployment
and optimization methodology

It is impossible to determine in advance where every
component will run due to the dynamic interaction of
these devices with the environment and the user. The
multitude of parameters associated with the various pos-
sible configurations under varying workload and re-
source availability makes it almost impossible to manu-
ally finetune the components for best overall system per-
formance, necessitating the introduction of self-* prop-
erties in IoT applications. Performing detailed cost ben-
efit analysis for self-management decisions from scratch
at runtime causes a large overhead. We reduce this over-
head by balancing the offline and runtime efforts of mak-
ing these decisions.

Our overall approach is based on an offline exploration
phase to collect relevant profiling information for opti-
mization before actual deployment, and a runtime phase
to autonomously adapt the deployment and configura-
tion towards changing operational circumstances. An
overview of the approach is given in Figure 4.

4.1 Offline exploration of deployment and
configuration options

Figure 5 gives an overview of the offline exploration for
the preprocessing of deployment and configuration de-
cisions. The component-based application is first pro-
filed to obtain an annotated component graph. This anno-
tated component graph is used for the exploration of the
Pareto-optimal deployments and configurations and a re-
configuration cost matrix is constructed only for Pareto-
optimal configurations. The runtime system uses the ex-
plored Pareto-optimal configurations and the reconfigu-
ration matrices in order to make self-optimization deci-
sions at runtime.

4.1.1 Deriving the annotated component graph

We use annotated component graphs as a high level
model of computation to represent the application in or-
der to explore the trade-offs between the different de-
ployment configurations of the application. An anno-
tated component graph is a directed graph where the
nodes represent the components of an application, and
the edges represent the data flow between the compo-
nents. These nodes and edges are annotated with meta-
data representing the hard constraints, costs and resource
requirements of the components.

Let us again consider the step counting application as
an example. Some components of the application may
be deployed on different platforms, i.e. a Smart Object,
Smart Mobile and Smart Server. In order to generate
an annotated component graph for this application the
following steps are carried out:

1. Use the component model of the application and
identity the data flows (similar to the one shown in
Figure 1). The data flow graph acts as skeleton for
the annotated component graph.

2. Instrument the communication interfaces of compo-
nents to measure the amount of data transferred be-
tween components.

3. Run every component of the application on all the
different platforms possible, profiling its execution
time, energy consumption and data transferred be-
tween components, each time.

4. Calculate the memory requirements of every com-
ponent by monitoring the changes in stack and heap
sizes, as components are added and removed from
the platform.

5. Repeat steps 3 and 4 over a range of component
configurations (e.g. a different sampling rate) and/or
simulated inputs (e.g. accelerometer traces of differ-
ent activities and individuals).
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Figure 5: Overview of the offline exploration phase

The only hard constraint for this application is that the
accelerometer component can only execute on devices
with such a sensor. Adding all this meta-data to the data
flow graph generates the annotated component graph of
the application and we use it as an intermediate model
for exploring deployment trade-offs at design time.

Reconfigurable components: Some components have
configuration options that affect their resource costs and
requirements. For example, lowering the accelerome-
ter sampling rate from 50Hz to 15Hz decreases the CPU
time, communication and energy consumption of the ac-
tivity recognition components, but increases the recog-
nition error rate. For such components we annotate the
component graph with metadata for a discretized range
of parameter options, i.e. the CPU time and energy con-
sumption values for the supported sampling rates.

Variability: Some components have stochastic non-
functional performance properties (see Figure 6). For ex-
ample, the communication throughput of a wireless node
could be affected by external factors (e.g. interference).
To define the Pareto-fronts (or Pareto-curves) one usu-
ally takes the worst case execution values after profiling
to define the Pareto-points. Given that the IoT ecosystem
is quite heterogeneous and open ended in nature, pursu-
ing such a pessimistic approach will easily lead to unde-
sirable solutions. Therefore, we define the Pareto-points
based on the most likely execution values. However, to
still be able to assess the impact of a worst case execution
scenario for a particular deployment and configuration
(i.e. a specific Pareto-point), we incorporate the likeli-
hood distribution of the profiled execution values in each
Pareto-point leading to a Pareto-front (i.e. a set of Pareto-
optimal solutions) with some degree of variability.

4.1.2 Exploring the Pareto-optimal trade-offs

We model the problem of deploying an application to a
heterogeneous network of self-managing Smart Objects,
Smart Mobiles and Smart Servers as a constraint-based
optimization problem and use a CPLEX based solver to
explore the Pareto-optimal set of solutions. The details of
expressing software deployment on hardware resources
are described in our previous work [2].

In a Pareto-optimal set of solutions, every solution is
better than all other solutions according to at least one
functional or non-functional criterion. For example, Ta-
ble 1 refers to a scenario of fancy and cheap hotels close
to the beach. Hotels A, E and F can be eliminated be-
cause they are not Pareto-optimal. Also note that Hotel
D is not the best in any optimization objective (stars, dis-
tance to beach and price), but it is Pareto-optimal. Al-
though we are mainly interested in activity recognition
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Hotel Stars Distance to beach Price
A ** 0.7 80
B * 0.2 40
C *** 1.3 100
D ** 0.3 70
E ** 0.5 90
F ** 1.5 120

Table 1: Maximization problem with multiple optimiza-
tion criteria

as a motivating scenario, we use this example to offer a
better understanding of Pareto-curves with multiple op-
timization criteria.

In our approach, eliminating deployment and config-
uration options that are not Pareto-optimal reduces the
search space for the runtime reconfiguration decision
from all possible configurations to the set of Pareto-
optimal configurations. For example, consider the step
counting application which consists of 5 components
(see Figure 1) with a fairly simple pipe-and-filter archi-
tectural style. Assume we aim to deploy this applica-
tion composition in a distributed setting on a simple sen-
sor platform with limited processing capabilities (i.e. a
Smart Object) and on a resource rich platform (i.e. a
Smart Server). The deployment decision then boils down
to figuring out which components are deployed on the
sensor and which ones are deployed on the server. The
only hard constraint for the deployment of this applica-
tion is that the Accelerometer component must be de-
ployed on the sensor platform. The other components
can be deployed on either side, theoretically leading to
16 different deployment configurations of which a sub-
set are Pareto-optimal. Obviously, extreme deployment
configurations where components 1, 3 and 5 are on the
sensor and components 2 and 4 are on the server will
never be optimal due to the high communication cost.

In order to explore multi-dimensional Pareto-optimal
surfaces, the problem is modeled using of parameteriz-
able constraints. These parameters are then iteratively
varied over a discretized range, invoking the solver each
time to find a point on a Pareto surface. For example,
an energy consumption versus Quality of Service Pareto
curve is explored for the step counting algorithm by it-
eratively finding minimum energy solutions for different
QoS constraints. It is important to note that there are
no dependencies among the different invocations of the
CPLEX solver. While finding solutions for this applica-
tion takes several minutes on a single machine (depend-
ing on how many simulations are carried out), we can
speed up this process by initiating parallel invocations of
the CPLEX solver on a cluster of machines. This guaran-
tees the feasibility of the approach for larger applications
with many more configuration alternatives.

4.1.3 Reconfiguration cost matrix

A reconfiguration cost matrix is constructed by profiling
the costs of reconfigurations and redeployments of com-
ponents. For example, the cost of activation/deactivation
of a component, establishing a local/remote component
-to-component communication channel and transferring
the state of an active component over a communication
network. The size of this matrix is O(N2) where N is the
number of possible configurations. As N can be become
large, only the Pareto-optimal configurations are consid-
ered for reconfigurations.

4.2 Managing variability with runtime re-
deployment and reconfiguration

Traditionally, profiling of the application components is
done with the assumption that each component will cor-
respond to just one point in the Pareto search space. The
openness in IoT can potentially create a lot of variabil-
ity in the operational conditions of smart applications
which in turn causes inconsistency in resource consump-
tions w.r.t. the Pareto-optimal solutions. For example,
external environmental parameters such as network con-
nectivity and communication bandwidth availability can
vary depending on the living environment of the user.
This operational variability makes it difficult to profile
components in general. Similarly, the performance of an
application component can vary depending on the user
behavior. For example, the computational load of the
Step Detector component (see Figure 1) will be different
when the user is standing still (little processing due to no
significant peaks in the accelerometer data) or walking
(several peaks per second).

Rather than profiling application components as sin-
gle points in the Pareto search space, we represent each
application component with value distributions (through
multiple profiling iterations) for systems where this vari-
ability in operational conditions is highly anticipated (as
is the case for IoT systems). Each component is rep-
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Figure 6: Variability in the profiled configurations
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resented by statistical properties (e.g. min, max, median,
average, standard deviation) discovered through multiple
profiling iterations of the component under varying con-
ditions. The example in Table 1 augmented with variable
pricing (depending on season or room type) would re-
quire a similar Pareto-front representation.

We extended traditional Pareto-optimization methods
to find a set of Pareto-optimal points taking into consider-
ation this variability (see Figure 6). This basically means
that the Pareto-optimal set not only considers configura-
tions that are Pareto-optimal in the most likely scenar-
ios (e.g. using the mean value of the optimization ob-
jectives), but also configurations that might be Pareto-
optimal in less likely scenarios (e.g. min or max value of
the optimization objectives). Assume in Figure 6 we aim
to minimize for both objectives A and B. Configuration
C3 would be Pareto-optimal w.r.t. C2 when considering
the mean value of objective A (and the equal mean value
for objective B). However, due to the difference in vari-
ability there might be a profiled configuration x of C3 that
has a lower value for objective A than any profiled con-
figuration of C2. Depending on which statistical prop-
erty is chosen, we find different Pareto-optimal sets. In
our approach, we take the union of these sets and refer to
it as the relaxed set of Pareto-optimal solutions for any
given statistical property. At runtime, we start off with
a default statistical property to define the Pareto-optimal
solutions, and propose using online reinforcement learn-
ing to discover whether the given context gives rise to
other Pareto-optimal solutions that emerge in less likely
situations. The major benefits of our approach are:

• Reduction of the (re)configuration search space
by limiting the relevant working configurations to
Pareto-optimal solutions.

• A modified Pareto-optimization method defin-
ing a relaxed set of Pareto-optimal solutions to
handle the variability in the IoT working conditions.

• Finetuning the configuration at runtime by nar-
rowing down the operational variability through
reinforcement learning.

4.3 Analyzing cost/benefit trade-offs with
Markov Decision Processes

With the relaxed set of Pareto-optimal solutions, we can
find configurations that are optimal in a particular con-
text. Whether these configurations remain beneficial
over a certain time period is something we cannot infer
from the Pareto-fronts.

Let us consider the 5 components in the step counting
application in Figure 1 and the different deployment con-
figurations. Whether any of these configurations remains
optimal over time is unpredictable, and cannot be derived

just from the offline generated Pareto-fronts. For exam-
ple, the default sampling frequency for counting steps is
set to 50Hz. However, if the system knows the person is
not moving (e.g. sitting down in a meeting), it can reduce
resource consumption by changing the configuration of
the Accelerometer component and setting the sampling
frequency to 15Hz. In this mode, it can detect a change
in movement, and if so, set the sampling frequency back
to 50Hz to start counting steps again.

We therefore model the relaxed Pareto-optimal config-
urations as states of a Markov Decision Process (MDP)
along with the associated set of actions and rewards and
find out the best possible (re)configuration policy over
a finite time period. This uncertainty in potential ben-
efits over time is introduced by a changing context in
the operating environment of the system. Also note that
these reconfigurations have associated reconfiguration
costs which in turn would require the system to maintain
the new configuration for a certain time Tbe (break-even
time) before it is actually able to benefit from deploying
the new configuration.

As typical user activities are characterized by certain
events that happen over certain period of time, the states
are not expected to change at each time step. State tran-
sitions will be guided by transition rates, i.e. how quickly
a transition takes place instead of how likely transitions
are at each time step. Accordingly, a continuous time
Markov process is ideal to model this problem but in or-
der to reduce the complexity of the proposed system we
have decided to utilize a discrete finite horizon MDP in-
stead of a continuous MDP.

A classic discrete MDP is represented by a 4-tuple
S,A,P(s,s′),R(s,s′) where S is the set of states, A is a
super-set of sets of actions possible in each state, P(s,s′)
is the transition probability between states s and s′, and
R(s,s′) is the reward for moving from state s to s′. The
goal here is to discover and learn the expected rewards
and best possible policy considering the transitions be-
tween configurations due to a changing context. The dif-
ferent parameters of our proposed MDP model are:

• States: a set of Pareto-optimal configurations for
each application that can be possibly deployed in
the system. It is represented as an n-tuple where
n represents the number of platforms. If there are
m possible configurations for each of the platforms,
then the number of possible states is (mn). Also,
note that the momentarily Pareto-optimal global
configurations are a small subset of these states.

• Actions: a set of possible state transitions that are
allowed for optimal resource consumption are mod-
eled as actions for each state, i.e. a(s). We assume
that all the application components have to be run
on one of the available platforms.
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• Transition probability: the probability with which
state changes are anticipated in the system is called
the transition probability. User activities or chang-
ing living conditions introduce randomness and
cause deviations in the desired state transitions for
the most likely Pareto-optimal solution.

• Reward function: the reward value is defined in
terms of the resource consumption of the current
and optimal configuration, and the time the optimal
configuration will be active:

resource consumptionopt. con f .

resource consumptioncurr. con f .
∗ T

The resource consumption of a configuration on a
particular platform is a weighted average of the m
resources ρi involved:

resource consumption = ∑wi ∗ρi 0 < i < m

We also assume that T > Tbe, meaning that the cost
incurred by the reconfiguration to the optimal one
will be accounted for by running this new optimal
configuration longer than the break even time Tbe.

The optimal configuration is the one which maxi-
mizes the value η defined as follows:

η =
δ

∑wi, j ∗ρi, j
0 < i < m,0 < j < n

where,

δ = accuracy of the step detector
ρi, j = resources consumed (in %)
i = type of resource (memory, CPU, etc.)
j = type of platform (smart object, mobile or server)
w = weight to prioritize importance of resource

The above parameters can be explored offline to iden-
tify an optimal configuration for a given set of resources
whose importance can be balanced by the user (e.g. bat-
tery and performance). However, the variability in
the execution makes it impossible to guarantee that the
aforementioned optimal solution will remain the same
under all circumstances. We therefore use learning tech-
niques to better identify the optimal deployment for the
given operational circumstances of the application. The
learning we propose is guided by an ε-greedy algorithm:

Q(st+1,at+1) = ε.mean(Q(s,a))+(1− ε).max(Q(s,a))

where the first term helps the system to explore the re-
laxed Pareto-optimal configuration space and the second
term exploits the learned best policy available at the time.

4.4 Discussion

Despite pre-optimizing the deployment decision of the
IoT application components and implementing applica-
tion specific optimization logic, the global optimal con-
figuration cannot be determined during the offline explo-
ration phase as it is dependent on multiple time-varying
variables such as, user profile (e.g., age and other fac-
tors can influence how active a person is) preference of
the user (e.g., to minimize computational load or com-
munication bandwidth) and the operating environment
(e.g., signal strength of the WiFi network). Hence in
this paper, a smart adapter meta-component is proposed
which implements a global runtime learner to drive the
IoT application towards optimal configuration over time
for any given user or operating conditions. The local ap-
plication specific optimization logic (e.g., lowering the
sampling frequency when the user is not active) takes
the current (or aggregated) prediction of the application
(e.g., the user is idle or active) as input and output the
optimal configuration for the system. A simple version
can be implemented by a look-up table with pre-defined
output events and corresponding optimal configurations.
Whereas the smart adapter is more generic, it takes cur-
rent configuration of the IoT application and correspond-
ing resource consumption in multiple platforms as input
and recomputes the throughput of the predefined con-
figurations which in turn is used by the reinforcement
learning algorithm to learn the best policy for the user
and associated operating environment. Given that the
learned optimal configuration policy is tailored for the
user, it will overrule the policies determined by the of-
fline exploration phase. As the resource needs of the
smart adapter is pre-determinable (due to its fixed intro-
spection frequency), it is modeled by the reconfiguration
matrix and the associated cost is considered in the overall
efficiency of the application.

5 Experimental evaluation

We will demonstrate the feasibility of our approach with
use case 1 (the step counting application as shown in
Figure 1), and evaluate the proposed methodologies us-
ing the 5 components. This simple deployment scenario
allows different deployment compositions on three dif-
ferent platforms Smart Object, Smart Mobile or Smart
Server. For the sake of simplicity, we will only use two
platforms in our experiments (see Figure 7):

Smart Object: We use a SunSPOT development board2

with a 400MHz ARM 926ej-S processor with 1MB
RAM and 8MB flash memories. The processor runs ap-
plications on top of a Java “Squawk” virtual machine.

2http://www.sunspotworld.com/docs/Yellow/eSPOT8ds.pdf
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Figure 7: Experimental setup

Component CPU load Communication

Accelerometer 8.09 ± 1.3 ms 5.5 ± 0.0 kB/sec
Low-pass filter 57.9 ± 2.1 ms 5.5 ± 0.0 kB/sec
Magnitude filter 18.2 ± 1.5 ms 1.8 ± 0.0 kB/sec
Peak detector 14.9 ± 9.7 ms 0.5 ± 0.4 kB/sec
Step detector 5.12 ± 4.8 ms 0.1 ± 0.1 kB/sec

Table 2: Performance benchmark of the individual com-
ponents on the sensor

The board has an integrated IEEE 802.15.4 compliant
Radio Transceiver CC2420 from Texas Instruments.

Smart Server: Our Smart Server infrastructure runs
VMware’s open source Platform-as-a-Service (PaaS) of-
fering known as Cloud Foundry on a server with 8GB of
memory and an Intel i5-2400 3.1GHz running a 64-bit
edition of Ubuntu Linux 12.04. Cloud Foundry provides
messaging and database servers as built-in services. We
deployed its open source distribution, i.e. VCAP3. VCAP
supports the AMQP-based RabbitMQ4 server for mes-
saging and MySQL for storage and persistence. All of
the configuration is done in Spring, an application de-
velopment framework. Finally, we exposed our loosely
coupled application components as services, integrating
Apache CXF with the Spring framework.

We profile the step counting components under differ-
ent deployment and configuration scenarios with an ob-
jective to optimize the CPU load and the network com-
munication costs. The results of the profiling on the sen-
sor are shown in Table 2. Note that for the Accelerom-
eter, Low-pass filter and Magnitude filter components
there is little to no communication variability because the

3https://github.com/cloudfoundry/vcap
4http://www.rabbitmq.com
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Figure 8: CPU load and network communication deploy-
ment trade-offs on the sensor

amount of data output is fixed and depending on the sam-
pling rate of the accelerometer.

Given the fact that the deployment of the Accelerome-
ter component is fixed, we have 16 different deployment
options for the 4 remaining components. Some of the
Pareto-optimal deployment options are (see Figure 8):

• D1: Minimal computation on the sensor by having
the Accelerometer component on the sensor and
the 4 remaining sensor data processing components
deployed on the server.

• D2: The Accelerometer and Low-pass filter com-
ponents deployed on the sensor and the other
components on the server.

• D3: The Accelerometer, Low-pass filter and Magni-
tude filter components deployed on the sensor and
the other components on the server.

• D4: All components except the Step Detector
component deployed on the sensor.

• D5: Highest CPU load on the sensor by having all
the components deployed on the sensor and no com-
munication cost between the sensor and the server.

Note that each deployment Dx represents the joint re-
source consumption and variability of the components
deployed on the sensor. Examples of non-Pareto-optimal
solutions include a.o. a deployment with the Low-Pass
Filter and Peak Detector components on the server and
the Accelerometer, Magnitude Filter and Step Detec-
tor components on the sensor. This mixed deployment
causes a high communication cost.

We have also Pareto-fronts specifically for component
reconfigurations. For example, the Accelerometer com-
ponent can sample data at different rates, causing differ-
ent CPU loads and communication throughput. Figure 8
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shows the results of sampling at 50Hz, whereas a profil-
ing at 15Hz produces a similar deployment trade-off but
with an overall lower CPU load and network communi-
cation. The fall detection use case requires a 100Hz sam-
pling rate, but involves different components with corre-
sponding Pareto-fronts.

5.1 Resource-driven deployment trade-offs

In a first experiment, we tested the automatic deploy-
ment of our application components with an initial de-
ployment D1. The optimization policy was set to reduce
the energy consumption, which automatically triggered
the deployment of all the components except the Step De-
tector component on the sensor (configuration D4). We
then changed the optimization policy to minimize net-
work communication (cfr. a GPRS communication sce-
nario that incurs a real financial cost). At this point, the
deployment of the latter component was also moved to
the sensor (configuration D5).

5.2 Contextual configuration trade-offs

In a second experiment with periods without motion ac-
tivity, the system learned that the stationary state of the
individual would last for at least 10 minutes. In this state,
there were no more peaks detected leaving the Step De-
tector component idle. This exceptional circumstance
(i.e. no communication to this component) triggered the
component to be deployed again on the server (config-
uration D4), lowering the sampling frequency to 15Hz,
and switching to the corresponding Pareto-front.

5.3 Learning self-optimization trade-offs

The effect of the Peak Detector in the Pareto-search
space is more fuzzy compared to the three previous com-
ponents in the processing chain (whose CPU load and
communication variability is low). The variability in the
resource consumption of the Peak Detector component
is due to external factors. For example, for elderly peo-
ple the number of peaks would be smaller as they are
less mobile. For more active young people, there are
much more peaks to process. Hence, it is not clear-cut
anymore to decide where to run this component as the
decision is tied to individual users and their life-style.
Furthermore, this contextual dependency cannot be cap-
tured in the Pareto-fronts through profiling. In a third
experiment, we tested the self-optimizing capabilities of
the MDP on an individual with a sedentary lifestyle. The
MDP picked up this behavior after on average 110 iter-
ations, and finetuned the Pareto-curve with lower com-
putation and network communication variability for de-

ployment solutions D4 and D5, leading to an overall pref-
erence for the latter deployment.

6 Conclusions

In this paper, we presented our self-optimization ap-
proach for deploying IoT application components. The
goal is to autonomously find the trade-offs between dif-
ferent component deployment configurations and their
resource impact for distributed deployments on Smart
Objects, Smart Mobiles and Smart Servers. Our ap-
proach is based on an offline exploration phase to collect
relevant profiling information for optimization before ac-
tual deployment, and a runtime phase to autonomously
adapt the deployment and configuration towards chang-
ing operational circumstances.

Our experiments have shown that the deployment and
configuration decision (which part of the application is
run on a sensor, mobile or a server in the cloud) is
not always clear-cut, and that trade-offs are to be made
w.r.t. application and QoS requirements. Our modular
design philosophy for developing IoT applications helps
to dynamically configure, compose and deploy these
components depending on the QoS requirements of the
applications. We have profiled and benchmarked these
components on different deployment ends. This helped
us to automatically find trade-offs for a distributed de-
ployment of these components considering both the per-
formance impact as well as the cost/benefit of any recon-
figuration or change in component deployment.

As future work, we will explore the effects of more
advanced learning and classification techniques and
broaden our methodology to validate more complex de-
ployment scenarios.
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