
USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 201

Towards a generic architecture and methodology for multi-goal,
highly-distributed and dynamic autonomic systems

Sylvain Frey1,2, Ada Diaconescu2, David Menga1 and Isabelle Demeure2

1ICAME department, EDF R&D, Clamart, France; {first name}.{last name}@edf.fr
2Télécom ParisTech, CNRS LTCI, Paris, France; {first name}.{last name}@telecom-paristech.fr

Abstract

Autonomic control is vital to the success of large-scale
distributed and open IoT systems, which must simulta-
neously cater for the interests of several parties. How-
ever, developing and maintaining autonomic controllers
is highly difficult and costly. To illustrate this problem,
this paper considers a system that could be deployed in
the future, integrating smart homes within a smart micro-
grid. The paper addresses this problem from a Software
Engineering perspective, building on the authors’ expe-
rience with devising autonomic systems and including
recent work on integration design patterns. The contri-
bution focuses on a generic architecture for multi-goal,
adaptable and open autonomic systems, exemplified via
the development of a concrete autonomic application for
the smart micro-grid. Our long-term goal is to progres-
sively identify and develop reusable artefacts, such as
paradigms, models and frameworks for helping the de-
velopment of autonomic applications, which are vital for
reaching the full potential of IoT systems.

1 Introduction

The purpose of any computing system is to reach ob-
jectives specified by an external authority. When mul-
tiple authorities can access the system, like in the IoT
(Internet of Things) context, system goals may be con-
flicting, while targeting overlapping system parts. More-
over, such systems must often scale to large numbers of
highly-distributed resources and be adaptable to changes
in their goals, execution context and constituent re-
sources (the systems are open). Autonomic or self-* ca-
pabilities become key to the success of such systems.

This paper illustrates this challenge via a multi-goal,
adaptable and open autonomic system that integrates sev-
eral smart houses into a smart micro-grid. To cover
both the Autonomic Computing (AC) and IoT domains
in this example, the paper employs the generic term au-

tonomic control [28] to designate the system logic that
manages available resources for attaining goals. The
only means for an autonomic controller to pursue its
objectives is via actions it can perform on such man-
ageable resources. To select actions the controller can
rely on decision strategies, knowledge and runtime in-
formation from the environment and the system state.
The key challenge lies in developing the controller logic
that can successfully pursue system goals while ensuring
essential system characteristics - scalability, robustness,
adaptability and openness. We approach this challenge
from a Software Engineering (SE) perspective. Our aim
is to identify, specify and develop reusable artefacts for
analysing and designing autonomic control systems with
the aforementioned properties. The presented work re-
lies on our experience with building autonomic frame-
works [9][10][20][23]. The long-term aim is to build
a comprehensive reference architecture for autonomic
systems.

The generic architecture proposed is constructed on
the assumption that the development and adaptation of
any realistic autonomic system will rely on the integra-
tion of managed resources and control elements of differ-
ent types; integration can occur statically or dynamically.
An important challenge lies in identifying and bring-
ing together the necessary types of abstract architectural
artefacts and concrete control elements that can be used
for system design and integration. Abstract artefacts can
include architectural styles, design patterns and layer-
ing techniques over several axes of abstraction. Con-
trol elements include relatively straightforward control
tasks - such as monitoring, decision-making, execution
or knowledge-management; entire control loops; or com-
binations of the above [15][23]. They can be function-
ally organised based on well-defined abstract entities,
like those indicated above, and interconnected via hard-
coded or loosely-coupled bindings. The overall integra-
tion process can be controlled in a fully centralised, de-
centralised or hierarchical manner [15][9][10][14][23].

202 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

Another important challenge lies in coordinating con-
trol elements for obtaining coherent controllers that
can pursue several goals, adapt and support highly-
distributed, plug-and-play resources. Of major interest
here is the detection and resolution of conflicts that may
occur when integrating elements with contradicting goals
[10] or control strategies [23]. The generic architecture
and methodology presented here focus on addressing
these two major challenges. Other important concerns,
such as timing and synchronisation of integrated actions
are part of ongoing research not covered here. The au-
thors do not claim the novelty of all artefacts in the ar-
chitecture. Indeed, most of these can be found in related
fields such as automatic control [24], collective adaptive
systems [18], multi-agents [14][16], robotics [6], cyber-
netics [2] or autonomic systems [15][7][19]. These pro-
vide a rich repertoire of solutions that address different
parts of the overall challenge.

This paper’s contribution consists in identifying and
extending existing artefacts that can be used for design-
ing autonomic control systems, and assimilating them
into a coherent framework. Some key aspects of the
proposed contribution include: rendering explicit the
conceptual elements included in goal definitions; defin-
ing the problem of building autonomic controllers as one
of mapping declarative actions (goals) into concrete ac-
tions (on managed resources), in a context-aware and ex-
tensible way; combining existing SE techniques for split-
ting the mapping problem into recursively smaller ele-
ments and integrating such elements into flexible overall
solutions; defining integration conflicts and ways of re-
solving them; applying architectural templates and agent
organisation techniques to ensure system coherence and
runtime flexibility. This is illustrated by developing a
multi-goal, adaptable and open smart micro-grid.

The ongoing aim is to help answer questions on:

• How to develop scalable and adaptable feedback
loops?

• How to integrate multiple feedback loops for pursu-
ing many goals at different scales?

• How to deal with system dynamism and openness?

Addressing these concerns is vital for reaching the full
potential of Autonomic Computing and IoT paradigms.
We emphasise the fact that we do not propose a concrete
ready-to-use architecture; this would have to be domain-
specific. Rather, we provide an abstract architecture and
methodology that can guide the design process of au-
tonomic control systems in various domains. The pro-
posed contribution is relevant to both autonomic systems
in general - as it helps design multi-goal, distributed and
adaptive autonomic managers; and to IoT systems - as it
shows how autonomic controllers built in this way can

control system resources to ensure required properties
and functions.

Section 2 describes the sample smart micro-grid ap-
plication, with its requirements and design challenges.
Sections 3 and 4 introduce the conceptual and design as-
pects of the proposed architecture, respectively, illustrat-
ing them via concrete examples from the smart micro-
grid. Section 5 illustrates the complete design of the
prototype application. Section 6 discusses related work
and section 7 concludes the paper and indicates future
research.

2 Smart Houses meet Smart Micro-Grid

2.1 Overall system
In a near-future, it can be envisaged that smart homes
integrate with smart grids to form large-scale, highly-
distributed, dynamic and open IoT systems. This paper
considers this type of system as a relevant use case for
the problem addressed. For the sake of clarity and ex-
pressiveness, the system model is often kept simple, ne-
glecting important aspects such as business models, legal
regulations or fine-grain grid behaviour.

Smart homes are seen here as cyber-physical systems
that integrate and control electrical devices in order to
provide automated services, such as context-aware heat-
ing, entertainment, lighting and security. Individual de-
vices termed “smart” embed their own control logic to
offer some service. For instance, a thermostat can turn
itself up when detecting the home owner’s presence.

A micro-grid is a local, low-tension electrical network.
For simplicity, this paper considers a residential district
organised as a tree, rooted at the district aggregator; the
leaves are the end-user appliances - producers (e.g. solar
panels), consumers (e.g. electrical heaters) or both (e.g.
batteries). The generic term prosumer designates such
endpoints; the associated term prosumption means either
production or consumption. A residential tree is part of
a city grid that is in turn part of the national grid (not
considered here). A house grid is a sub-tree of the district
grid. Its prosumption is measured by a house meter and
equal to the sum of prosumptions of all appliances in the
house. Likewise, the district’s prosumption is the sum of
all household prosumptions.

The load of a grid is defined as the ratio between pro-
ductions and consumptions. It is said to be high when
consumptions overshoot productions, hence requiring
consumption from the parent grid; low load denotes the
opposite. In this paper, load management consists in ad-
justing local productions and consumptions to minimise
the footprint on the parent grid. For simplicity, the paper
will globally refer to the “smart micro-grid” including
implicitly the integrated smart houses.

2

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 203

2.2 Autonomic control requirements

Let us now define the perimeter of the smart grid’s au-
tonomic controller and identify its most important re-
quirements. First, the controller must pursue several
goals, specified by different authorities. The electricity
provider imposes load management goals for the grid.
In the presented scenarios, these goals take the form of a
Goal Power (GP) interval - [GPlow,GPhigh] - within which
the prosumption of a sub-grid should be maintained. The
exact values will depend on business objectives at differ-
ent grid scales and on the context. Home owners de-
fine different types of goals for their households. These
may be related to comfort - like maintaining a tempera-
ture (heaters) or a lighting ambiance (lamps), or simply
performing activities like washing (washing machine) or
cooking (oven). They may also be related to cost - like
minimising the electricity bill or the environmental im-
pact. Note that such goals can be in conflict.

Hence, the autonomic controller must be able to ei-
ther favour one goal over all others - like prioritising en-
ergy savings over appliance usage or conversely pursuing
comfort at any cost; or target a compromise among all
goals - like only ensuring comfort partially if the grid is
highly loaded. Such preferences are specified by admin-
istrative authorities and may be context dependent (e.g.
user presence or weather). Finally, some preferences can
be overridden implicitly as users handle appliances di-
rectly (e.g. turning-up a heater or cooking).

The autonomic controller must pursue its goals by per-
forming actions on manageable resources, including grid
resources (not discussed here) and electric appliances.
The presented use case focuses on two sample appliances
with specific profiles. First, heaters transform electric en-
ergy into heat; their power can be monitored and set via
specific touchpoints. Second, lamps transform electric
energy into light; their light intensity can be adjusted via
specific touchpoints that measure and set their consump-
tion. While lamps do not usually constitute significant
consumers, they are used here to model diverse equip-
ments with similar profiles, such as microwave ovens or
vacuum cleaners. Finally, privacy concerns impose that
house appliances cannot be controlled from outside the
house within which they reside.

In addition to meeting the goals, the autonomic con-
troller must scale to large numbers of highly-distributed
resources (e.g. appliances). Also, the controller must
adapt to changes in goal specifications (e.g. power inter-
vals), priorities (e.g. comfort vs. savings) and execution
context (e.g. weather). Finally, it must handle “smart” or
standard appliances being plugged-in or out.

3 Conceptual Model

3.1 Goal types and specifications

Goals represent the very purpose of autonomic sys-
tems. Generally, they define a system’s viability zone,
within which its state must be included at any one time
[15][1][2]. A system’s state is defined via a set of vari-
ables whose values can predict its behaviour in the near
future [24] (e.g. a heater’s power setting predicts the
amount of heat it will produce). A system’s state can also
represent its end goal (e.g. a targeted temperature). Goal
definitions are intimately related to the way in which they
can be evaluated - typically via observations on system
state variables. Goals may be declarative or procedural
[17]. Declarative goals indicate what should be achieved
rather than how. They are usually defined as constraints
on system variables, delimiting the viability zone, and
can be evaluated automatically via a utility function over
the system state. Procedural goals indicate (via high-
level policies) how the system should behave in various
situations. This paper focuses on declarative goals, con-
sidering that procedural goals can be induced from these.

A goal definition can include three types of elements -
G (V, S, T), where V defines the viability zone, S the
resources to which it applies, and T the periods over
which it applies. The viability constraints (V) are com-
pulsory and typically accompanied by a utility function
for evaluation purposes. In the smart home example, a
goal can define a viability interval for the power con-
sumption. The Scope element (S) separates the viability
definition from the resource domain to which it is applied
(and evaluated). It is defined via domain constraints that
identify, in a declarative way, the system resources tar-
geted at any one time. In cyber-physical systems, such
as IoT, Scopes can represent physical areas in Euclidian
space; resources located in that area belong to the Scope.
For instance, a goal defining a temperature interval can
be applied to the scope of a house or only of one room.
It will be evaluated using thermometers located across
the house or within that room, respectively. In systems
where physical space is less relevant Scopes can define
other types of resource sets - e.g. a network domain in
a computer cluster. Scopes are particularly relevant to
open systems, where resources can change dynamically
and unpredictably. For example, a power interval can
be defined for a house, without explicitly identifying all
its appliances. Finally, the Time element (T) separates
a goal’s viability constraints and scope from the periods
over which they take effect. For simplicity, this element
is no further developed in the paper; goals implicitly start
when received and end when cancelled or overwritten.

3

204 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

3.2 Goal achievement and evaluation

The only means for an autonomic system to attain its
goal(s) is via actions it can perform on manageable re-
sources [Fig. 1]. Namely, an autonomic controller
should act so as to influence the variables of resources
within the goal’s scope (SG) to maintain them within the
goal’s viability zone (V) - e.g. to pursue a temperature
goal in a home, a controller acts on the heaters avail-
able in that home. It can be noted here that the set of
resources on which the controller acts - action resources
- is not necessarily equal to the set of resources in the
goal’s scope - goal resources. The only constraints are
that the controller should be able to monitor goal re-
sources for evaluating its goal; and that the action re-
sources should have a controllable influence on the state
of goal resources. Considering a temperature goal in one
room: the room’s atmosphere is the goal resource, since
its temperature is monitred and evaluated; heaters in the
room and in neighbouring rooms are action resources,
since the controller acts upon them to influence the room
temperature. A controller’s action resources for pursu-
ing a goal constitute its Action Scope (SA). The set of
resources whose state they influence is referred to as In-
fluence Scope (SI). Finally, the controller may monitor
resources it cannot control - context resources from a
Context Scope - e.g. outdoor thermometers. In sum-
mary, a controller pursuing a goal G(V,SG) will act on
resources in an action scope SA to influence resources in
a scope SI , where SI includes the resources in SG that are
monitored to evaluate the goal [Fig. 1].

This approach clearly separates a goal’s definition
from the controller’s means to pursue it. This is vital for
adapting a controller’s strategy to changes in its goals,
environment and internal resources. It can also intervene
in tackling multi-goal conflicts, as discussed later. This
conceptual setting allows formulating the problem that
an autonomic controller must solve - i.e. how to attain its
goal(s). It consists in finding a strategy, or mapping func-
tion, which can transform goals into concrete actions;
the solution will be sensitive to the external context and
internal system state. This view generalises the notion
of goal to represent a higher-level declarative action (in-
tentional) that must be translated into concrete actions
(A), executed via resource effectors (imperative) [15].

3.3 Goal translation and division

This subsection identifies the main factors behind the dif-
ficulty of mapping goals into concrete actions and in-
dicates the structural and behavioural concepts that can
help analyse and address them. One factor stems from
an increasing “distance” - or difference in the abstraction
levels - between the goal’s viability specification (V) and

Figure 1: Goal projection and evaluation.

the concrete actions (A). E.g., in the smart house, a con-
troller must map a “comfort” goal into concrete power
configurations on heaters. A second factor represents a
typical control problem, involving complicated decision-
making capabilities that rely on partial knowledge, react
to fluctuating inputs, avoid oscillations and optimise re-
sults. A third factor intervenes as controllers must adapt
to change - e.g. integrate plug-and-play resources and
change strategies to achieve evolving goals in a variable
environment. The fourth factor stems from the scale of
goal scopes (SG). A large-scale SG often implies a com-
parably large-scale SA which is difficult to control, espe-
cially in an open context. This difficulty increases when
plug-and-play resources are heterogeneous and belong to
different legal authorities.

“Classic” Software Engineering (SE) techniques can
be applied to help address these factors. Layering can
structure controllers along three distinctive axes. First,
abstraction layers can progressively translate goals into
concrete actions (abstraction factor). Each layer maps
higher-level goals (or actions) from the layer above into
lower-level goals (or actions) for the layer below [Fig.
1]; this results in a translation hierarchy. E.g., a “com-
fort” goal is translated into an intermediary “tempera-
ture” goal and then into a concrete “power” configura-
tion. This controller has two abstract layers: the highest
layer pursues the “comfort” goal (declarative); it acts by
setting a “temperature” goal (declarative) on the lower
layer, which acts by setting a “power” goal (imperative)
on a heater. Goal evaluation follows the inverse transla-
tion path - monitored data from SG resources (e.g. tem-
perature) is translated into concepts of the administrative
domain (e.g. comfort). Abstract layers are said to imple-
ment base-level functions, meaning to pursue goals by
acting on resources. Second, control layers can be in-
troduced to add meta-control abilities to such base-level
functions, hence enabling controllers to self-adapt (adap-
tation factor). E.g., when a smart house’s goal changes
from “comfort” to “saving” mode, a meta-control layer
can adapt the behaviour of control elements in the base
layer, as necessary to pursue the new goal. Third, inte-
gration layers can be added to form a control hierarchy
that helps integrate decentralised control elements (be-

4

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 205

longing to either abstract or control layers, as discussed
below). As integration and abstract layers are often su-
perposed in real system designs the terms are at times
interchanged in the paper.

Encapsulation and modularisation techniques can
complement layering to address a controller’s complex-
ity and adaptability concerns (decision-making and adap-
tation factors). They enable the separation of concerns
in the controller’s logic, facilitating the reuse and inte-
gration of simpler control elements (CEs) into compli-
cated controllers. This is the equivalent of splitting the
controller’s mapping function into complementary parts.
Adaptation can be achieved by replacing or reintegrating
these parts. Domain-specific algorithms are necessary
for implementing CEs and are outside the paper’s fo-
cus. This technique can also be applied to split the goal’s
scope (scalability factor). Here, a goal (G) is split into
complementary goals (Gi) that define the same type of
viability constraints (V) over smaller scopes (SGi). Each
Gi is assigned to a different control element CEi. E.g., a
comfort goal for a house is split into comfort goals for in-
dividual smart devices; or, the power goal over a district
grid is split into power goals for different houses - here,
the goal value for the district power constraint is also split
into smaller values for each house grid. This approach
can also address the multi-authority issue. E.g., district
controllers (owned by a provider) split their goals among
house controllers (owned by private parties). It also in-
tervenes in goal translation to address resource hetero-
geneity. E.g., comfort is converted into temperature for
thermostats, and into light intensity for lamps. Loose-
coupling and dynamic binding enable runtime integra-
tion of CEs into adaptable controllers.

From a behavioural perspective, most CEs in the
aforementioned structures act only in response to incom-
ing data, like monitoring, analysis or action, from re-
sources, other CEs or administrators. In an integrated
system, CEs trigger each others’ executions thus gener-
ating a control flow through the system [Fig. 2]. The con-
trol flow can pass through CEs within a single layer, like
the MAPE elements of a control loop; as well as across
layers, like a base-control loop triggering a meta-control
loop or an integrator. This is an important concept and
plays a key role in identifying and resolving conflicts.
When a controller pursues a goal, we say that its control
flow serves the goal or carries the ensued action(s).

3.4 Multi-goals, conflicts and resolution

Most autonomic systems will have to follow multiple
goals, given by one or several authorities. In some cases,
multiple authorities issue goals with the same type of vi-
ability constraints (e.g. range of power values) but with
different constraint values (e.g. [1 kW, 2 kW] and [1.5

kW, 3 kW]). In another case, a single authority issues
goals with different constraint types (e.g. comfort and
power savings). The two cases can be combined.

Each goal can be addressed individually as discussed
before. The solutions can then be combined to obtain
multi-goal systems. The main additional problem in-
tervenes when the system’s goals are in conflict. This
concept must be defined before addressing the problem.
At the lowest system level, a conflict occurs when con-
crete actions attempt to change a resource’s variables to
incompatible values - e.g. one action turns a heater’s
power up and another one down. In most cases, con-
flict causes can be traced through the system to vari-
ous sources. Source causes can stem from conflicting
goals, conflicting controller strategies, or both of the
above. Goals are conflicting when they define contra-
dictory viability constraints over overlapping goal scopes
(e.g. different power intervals over the same house grid).
Control strategies are conflicting when they carry con-
tradictory actions through overlapping influence scopes
(SI) (e.g. openning a window during a cold evening to
pursue an air-freshness goal influences the room tem-
perature, causing heaters to power-up and hence jeop-
ertise a power-saving goal). Hence, conflicts may oc-
cur when goals can cause contradictory actions on over-
lapping SIs, the intersection area being referred to as
Conflict Zone [Fig. 2]. Concretely, conflicts do occur
when control flows that service contradictory goals (or
carry contradictory actions) pass through a conflict zone
(within a certain period, which is not discussed here).
To avoid such behaviour, conflict zones must be identi-
fied and special-purpose mechanisms placed in the CEs
within those zones. These include conflict-resolution de-
sign patterns [10] or agent-like CEs that can compromise
among goals (subsection 5.1). Several of these can be
placed along conflicting control flows to improve the ro-
bustness of the resolution process [Fig. 2].

Figure 2: Conflicts and resolution.

5

206 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

4 Generic Architecture

4.1 Architecture Overview

We can rely on the abstract concepts discussed to define a
generic architecture for designing autonomic control sys-
tems. To remain generic, the proposed architecture is a
logical one, relying on and refining the Autonomic Com-
puting Blueprint [15]. Here, an autonomic system con-
sists of: managed resources, which can be acted upon
and monitored; and an autonomic controller, which re-
ceives and pursues goals. We will show how controllers
can be designed based on the layering, modularisation
and loose-coupling techniques. The controller’s abstract
architecture will be customised and instantiated case-by-
case resulting in application-specific designs. This pro-
cess is highlighted in subsection 4.5 - ‘methodology’.

Typically, an autonomic controller is divided into
application-specific abstract layers, to bridge the con-
ceptual gap between administrative goals and managed
resource parameters. Each abstract layer can be enriched
with one or several control layers, depending on the
adaptability and goal-management needs of its control
function (discussed below). Modularisation is intro-
duced by splitting layers (abstract or control) into control
elements (CEs) of various types (discussed below).

Loose-coupling enables the flexible integration of
control elements (CEs) both within and across layers. In-
tegration can be performed statically or dynamically, to
initially develop and then adapt the controller. Hence,
integration layers can be added to coordinate the dis-
parate actions of CEs within abstract or control layers.
Integration layers can also be modularised via CEs. To
complicate things, integration and control layers can be
further split into abstract layers and/or augumented with
additional control layers.

In a generalised view, abstract, control and integra-
tion layers are conceptually orthogonal. In principle, any
layer type can be divided recursively or added on top of
layers of any other type. All layers are composed of CEs
that can be added, updated or removed during runtime. In
reality, particular combinations of layers and CEs types
will most likely emerge in various application domains.

4.2 Types of layers and control elements

More concretely, CEs can represent: i) control tasks
- control-related functions (e.g. monitoring, decision,
execution, knowledge management, other atomic func-
tions or combinations of these, as shown in [23]); ii)
integration tasks - integration-specific functions (e.g.
application-specific conflict resolution, as detailed in
[10]); and iii) control composites - flexible compositions
of control tasks and (optionally) integration tasks, for

providing more advanced control structures and func-
tions (e.g. single or integrated feedback loops). Control
composites can or not be encapsulated. When encapsu-
lated, they allow building fractal-like structures, which
appear from the outside as a single well-integrated CE
[Fig. 3], hence identical to a control task.

For instance, a base abstract layer that controls a heater
to reach a temperature may consist of four control tasks:
monitoring the temperature, analysing it with respect to
a target, planning a power ajustement and executing it on
the heater. If alternative planning tasks are available, an
integration task can be added to select the best plan to
use in each context. The integrated tasks form a com-
plete control loop that can represent a control composite
(encapsulated or not). This composite can be integrated
with similar composites controlling other heaters and co-
ordinated via an additional integration task.

From a behavioural perspective, CEs may be:

• reactive - acting in response to external stimuli; re-
actions can be stateless or using internal knowledge;

• self-adaptive - able to modify its reactions in re-
sponse to changes;

• agent1-like - managing and negotiating goals given
by other entities; only accepted goals are pursued.

To achieve such behaviours, the proposed architec-
ture defines three types of control layers. Each CE
may include one or several of these layers, in order to
display a more-or-less sophisticated type of behaviour.
First, a base control layer monitors and acts on man-
aged resources following a pre-selected control strategy;
it enables reactive behaviour. Second, a meta-control
or adaptation layer ensures the base layer’s adaptation
to change, by altering or fine-tuning its control strategy
[2][19]; it enables self-adaptive behaviours. Finally, the
goal management layer receives requests for pursuing
goals and decides whether or not to accept them; it en-
ables agent-like behaviours, which are critical for con-
flict resolution. An agent’s decision may be binary or
more nuanced, based on the new goal’s requester author-
ity and conflicts with already accepted goals.

As indicated above, abstract layers for goal trans-
lation are application-specific - hence, no generic types
were identified. Concerning integration solutions, sev-
eral applicable designs were identified in [10] in the form
of integration design patterns (e.g. hierarchy, controller,
stigmergy or cooperation). While abstract, control and
integration layers can be separated conceptually, in real-
ity they can often be implemented within the same appli-
cation layers of CEs (exemplified in section 5).

6

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 207

4.3 Requirements for integration

Integrating CEs must rely on standardised interfaces and
protocols. While the details of these are domain-specific,
their general semantics and purpose can be identified.
This view is compliant with the Autonomic Computing
Blueprint [15], but extended from control loops to all
CEs [Fig. 3]. Hence, from an external view, CEs are
quite similar. They require monitoring and action inter-
faces for accessing managed resources, including CEs in
lower layers. They also provide monitoring and action
interfaces for giving access to administrators and CEs in
higher layers. These interfaces are the main enablers for
CE layering and integration. Their semantics will differ
depending on the CE type and conceptual layer - e.g.,
monitoring and execution touchpoints for control tasks
in a base-control layer; and, goal specification and evalu-
ation touchpoints for control loops in an adaptation layer.
Their implementations will also differ - e.g., reactive CEs
simply execute incoming actions, while agent-like CEs
may execute, negotiate, or ignore them.

CEs may also provide and require functional interfaces
for exchanges with other CEs [Fig. 3]. As before, these
exchanges are application-specific, but their general pur-
pose will depend on the CE’s function - e.g. in the base-
control layer, they can enable the integration of control
tasks into feedback loops; in the self-adaptive layer, they
can provide access to search and discovery services; for
agent-like CEs, they can intervene in agent negotiation
and self-organisation. Depending on its use, a CE may
or may not provide all of these interfaces.

Figure 3: Control Element interfaces.

4.4 Integration and adaptation

Integrating CEs into multi-goal, distributed and adapt-
able autonomic controllers requires handling problems
of communication, coordination and control. The pro-
posed architecture identifies several integration-specific
CEs to help with such issues. Essential elements include
distributed communication infrastructures, discovery and
repository services. Many such artefacts are available
from related research domains and so not treated here.
Conversely, coordination and control are key concerns
that are especially challenging when CEs and resources
must be integrated dynamically.

Two complementary techniques can be adopted to
address these key issues. The first one relies on facilities

for runtime evaluation, reporting and autonomic adapta-
tion. These allow an autonomic controller to evaluate
itself and adjust its internal composition accordingly, so
as to remain within the viability zone. Support for this
aspect was included in the conceptual model and will be
further developed in future work. The second technique
(developed here) relies on imposing architectural tem-
plates or organisations - a term borrowed from the agent
community [14][26][29]. An organisation defines an in-
variant system core, or template, which can be “filled-in”
dynamically with concrete resources depending on their
availability and state. Imposing an organisation can en-
sure, to a certain extent, structural and behavioural prop-
erties for the resulting adaptive system [9].

An organisation consists of several roles that inter-
act in a well-defined way. A role is defined as a set of
well-specified capabilities - e.g., a “prosumer” role in a
smart grid organisation. The role can be assigned (stati-
cally or dynamically) to any concrete resource that pro-
vides those capabilities - e.g., a heater takes the prosumer
role. Based on the proposed architecture, autonomic con-
trollers are designed as one or several organisations com-
posed. Each organisation is defined based on the generic
artefacts in the architecture, including layers and CEs.
The smart micro-grid exemplified below shows how or-
ganisations designed in this way facilitate system devel-
opment and adaptation. A catalogue of reusable organi-
sations can be progressively developed. A core set was
presented in [10] as integration design patterns. These
include centralised orchestrators, decentralised coordina-
tion via functions embedded in CEs, hierarchical multi-
layer organisations, aggregators and filter interceptors for
integrated control flows.

4.5 Development methodology
We propose a certain sequence of indicative steps for de-
veloping autonomic control systems based on the generic
architecture proposed:

1. specify system goals, defining their viability con-
straints and scopes - Gi(Vi,SGi); the authorities in-
volved are also identified here.

2. identify the managed resources and the concrete ac-
tions that can be executed on them to influence the
state of resources in S; these will make-up the con-
troller’s Action Scope (SAi).

3. identify ‘relevant’ resources that fall into the Influ-
ence Scope (SIi) of this Action Scope (SAi).

4. identify the context resources that can be monitored
and influence control decisions; these will form the
controller’s Context Scope (SCi).

7

208 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

5. for each goal, define the main abstract layers and
their control elements (CEs) required goal transla-
tion and splitting.

6. define an initial integration infrastructure, based
on one or several organisations, ideally predefined
in a catalogue. Essential services like communica-
tion and dynamic discovery must also be addressed
here.

7. identify conflict zones (at each layer) based on the
intersection of influence scopes (SIi) serving incom-
patible goals.

8. modify or extend the initial organisations with
conflict-resolution facilities. One option (devel-
oped in the experiments below) is to add goal-
management control layers to CEs located in the
conflict zones; these CEs become ‘agents’. Another
option is to introduce special-purpose CEs imple-
menting more complicated conflict-resolution de-
sign patterns (as shown in [10]).

9. enhance CEs (as needed) with self-adapting capa-
bilities, by adding adaptation-control layers to
them.

10. further refine any of the existing layers in any of
the CEs (as needed) to enable more complex be-
haviours - e.g. add an adaptation layer to a CE’s
goal-management layer to change its policies dur-
ing runtime; or, further split an adaptation layer into
abstract layers to deal with its complexity.

The first four steps allow defining the controller’s over-
all perimeter - its external inputs (goals and monitoring
information) and outputs (actions and state reporting).
This paper only focuses on goals and actions; future
work will include evaluation and reporting. The fourth
step starts defining the controller’s internal design, based
on successive layers and CEs. Steps five to seven set
in place the integration infrastructure including conflict-
resolution support. The last two steps refine the design
with self-adaptation capabilities at all layers. If needed,
they can further complexify each layer by splitting or en-
hancing them with otrthogonal layers. The smart micro-
grid application exemplifies this procedure next.

5 Illustration via a smart micro-grid

5.1 Design and implementation
Like most SE contributions, evaluating the generic ar-
chitecture proposed cannot rely on formal proofs and
would require too vast experimental resources to rely on
a meaningful empirical approach - e.g. [16]. Hence, for

now, it can only be validated through rigorous argumen-
tation and relevant exemplification, which is the aim of
this section. We show how a smart micro-grid prototype
was designed following the methology depicted above.
Please note that many of the conceptual layers identified
are superposed in the concrete controller design.

We first identify the authorities involved and the
types of goals they could specify (step 1). The au-
thorities are electricity providers and home owners.
Electricity providers define power goals over their
district grids - Gpower([Pd low,Pd high],districtid).
Home owners define mode goals within their
houses, to prioritise either “comfort” or “sav-
ing” modes - e.g., Gmode(

′′com f ort ′′,houseid)
and Gmode(

′′saving′′,houseid). Mode goals can
also be set on individual devices directly - e.g.
Gmode(

′′saving′′,deviceid). Home owners can also
specify power goals; for simplicity we only allow this
for devices - Gpower([Ph low,Ph high],deviceid). Figure
4 shows how these goals are defined (in simplified
notation) for one district and two houses.

Let us now identify the SA and SI for each one of
these goals (steps 2-3). For simplicty we ignore context
scopes. The district’s power goal - Gpower district in Fig-
ure 4 - has an SA that comprises all electric devices in
the district. Yet, for legal reasons, it can only act di-
rectly at the house level; then each house acts on its own
devices (as discussed later). For a house’s mode goal
- e.g. Gcom f ort house1 - the SA covers all devices in the
house. Each device’s goal (power or mode) has an SA
that includes that device. Finally, all influence scopes SI
include all electric devices since these are all connected
to the same district grid. In addition, the SIs of mode
goals include the atmosphere of targeted rooms and of
neighbouring rooms.

For each goal, we now define the abstract layers and
the corresponding goal-translation process (step 5). The
controller pursuing the district power goal Gpower district
has three abstract layers: district, house and device. Each
layer is composed of one or several CEs: CEdistrict in the
district layer; CEhouse1 and CEhouse2 in the house layer;
and CEheater1, CEheater2 and CElamp in the device layer
[Fig. 4]. The CE in the district layer translates the
district’s power goal (declarative) into individual com-
mands (procedural) for CEs in the house layer; and then
into commands for CEs in the device layer. Commands
are further discussed when defining the exact integration
organisations. Device controllers pursuing mode goals
comprise two abstract layers. Hence, each CE in the de-
vice layer is further split into these two abstract layers
[Fig. 6]. For a heater, these translate mode goals into
temperature intervals (predefined) and then into concrete
power values (via a PID controller). For a lamp, mode
goals are translated to light intensity then to power val-

8

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 209

ues.
Considering the architectural layout so far we decide

to adopt a hierarchical organisation for integrating
CEs within district, house and device layers (step 6).
For the power goal, this organisation includes two roles:
power managers that pursue power goals by orchestrat-
ing prosumers. In [Fig. 5] CEdistrict plays a power
manager role; device CEs prosumer roles; and CEhouse1
both roles - prosumer (for CEdistrict) and manager (for
CEheater1, CEheater2 and CElamp).

We now define the power-related commands that are
exchanged among roles in the organisation. When a
manager detects that measures approach the power in-
terval’s high limit it sends a reduce load order to its pro-
sumers; for the lower limit it sends a rise load order;
when well in-between the limits it sends an any load
order to cancel the previous ones. To avoid oscilla-
tions, these orders are sent progressively, in random or-
der, and the effects observed before new orders are sent.
For mode goals, “comfort” or “saving” goals are simply
transmitted from house CEs to device CEs.

Figure 4: Goals and scopes in the smart micro-grid.

Figure 5: Integration organisations in the micro-grid.

To obtain a controller that pursues all presented goals
simultaneously, the corresponding organisations are su-
perposed onto one hierarchy. Here, CEs at each level

combine the architectural layers of all previous organi-
sations. Let’s see some of the conflicts that can occur
(step 7). One conflict is caused by district power goals
and house mode goals intersecting over the house scope
- the conflict zone includes all CEs and resources in the
home, as they belong to the SA of both goals. Since SIs
of all houses also intersect, house power goals are also
conflicting. Yet, this conflict is equivalent to the previ-
ous one since house consumptions will be reflected in
the district’s power evaluation. Another conflict can oc-
cur between mode goals set for the entire house and di-
rectly on each device; here, the conflict zone includes the
concerned device.

Both conflicts are resolved by adding goal manage-
ment layers to CEs in the conflict zones [Fig. 6] (step
8). This control layer receives conflicting goals as inputs
and provides a coherent goal as output for the control
layer below - e.g. a power interval for power managers
in house CEs; and, a temperature interval for PIDs in
heater CEs. Goal managers give priority to mode goals.
If in “comfort” mode, it ignores orders from power man-
agers above; if “saving”, it modifies the interval for the
manager below depending on the orders received ([Fig.
7] and [Fig. 8]). In addition, goal managers of devices
prioritise goals that are set on the device directly over
those that are derived from the house mode goal.

Finally, the prototype does not include self-adaptation
functions or further refinements (steps 9 and 10). From
a design perspective, an adaptation-control layer could
be added for instance to power management CEs, so as
to discover and integrate new prosumers. Also, an adap-
tation layer could be added to the heater’s PID abstract
layer for reconfiguration purposes.

5.2 Scenarios, results and discussion

The scenarios depict the smart micro-grid when the out-
side temperature is dropping, heaters increase consump-
tion thus rising the district load [11]. They focus on the
behaviour of two district houses - h1 and h2. H1 is set
to a “comfort” mode - most heaters ignore load-related
orders and sustain a 23◦C temperature; only a few that
were directly set in “saving” mode respond. Hence, h1’s
power target is crossed [Fig. 8-a]. This conforms to the
user’s “comfort” goal and will impact the bill. The dis-
trict manager detects a consumption increase and starts
sending reduce load orders to house prosumers. Since in
“comfort” mode, h1’s CE ignores them. H2 is initially
set to “saving” and reacts by lowering its power inter-
val [Fig. 8-b]; it then sends reduce load orders to device
prosumers to fit the new range. Heaters react by low-
ering their temperatures to 20◦C which therefore lowers
their consumptions and helps the district manager. To
illustrate a dynamic goal change, let’s assume that h2’s

9

210 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

Figure 6: Design detail for the house control.

owners switch its mode to “comfort”, to accommodate an
unexpected guest. H2 self-adapts - its prosumers ignore
orders and consume more [Fig. 8-b].

The scenarios were run on a smart grid simulator
that models physical entities, like houses, rooms, grid,
heaters, lamps or solar panels; with related behaviours
and attributes such as heat transfer, temperature and pro-
sumption (in simulation time [s]). It is based on a
service-oriented component technology - iPOJO/OSGi -
and Akka middleware. These enable devices and CEs to
be deployed, reconfigured and removed at run-time. A
miniature house model was also built to ensure realistic
behaviour. For limited space reasons, the presented re-
sults (based on the simulation) were selected for illustra-
tive purposes; a web version of the simulation is available
online for further explorations2.

6 Related Work

This paper’s contribution intersects several interrelated
works, from various domains, from which we can only
cite a few here. Separating goals from the means of
achieving them has been proposed in autonomic com-
puting [17], system engineering [21] and software agents
[26]. In [17], management objectives can be defined as
procedural policies, declarative goals or utility functions.
In [21], “posed problems” are separated from the “re-
sources” that can solve them, hence delaying resource
selection until runtime. In the AI domain, “intelligent”

Figure 7: Management of a flexible heater.

Figure 8: Power management in h1 (a) and h2 (b).

agents modify the environment to achieve declarative
goals [26]. They can adapt internal strategies when faced
with unpredictable situations. In cybernetics, Ashby pro-
posed an “ultra-stable” architecture that relies on two su-
perposed control loops for adapting the system and its
control strategy [2].

The generic architecture presented is consistent with

10

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 211

these approaches - it generalises goal definitions to in-
clude scope and time (also identified in [18]), separates
goals from control logic and introduces meta-control lay-
ers to self-adapt this logic and negotiate goals. Simi-
lar layered architectures have been proposed in various
domains, including Brook’s subsumption architecture in
robotics [6] or Kramer and Magee’s architecture [19] for
autonomic systems. We drew inspiration from these pro-
posals and identified the different natures of concerns
that lead to system layering. The model thus proposes
abstract, control and integration layers, which address
orthogonal concerns and can be combined in recursive
ways. The organisation paradigm is common in the
Multi-Agent Systems domain [14][29] and was adopted
in the model to enable internal adaptation and integration
of plug and play resources while conserving important
invariants. We are exploring this idea further in a parallel
project [9]. In [10] we have presented an initial catalogue
of organisations focused on conflict resolution. Splitting
controllers into CEs of various types - such as control
tasks and feedback loops - relies on previous projects
[23]. The feedback loop appears as a first-class entity
in all autonomic systems [7][15].

The generic architecture presented is complementary
with many contributions that address particular issues of
autonomic computing and IoT. These include numerous
application-specific solutions that propose ad-hoc ways
of constructing or integrating control-loops - e.g. mono-
lithic control in DigiHome [25]; hierarchical managers in
fANFARE [22], AutoHome [5], or using a single coor-
dination manager [12]; or agent-oriented managers [16].
These fit the generic architecture, representing particular
instantiations. Another category of complementary con-
tributions focus on specific communication protocols and
integration middleware for heterogeneous plug-and-play
devices, like DigiHome [25] or RoSe [22] home automa-
tion platforms. Finally, [8] presents a generic integra-
tion model focused on categorising control loops based
on their reciprocal interference (via shared knowledge)
and proposing coordination and synchronisation proto-
cols to integrate them.

Self-management requirements for the smart micro-
grid have been identified in several works [3][4][13][27].
Notably, [3] proposes a distributed load management al-
gorithm, where “colour” statuses solve management con-
flicts between load balancers and appliances. These fit
the arhitectural model and can be adopted to implement
corresponding CE layers. The smart grid domain was
targeted here as a rich use case for illustrating the archi-
tecture and highlighting its main contributions.

7 Conclusions and Future Work

This paper proposed a generic architecture and method-
ology to help analyse and design multi-goal, multi-scale,
adaptive autonomic control systems operating in dis-
tributed open environments, such as the IoT. It relies on
the assumption that autonomic systems of this kind will
be built by integrating control elements (CEs) of diverse
types. Taking a SE-oriented approach, it aims to identify
the reusable artefacts that can help instantiate this type of
solution.

The contribution includes a conceptual model; a
generic architecture adopting these concepts; and a de-
velopment methology indicating how control applica-
tions can be designed guided by these concepts and ar-
chitecture. The conceptual model considers goals as key
elements that should be separated from the control logic
necessary to pursue them. It provides a goal definition
that can be translated, split and propagated across vari-
ous CE types in the system, down to concrete actions on
resources. The main difficulty factors are identified - in-
cluding conceptual abstraction gaps, logistical complex-
ity, adaptability and scalability issues - and suitable SE
techniques identified for addressing them - including or-
thogonal types of layering and flexible modular architec-
tures. The conceptual model also identifies conflicts as
stand-alone elements that must be clearly defined, iden-
tified and addressed. The generic architecture relies on
this conceptual base to define more concrete artefacts for
system design. It includes several types of CEs - con-
trol tasks, integration tasks and control composites - fea-
turing different behaviours and hence requiring different
facilities - base, adaptive and agent-like functions. To in-
tegrate artefacts into flexible systems while ensuring core
properties the model adopts an organisation-oriented ap-
proach inspired from the multi-agents. It indicates how
this can be extended with reusable artefacts specific to
conflict-resolution to handle multi-goal scenarios.

To illustrate its applicability and benefits the paper
showed how a sample smart micro-grid was designed
and implemented based on the generic architecture and
methodology. Several runtime scenarios were selected
to show how to define goals in business-specific terms,
translate and split them among several abstraction lev-
els, deal with multiple authorities and heterogeneous re-
sources, handle multi-goal conflicts, adapt to dynamic
context changes and goal reconfigurations, and integrate
new resources. The paper did not address issues related
to security concerns and the possible incompatibility of
integrated CEs. System robustness and scalability were
considered in the general architecture model but not yet
tested or shown here.

Future work will concentrate on analysing autonomic
systems in other domains to further test the architecture’s

11

212 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

applicability and extend it if necessary. This will include
time-related concerns, which are critical to decision-
making, decentralised coordination and system stability.
The authors intent is to bring forward the understanding
of autonomic systems operating in the IoT context and
the associated support for developing them.

References
[1] ALLERDING, F., BECKER, B., AND SCHMECK, H. Decen-

tralised energy management for smart homes. In Organic Com-
puting A Paradigm Shift for Complex Systems, C. Muller-
Schloer, H. Schmeck, and T. Ungerer, Eds., vol. 1 of Autonomic
Systems. Springer Basel, 2011, pp. 605–607.

[2] ASHBY, W. R. Design for a brain. New York :Wiley, 1954.

[3] BEAL, J., BERLINER, J., AND HUNTER, K. Fast precise dis-
tributed control for energy demand management. In Sixth IEEE
International Conference on Self-Adaptive and Self-Organizing
Systems, SASO 2012, Lyon, France (2012).

[4] BECKER, B., ALLERDING, F., REINER, U., KAHL, M.,
RICHTER, U., PATHMAPERUMA, D., SCHMECK, H., AND
LEIBFRIED, T. Decentralized energy-management to control
smart-home architectures. In ARCS (2010), vol. 5974 of Lecture
Notes in Computer Science, pp. 150–161.

[5] BOURCIER, J., DIACONESCU, A., LALANDA, P., AND MC-
CANN, J. A. Autohome: An autonomic management framework
for pervasive home applications. TAAS 6, 1 (2011), 8.

[6] BROOKS, R. A. Cambrian Intelligence: The Early History of the
New AI. MIT Press, 1999.

[7] BRUN, Y., MARZO SERUGENDO, G., GACEK, C., GIESE, H.,
KIENLE, H., LITOIU, M., MÜLLER, H., PEZZÈ, M., AND
SHAW, M. Software engineering for self-adaptive systems.
Springer-Verlag, Berlin, Heidelberg, 2009, ch. Engineering Self-
Adaptive Systems through Feedback Loops, pp. 48–70.

[8] DE OLIVEIRA JR., F. A., SHARROCK, R., AND LEDOUX, T.
Synchronization of multiple autonomic control loops: Applica-
tion to cloud computing. In COORDINATION (2012), M. Sirjani,
Ed., vol. 7274 of Lecture Notes in Computer Science, Springer,
pp. 29–43.

[9] DEBBABI, B., DIACONESCU, A., AND LALANDA, P. Control-
ling self-organising software applications with archetypes. In
Self-Adaptive and Self-Organizing Systems (SASO), 2012 IEEE
Sixth International Conference on (2012), pp. 69–78.

[10] FREY, S., DIACONESCU, A., AND DEMEURE, I. Architec-
tural integration patterns for autonomic management systems. 9th
IEEE International Conference and Workshops on the Engineer-
ing of Autonomic and Autonomous Systems (EASe) (2012).

[11] FREY, S., HUGUET, F., MIVIELLE, C., MENGA, D., DIA-
CONESCU, A., AND DEMEURE, I. Scenarios for an autonomic
micro smart grid. 1st International Conference on Smart Grids
and Green IT Systems (SmartGreens 2012) (2012).

[12] GUEYE, S. M.-K., RUTTEN, É., AND TCHANA, A. Discrete
control for the coordination of administration loops. In IEEE
Fifth International Conference on Utility and Cloud Computing,
UCC 2012, Chicago, IL, USA (2012), pp. 353–358.

[13] HERMANNS, H., AND WIECHMANN, H. Demand-response
management for dependable power grids. In Embedded Sys-
tems for Smart Appliances and Energy Management, C. Grimm,
P. Neumann, and S. Mahlknecht, Eds., vol. 3 of Embedded Sys-
tems. Springer New York, 2013, pp. 1–22.

[14] HORLING, B., AND LESSER, V. A survey of multi-agent or-
ganizational paradigms. Knowl. Eng. Rev. 19 (December 2004),
281–316.

[15] IBM. An Architectural Blueprint for Autonomic Computing.
2006.

[16] JENNINGS, N. R., AND BUSSMANN, S. Agent-based control
systems. IEEE Control Systems Magazine 23 (2003), 61–74.

[17] KEPHART, J. O., AND WALSH, W. E. An artificial intelli-
gence perspective on autonomic computing policies. In POLICY
(2004), IEEE Computer Society, pp. 3–12.

[18] KERNBACH, S., SCHMICKL, T., AND TIMMIS, J. Collective
Adaptive Systems: Challenges Beyond Evolvability, 2009.

[19] KRAMER, J., AND MAGEE, J. Self-managed systems: an ar-
chitectural challenge. In 2007 Future of Software Engineering
(Washington, DC, USA, 2007), FOSE ’07, IEEE Computer Soci-
ety, pp. 259–268.

[20] LALANDA, P., MCCANN, J., AND DIACONESCU, A. Autonomic
Computing: Principles, Design and Implementation. Undergrad-
uate Topics in Computer Science Series. Springer London, Lim-
ited, 2013.

[21] LANDAUER, C. Problem posing as a system engineering
paradigm. In ICSEng (2011), H. Selvaraj and D. Zydek, Eds.,
IEEE, pp. 346–351.

[22] MAUREL, Y., CHOLLET, S., LESTIDEAU, V., BARDIN, J., LA-
LANDA, P., AND BOTTARO, A. fanfare: Autonomic framework
for service-based pervasive environment. In IEEE SCC (2012),
L. E. Moser, M. Parashar, and P. C. K. Hung, Eds., IEEE, pp. 65–
72.

[23] MAUREL, Y., LALANDA, P., AND DIACONESCU, A. Towards
a service-oriented component model for autonomic management.
In IEEE SCC (2011), H.-A. Jacobsen, Y. Wang, and P. Hung,
Eds., IEEE, pp. 544–551.

[24] OGATA, K. Modern Control Engineering, 2nd ed. Prentice Hall
PTR, 1990.

[25] ROMERO, D., HERMOSILLO, G., TAHERKORDI, A., NZEKWA,
R., ROUVOY, R., AND ELIASSEN, F. The digihome service-
oriented platform. Software: Practice and Experience (2011).

[26] RUSSELL, S. J., AND NORVIG, P. Artificial Intelligence - A
Modern Approach (3. internat. ed.). Pearson Education, 2010.

[27] SCHMECK, H., AND KARG, L. E-energy - paving the way for
an internet of energy (auf dem weg zum internet der energie). it -
Information Technology 52, 2 (2010), 55–57.

[28] UCKELMANN, D., ISENBERG, M.-A., TEUCKE, M., HALFAR,
H., AND SCHOLZ-REITER, B. Autonomous control and the
internet of things: Increasing robustness, scalability and agility
in logistic networks. In Unique Radio Innovation for the 21st
Century, D. C. Ranasinghe, Q. Z. Sheng, and S. Zeadally, Eds.
Springer Berlin Heidelberg, 2011, pp. 163–181.

[29] WEYNS, D., HAESEVOETS, R., HELLEBOOGH, A., HOLVOET,
T., AND JOOSEN, W. The macodo middleware for context-driven
dynamic agent organizations. TAAS 5, 1 (2010).

Notes
1Software agent may be of these types [26], here we only use goal-

oriented agents that can manage goals.
2try the simulation online at http://perso.telecom-paristech.fr/ sfrey/

12

