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Abstract

Consolidation of multiple workloads, encapsulated in
virtual machines (VMs), can significantly improve ef-
ficiency in cloud infrastructures. But consolidation
also introduces contention in shared resources such as
the memory hierarchy, leading to degraded VM perfor-
mance. To avoid such degradation, the current practice
is to not pack VMs tightly and leave a large fraction of
server resource unused. This is wasteful. We present
a system that consolidates VMs such that performance
degradation is within a tunable bound while minimiz-
ing unused resources. The problem of selecting the most
suitable VM combinations is NP-Complete and our sys-
tem employs a practical method that performs provably
close to the optimal. In some scenarios resource effi-
ciency may trump performance and for this case our sys-
tem implements a technique that maximizes performance
while not leaving any resource unused. Experimental re-
sults show that the proposed system realizes over 30%
savings in energy costs and up to 52% reduction in per-
formance degradation compared to consolidation algo-
rithms that do not consider degradation.

1 Introduction

Average server utilization in many data centers is low,
estimated between 5% and 15% [10]. This is wasteful
because an idle server often consumes more than 50%
of its peak power [11], implying that servers at low uti-
lization consume significantly more energy than fewer
servers at high utilization. Additionally, low utilization
implies a greater number of servers being used, resulting
in wasted capital. One solution to prevent such wastage
is to consolidate applications on fewer servers.

Consolidation inevitably introduces resource con-
tention resulting in performance degradation. To mit-
igate this contention, data centers virtualize resources
and split them across applications consolidated on shared

hardware. However, virtualization does not prevent all
forms of contention and hence does not completely elim-
inate performance degradation. In particular, contention
in shared caches and memory bandwidth degrades per-
formance significantly, as measured for a variety of
workloads [3–5, 16, 17, 19, 21, 32, 35]. Execution times
increase by several tens of percent.

To reduce degradation, prior works have measured
the degradations for possible VM combinations and then
co-locate those VMs that lead to the least degrada-
tion [17,18,29]. But this approach does not respect a tar-
get performance bound. Performance is often paramount
for Internet services. Measurements on Amazon, Mi-
crosoft and Google services show that a fraction of a
second increase in latency can result in revenue losses
as high as 1% to 20% [13, 20, 26]. A knee-jerk reaction
then is to forgo all or part of the savings from consoli-
dation. In Google data centers for instance, consolidated
workloads use only 50% of the processor cores [21]. Ev-
ery other processor core is left unused simply to ensure
that performance does not degrade.

We wish to preserve the performance of consolidated
VMs, but not waste excessive resources in doing so. The
challenges are to (1) determine how much each VM will
degrade when placed with different sets of VMs to be
consolidated, and (2) identify which and how many VMs
can be placed on a server such that required performance
is maintained. The problem of identifying suitable VMs
turns out to be NP-Complete, and we design a com-
putationally efficient algorithm that we prove performs
close to the theoretical optimal. As a result, the excess
resources left unused in our approach are significantly
lower than in current practice.

An additional mechanism to preserve performance af-
ter consolidation is to improve the isolation of resources
in hardware [3, 5, 16, 28, 35], or software [1, 4, 6, 27,
32]. Further, excess resources may be allocated at run
time [23] to overcome degradation. These approaches
are complementary because they do not determine the
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best VMs to be placed together in the first place. Our
method can make that determination, and then these
techniques can be applied with a lower overhead.

Specifically, we make the following contributions:
First, we present a performance aware consolidation

manager, PACMan, that minimizes resource cost, such
as energy consumption or number of servers used. PAC-
Man consolidates VMs such that performance degrada-
tion stays within a specified bound. Since this problem
is NP-complete, PACMan uses an approximate but com-
putationally efficient algorithm that we prove performs
logarithmically close to the optimal.

Second, while customer-facing applications prioritize
performance, batch processes, such as Map-Reduce [8],
may prioritize resource efficiency. For such situations
PACMan provides an “Eco” mode, that fills up all server
cores, and minimizes worst case degradation. We specif-
ically consider worst case, as opposed to average consid-
ered in [17], since in Map-Reduce, reduce cannot start
until all map tasks have completed and hence, only the
degradation of the worst hit map task matters. We show
that it is difficult to design provably near-optimal meth-
ods for this scenario and present a suitable heuristic.

Finally, we evaluate PACMan using degradations mea-
sured on SPEC CPU 2006 applications. For minimizing
wasted resource while preserving performance, PACMan
operates within about 10% of the optimal, saves over
30% energy compared to consolidation schemes that do
not account for interference, and improves total cost of
operations by 22% compared to current practice. For the
Eco mode, PACMan yields up to 52% reduction in degra-
dation compared to naı̈ve methods.

2 PACMan Design

This section describes the performance repercussion of
consolidation and how our design addresses it.

2.1 Problem Description
Consolidation typically relies on virtual machines (VMs)
for resource and fault isolation. Each VM is allocated
a fixed share of the server’s resources, such as a cer-
tain number of cores on a multi-core server, a certain
fraction of the available memory, storage space, and so
on. In theory, each VM should behave as if it is a sep-
arate server: software crashes or resource bottlenecks
in one VM should not affect other VMs on the same
server. In practice however, VM resource isolation is
not perfect. Indeed, CPU cores or time slices, memory
space, and disk space can be isolated well using exist-
ing virtualization products, and methods have emerged
for other resources such as network and storage band-
width [22, 34]. However, there remain resources, such

as shared caches and memory bandwidth, that are hard
to isolate. Hence, consolidated applications, even when
encapsulated in VMs, may suffer resource contention or
interference, and this leads to performance degradation.

Example: Consider a toy data center with 4 VMs,
A,B,C, and D (Figure 1). On the left, the 4 VMs are
placed on a single server each. Suppose the task inside
each VM takes 1 hour to finish. The shaded portion of
the vertical bars represents the energy used over an hour;
the darker rectangle represents the energy used due to the
server being powered on (idle power consumption) and
the rectangles labeled with the VM name represent the
additional energy consumed in VM execution (increase
in server energy due to processor resource use). On the
right, these VMs are consolidated on two servers (the
other two are in sleep mode).
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Figure 1: Energy cost change due to consolidation.

The setup on the right is more efficient. However, due
to resource contention, the execution time goes up for
most of the jobs. Both the server idle energy and the
additional energy used by each job increase due to the
longer run time. The increase in energy consumption
due to contention may wipe out some or all of the en-
ergy savings obtained by turning off two servers. Also,
longer running time may violate quality of service (QoS)
requirements.

One may minimize performance degradation by plac-
ing each VM in a separate server, but that obviously re-
duces efficiency. On the other hand, one may maximize
efficiency by packing the VMs into the minimum num-
ber of servers required to satisfy the number of processor
cores, memory and disk space requirements of each VM,
but such packing hurts performance.

2.2 System Overview
Our goal is to select the right set of VMs to co-locate on
each server such that performance constraints are satis-
fied and wasted resource is minimized.

2.2.1 Assumptions

We make three assumptions about the system:

Degradation: We assume that the performance degra-
dation suffered by each VM, when consolidated with
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any set of other VMs, is known from existing meth-
ods [12, 19, 21]. These methods do not require explicit
performance measurement for each possible set of VMs.
Rather, a VM is profiled individually to generate an in-
terference profile. Profiling takes a few hundred millisec-
onds depending on the cache architecture. These profiles
can be used to compute the expected degradation for any
set of VMs placed together. Small errors in prediction
can be addressed by including an error margin in the per-
formance bound, and consolidating to within that con-
servative bound. Explicit measurement may also be used
for a small number of VMs, as in [17]. We focus on the
consolidation method given the degradations. Since our
algorithms work given any interference data, the tech-
niques we use can be applied to cross-socket interference
or any other type of interference as well, so long as it can
be quantified and measured.
Temporal Demand Variations. We assume that as de-
mand for an application varies, the number of VM in-
stances hosting that app are increased or decreased to
match the demand. Overloading a small number of VMs
would degrade performance while leaving VMs under-
utilized would incur excess cost to host them. Hence,
commercial tools are available to dynamically change the
number of VMs [24, 33]. This implies that the degrada-
tion data or interference profile needs to be collected only
for the desired demand level, rather than at multiple de-
mand levels that a VM may serve. If demand is lower
than that served by a single VM instance for the appli-
cation, we conservatively use the profile at its optimal
demand level.
VM to Processor Core Mapping: We assume that each
VM is assigned one core, following the model in [3, 12,
16,17,19,32]. Considering VMs that span multiple cores
does not change the problem fundamentally. However, if
multiple VMs share a single core, the nature of resource
contention may change, and existing degradation estima-
tion methods [12, 19, 21] will not suffice. If alternate
degradation modeling methods are available or explicit
measurements of degradations are provided, our consol-
idation algorithm would extend to that case.

2.2.2 Architecture

The PACMan system architecture is shown in Figure 2.
The system consists of the following three components:

Conservatively Packed Servers: Customers submit
VMs through appropriate cloud APIs. Ideally, a VM
placement solution should determine the optimal place-
ment for each VM as soon as it arrives, such that the
entire set of VMs currently running in the cloud is opti-
mally placed. However, since such an optimal online so-
lution is not available, we focus on a batched operating
scenario. The cloud initially hosts the incoming VMs on

Cu
st

om
er

 V
M

s

PACMan

Conservatively 
Packed Servers

VM Profiling 
Engine

Consolidation 
Algorithm

Hosting Racks

Cl
ou

d 
De

pl
oy

m
en

t A
PI

Figure 2: PACMan block diagram.

conservatively packed servers, for a batching period (say
30 to 60 minutes). These servers may comprise a small
fraction (say 1%-5%) of the data center. Conservative
placement implies that a significant amount of resources
are left unused to avoid interference, such as by leaving
alternate processor cores empty [21]. Since the VM is
active, it does not matter to the customer that it is placed
on a conservatively packed server.

VM Profiling Engine: While a VM is running on
the conservatively packed servers, profiling methods
from [12, 21] are applied to the VMs1. These methods
characterize a VM while it is running normally, and gen-
erate a set of parameters that allow estimating the perfor-
mance degradation that will be suffered and caused by
the VM when consolidated with other VMs. Their pre-
diction accuracy is high (5-10% of actual performance),
as measured on real data center and benchmark applica-
tions. Given n VMs and k core servers, only O(n) mea-
surements are needed, even though the number of possi-
ble consolidated sets is O(nk).

Consolidation Algorithm: At the end of each batch-
ing period, PACMan uses the VM consolidation algo-
rithm proposed in this paper to place the VMs on host-
ing racks that comprise the bulk of the cloud’s infras-
tructure. Most of the data center thus operates efficiently
using the near-optimal placement. The inputs to the algo-
rithm are the VM interference characteristics obtained by
the profiling engine. The output is a placement of VMs
that respects performance constraints and minimizes un-
used resources. Typically, other algorithms (including
bin packing methods such as best fit or first fit) do not
take interference into account, and hence cannot consoli-
date VMs efficiently. The design of PACMan algorithms
is presented in the next two sections.

1We use [12] in our prototype. In this method, each VM is mapped
to a clone application, which closely mimics the application’s inter-
ference signature. A discrete set of clones covers the entire spec-
trum of memory-subsystem interference behaviors. Thus, a potentially
unbounded number of applications are mapped to a finite number of
clones. A one-time profiling step maps a new VM to a known clone.
The clones are then used as a proxy for predicting performance for dif-
ferent consolidation sets.
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3 Performance Mode

The first mode of PACMan operation, denoted the perfor-
mance mode (P-mode), determines the best sets and their
sizes such that performance constraints are not violated.
It may leave some processor cores unused, unlike prior
methods that use up every core [17, 18] but may violate
performance constraints.

Servers and VMs: Suppose m chip-multiprocessors
(CMPs) are available, each with k cores. We are pri-
marily interested in the inter-core interference within a
CMP. The VMs placed on the same CMP suffer from this
degradation. If a server happens to have multiple proces-
sor sockets, we assume there is no interference among
those. As a result, multiple CMPs within a server may
be treated independently of each other. We loosely refer
to each CMP as a separate server as shown in Figure 3.
We are given n VMs to be placed on the above servers,
such that each VM is assigned one core.

CMP-1 (Server-1)

Shared Cache and memory 
subsystem

Core
1

…

…

Server-m

Core
2

Core
k

Figure 3: CMPs (referred to as servers) with k cores.
Contention in the shared cache and memory hierarchy
degrades the performance of VMs in the same server.

Degradation: Suppose that the set of VMs placed to-
gether on a server are denoted by S. For singleton sets,
i.e., a VM j running alone, there is no degradation and
we denote this using a degradation d j = 1. For larger
sets, the degradation for VM j ∈ S is denoted by dS

j ≥ 1.
For example, for two co-located VMs, S = {A,B}, sup-
pose A’s running time increases by 50% when it runs
with B, relative to when it runs alone, while B is unaf-
fected by A. Then, dS

A = 1.5 and dS
B = 1.

We assume that adding more VMs to a set may only
increase (or leave unchanged) the degradation of previ-
ously added VMs.

3.1 Consolidation Goal

The consolidation objective may be stated as follows.
P-Mode: (Minimize resource cost subject to a perfor-
mance constraint)
Given

n VMs,
Servers with k cores,
Degradations for all sets of VMs up to size k,
Cost w(S) for a set of VMs S placed on a server, and

Maximum tolerable degradation D ≥ 1 for any VM2.
Find a placement of the n VMs using some number, b, of
servers, to minimize

b

∑
i=1

w(Si)

where Si represents the set of VMs placed on the ith

server.
Cost Metric: The resource cost, w(S), to be minimized

may represent the most relevant cost to the system. For
instance, if we wish to minimize the number of servers
used, then we could use w(S) = 1 for any set S regard-
less of how many VMs S contains. To minimize energy,
w(S) could be defined as the sum of a fixed cost c f and
a dynamic cost cd . The fixed cost c f models the idle
energy used for keeping a server active, and may also
include capital expense. The dynamic cost, cd , models
the increase in energy due to VMs assigned to the server.
For concreteness, we consider the cost function w(S) to
be the energy cost. The specific values used for c f and
cd are described in Section 5 along with the evaluations.
Our solution is applicable to any cost function that mono-
tonically increases with the number of VMs.

Batched Operation: The problem above assumed all
VMs are given upfront. In practice, following the setup
from Figure 2, only the VMs that arrived in the most re-
cent batching period will be consolidated. Each batch
will hence be placed optimally using P-mode consolida-
tion, but the overall placement across multiple batches
may be sub-optimal. Hence, once a day, such as dur-
ing times of low demand, the placement solution can
be jointly applied to all previously placed VMs, and
the placement migrated to the jointly optimal placement.
The joint placement satisfies the same performance con-
straints but may reduce resource cost even further.

3.1.1 Problem Complexity

The complexity is different depending on whether the
servers have only k = 2 cores or more than 2 cores.

Dual-Core servers: For k = 2 cores, there is a polyno-
mial time algorithm that can compute the optimal solu-
tion. The main idea is to construct a weighted, undirected
graph on 2n nodes. The first n nodes represent the VMs,
and the others are “dummy” nodes (one for each VM).
For VM pairs whose degradation is below the bound D,
we place an edge connecting them and assign an edge
weight equal to the cost of placing those two VMs to-
gether. We place an edge between each VM node and its
dummy node with a weight that corresponds to the cost

2We assume that the performance constraint is the same for all VMs
though multiple quality of service classes, each with their own degrada-
tion limit, could be considered as well and do not fundamentally change
the problem.
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of running that VM alone. Finally, we place edges of
weight 0 between all pairs of dummy nodes. Finding the
best pairs of VMs for a consolidated placement is equiv-
alent to computing a minimum cost perfect matching on
this graph. Graph algorithms are available to compute a
minimum cost perfect matching in polynomial time. We
omit details for this case since most data center servers
have more than 2 cores.

NP-Completeness: For servers with more than two
cores (k ≥ 3), the problem is NP-Complete. This is be-
cause it can be thought of as a variant of the k-Set Cover
problem. In the k-Set Cover problem, we have a universe
U of elements to cover (each element could represent a
VM), along with a collection C of subsets each of size
at most k (the subsets could represent sets of VMs with
degradation below D). Placing VMs on servers corre-
sponds to finding the minimum number of disjoint VM
subsets that cover all VMs. Assuming w(S) = 1 for all
sets S, the k-Set Cover problem becomes a special case
of the P-mode problem, i.e., solving the P-mode prob-
lem enables solving the k-Set Cover problem. The k-Set
Cover problem is NP-Complete [9]. Hence, the P-mode
problem is NP-Complete.

3.2 Consolidation Algorithm
Since the problem is NP-Complete for k ≥ 3 cores, we
propose a computationally efficient algorithm that finds
a near-optimal placement.

Using the profiling method described in Section 2.2, it
is easy to filter out VM sets that violate the degradation
constraint. Suppose the collection of remaining sets (VM
combinations that can be used) is denoted by F .

First, for each set S ∈F , the algorithm assigns a value
V (S) = w(S)/|S|. Intuitively, this metric characterizes
the cost of a set S of VMs. Sets with more VMs (larger
set size, |S|) and low resource use (w(S)) yield low V (S).

Second, the algorithm sorts these sets in ascending or-
der by V (S). Sets that appear earlier in the ascending
order have lower cost.

The final step is to make a single pass through this
sorted list, and include a set S as a placement in the con-
solidation output if and only if it is disjoint from all sets
that have been chosen earlier. The algorithm stops after
it has made a single pass through the list. The algorithm
can stop earlier if all the VMs are included in the chosen
sets. The first set in the sorted list will always be taken to
be in the solution since nothing has been chosen before it
and it is hence disjoint. If the second set is disjoint from
the first set, then the algorithm takes it in the solution. If
the second set has at least one VM in common with the
first, the algorithm moves onto the third set, and so on.
The precise specification is given in Algorithm 1.
Example: Consider a toy example with three VMs, A, B,

Algorithm 1 CONSOLIDATE(F , n, k, D)

1: Compute V (S)← w(S)
|S| , for all S ∈ F

2: L ← Sorted sets in F such that V (Si) ≤ V (S j) if
i ≤ j

3: L← φ
4: for i = 1 to |L | do
5: if Si is disjoint from every set in L then
6: L← L∪{S}
7: Return L

and C and k = 2 cores. Suppose the characterization from
the VM profiling engine results in the degradation num-
bers shown in Table 1. Suppose the performance con-
straint given is that no VM should degrade more than
10% (D = 1.1) and the cost metric w(S) is just the num-
ber of servers for simplicity (w(S) = 1 for any set). A
set with two VMs (|S| = 2) will have V (S) = 1/2 while
a set with one VM will have V (S) = 1. Then filtering
out the sets that cause any of the VMs to have a degrada-
tion greater than D, and computing the V (S) metric for
each set, we get the sorted list as: BC, AB, A, B, C. The
algorithm first selects set BC and allocates it to a server
(VMs B and C thus share a single server). The next set
AB is not disjoint from BC and the algorithm moves to
the subsequent set A. This is disjoint and is allocated to
another server. All VMs are now allocated and the algo-
rithm stops.

VM Set AB AC BC A B C
dSet

V M dA = 1.1 dA = 1.0 dB = 1.0 1 1 1
dB = 1.1 dC = 1.5 dC = 1.1

Table 1: Degradations for VMs in the example.

Complexity: The algorithm operates in polyno-
mial time since sorting is a polynomial time operation,
O(|F | · log(|F |)). The subsequent step requiring a sin-
gle pass through the list has linear time complexity. At
every step in the linear pass the algorithm needs to check
if each VM in the set being selected has been assigned
already and this can be achieved in constant time as fol-
lows. Maintain a boolean bit-vector for every VM in-
dicating if it has been assigned yet. For the set being
checked, just look up this array, which takes at most O(k)
time per set since the set cannot have more than k VMs.
Also, after selecting a set we update the boolean array,
which again takes constant time.

While the computation time is polynomial in the size
of the input, the size of the input can be large. The list
of degradation values for all possible VM sets has size
|F |= O(nk) elements, which can be large for a cloud in-
frastructure hosting thousands of VMs. However, when
the degradation estimation technique from [12] is used,
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all VMs are mapped to a finite set of clones and the num-
ber of clones does not grow with the number of VMs.
We can treat all VMs that map to a common clone as one
type of VM. The number of clones used to map all VMs
then represents the distinct types of VMs in the input.
For instance, for the characterization technique in [12],
for quad-core servers, at most 128 types of clones are re-
quired, and not all of them may be used for a particular
set of input VMs.

Suppose the n VMs can be classified into τ ≤ 128
types. Then, the algorithm only needs to consider all sets
S from τ VM types with possibly repeated set elements.
The number of these sets is O(τk), which is manageable
in practice since τ does not grow very large, even when
n is large.

The algorithm changes slightly to accommodate multi-
ple VMs of each type. The assignment of value V (S) and
the sorting step proceed as before. However, when doing
the single pass over the sorted list, when a disjoint set S
is chosen, it is repeatedly allocated to servers as long as
there is at least one unallocated instance of each VM type
required for S. The resultant modification to Algorithm 1
is that Fτ is provided as input instead of F where Fτ
denotes the collection of all feasible sets of VM types
with repeated elements, and at step 5, instead of check-
ing if the VMs are not previously allocated, one repeats
this step while additional unallocated VMs of each type
in the set remain.

Correctness: The algorithm always assigns every VM
to a server since all singleton sets are allowed and do
appear in the sorted list (typically after the sets with
large cardinality). Also, it never assigns a VM to more
than one server since it only picks disjoint sets, or sets
with unallocated VM instances when VM-types are used,
while making the pass through the sorted list. Hence, the
algorithm always obtains a correct solution.

3.3 Solution Optimality
A salient feature of this algorithm is that the consol-
idation solution it generates is guaranteed to be near-
optimal, in terms of the resources used.

Let ALG denote the allocated sets output by the pro-
posed algorithm, and let OPT be the sets output by the
optimal solution. Define the resource cost of the pro-
posed algorithm’s solution to be E(ALG), and that of the
optimal algorithm as E(OPT ). We will show that for ev-
ery possible collection of VMs to be consolidated,

E(ALG)≤ Hk ·E(OPT )

where Hk is the kth-Harmonic number. Hk = ∑k
i=1

1
i ≈

ln(k).
In other words, the resource cost of the solution gen-

erated by the proposed algorithm is within ln(k) of the

resource cost of the optimal solution. Given that k is
constant for a data center and does not increase with the
number of VMs, this is a very desirable accuracy guar-
antee. The proof is inspired by the approximation qual-
ity proof for the weighted k-Set Cover problem [7, 15].
However, we cannot pick overlapping sets (since choos-
ing sets in our setting corresponds to choosing a place-
ment of VMs onto servers), and the input sets are closed
under subsets.

Theorem 1. For all inputs, the proposed algorithm out-
puts a solution that is within a factor Hk ≈ ln(k) of the
optimal solution.

Proof. By definition, we have

E(ALG) = ∑
S∈ALG

w(S).

Assign a cost to each VM c( j) as follows: whenever the
proposed algorithm chooses a set S to be part of its solu-
tion, set the cost of each VM j ∈ S to be c( j) = w(S)/|S|
(these costs are only for analysis purposes, the actual al-
gorithm never uses c( j)). Hence,

E(ALG) = ∑
S∈ALG

|S|w(S)
|S|

= ∑
S∈ALG

∑
j∈S

c( j) =
n

∑
j=1

c( j),

where the last equality holds because the set of VMs in
the solution is the same as all VMs given in the input.
Then, since the optimal solution also assigns all VMs to
servers:

E(ALG) =
n

∑
j=1

c( j) = ∑
S∗∈OPT

∑
j∈S∗

c( j),

where S∗ ∈ OPT is a set chosen by the optimal solution.
Suppose, for the moment, we could prove that the last
summation term above satisfies ∑ j∈S∗ c( j) ≤ Hkw(S∗).
Then we would have

E(ALG)≤ ∑
S∗∈OPT

Hkw(S∗) = Hk ·E(OPT ).

All we have left to prove is that, for any S∗ ∈OPT , we in-
deed have ∑ j∈S∗ c( j)≤ Hkw(S∗). Consider any set S∗ in
the optimal solution and order the VMs in the set accord-
ing to the order in which the proposed algorithm covers
the VMs, so that S∗ = { js, js−1, . . . , j1}. Here, js is the
first VM from S∗ to be covered by the proposed algo-
rithm, while j1 is the last VM to be covered by the pro-
posed algorithm in potentially different sets. In case the
proposed algorithm chooses a set which covers several
VMs from S∗, we just order these VMs arbitrarily.

Now, consider VM ji ∈ S∗ immediately before the pro-
posed algorithm covers it with a set T . At this time,
there are at least i VMs which are not covered, namely
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ji, ji−1, . . . , j1. There could be more uncovered VMs in
S∗, for instance, if the proposed algorithm chose set T
such that T covers VMs js, . . . , ji, then all VMs in S∗

would be considered uncovered immediately before set
T is chosen. Moreover, since the optimal solution chose
S∗, and since sets are closed under subsets, it must be
the case that the proposed algorithm could have chosen
the set S = { ji, . . . , j1} (since it is a feasible set and it
is disjoint). At each step, since the proposed algorithm
chooses the disjoint set T that minimizes w(T )/|T |, it
must be the case that w(T )/|T | ≤ w(S)/|S|. By our as-
sumption that energy costs can only increase if VMs are
added, we have w(S) ≤ w(S∗), and hence VM ji is as-
signed a cost of w(T )/|T | ≤ w(S)/|S| ≤ w(S∗)/|S| =
w(S∗)/i. Summing over all costs of VMs in S∗, we have

∑
j∈S∗

c( j)≤ ∑
ji∈S∗

w(S∗)/i = Hs ·w(S∗)≤ Hk ·w(S∗)

(since |S∗| = s ≤ k). Hence, ∑ j∈S∗ c( j) ≤ Hk ·w(S∗) in-
deed holds and this completes the proof.

To summarize, we provide a polynomial time algo-
rithm that is guaranteed to provide a solution within a
logarithmic factor of the optimal. Note that this is a
worst-case guarantee, and in practice we can expect the
solution quality to be better (e.g., our experimental re-
sults in Section 5). In fact, our approximation guaran-
tee is asymptotically the best approximation factor one
could hope for, due to the hardness of approximation
lower bound known for the k-Set Cover problem [30]
(hence, there are worst-case instances in which any al-
gorithm must perform poorly, but these instances typi-
cally do not occur in practice and the algorithms perform
much better).

4 Eco-Mode

In some cases, such as batch based data processing, re-
source efficiency may take precedence over performance.
For such scenarios, PACMan provides a resource effi-
cient mode of operation, referred to as the Eco-mode.
Here, the number of servers used is fixed and the VMs
are tightly packed. The goal is to minimize the degra-
dation. Prior works have minimized average degrada-
tion [17, 18, 29] and their heuristics can be used in Eco-
mode. We additionally consider worst case degrada-
tion. The worst case degradation is especially important
for parallel computing scenarios where the end result is
obtained only after all parallelized tasks complete and
hence performance is bottle-necked by the worst hit VM.
Eco-Mode: (Minimize maximum degradation)
Given

n VMs,
m servers with k cores (n ≤ mk), and

Degradations for all sets of VMs up to size k,
Find an allocation of the n VMs to m servers which min-
imizes the objective

max
1≤i≤m

max
j∈Si

dSi
j

where Si represents the set of VMs placed on the ith

server (|Si| ≤ k for each i).
As in the previous case, while the 2-core case can be

solved in polynomial time, the Eco-mode problem be-
comes NP-Complete for k ≥ 3.
Efficient Near-Optimal Algorithms: Given that the
problem is NP-Complete, a polynomial time algorithm
to compute the optimal solution is unlikely to be found,
unless P = NP. The next best thing would be an efficient
algorithm that computes a provably near-optimal solu-
tion.

Surprisingly, for k ≥ 3 a computationally efficient al-
gorithm that guarantees the solution to be within any
polynomial factor of the optimal cannot be found. For
instance, a computationally efficient algorithm that can
guarantee its solution to be within a factor n100 of the
optimal cannot be found.

Theorem 2. For the Eco-mode consolidation problem, it
is NP-Hard to approximate the optimal solution to within
any factor that is polynomial in the number of VMs and
servers.

The proof is relegated to a tech report [25] for brevity.
Algorithm: The implication of the above theorem is that
any computationally efficient Eco-mode algorithm will
have to rely on heuristics.

The heuristic we propose greedily improves a given
placement using VM swaps. A swap refers to exchang-
ing the placement of one VM with another. Start out
with any initial placement of VMs. Consider all possible
placements that are reachable from the existing place-
ment in a single swap. In each such placement, for each
server, compute the degradation of the worst hit VM on
that server, using the degradation characterization from
the VM profiling engine. Take the sum of these worst
case degradations on all servers as the cost of that VM
placement.

Among all possible placements reachable within a
swap, greedily select the one with the lowest cost and ac-
tually perform the swap required to reach that placement.
Repeat the above process as long as additional swaps are
allowed or until a swap no longer yields an improvement.

The work of [31] studies the cost of swapping, giving
insight into the trade-off between improving resource ef-
ficiency and swapping VMs. To this end, we limit the
number of swaps allowed to terminate the search at G =
(k−1)(m−1). Starting with an arbitrary placement, it is
possible to reach any other placement (e.g., the optimal

7
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placement) by performing at most G = (k − 1)(m− 1)
swaps. This holds because for each server, we can imag-
ine one of the VMs to be in the correct position on that
server, and hence there can be at most k−1 VMs on that
server that are out of place. By swapping two VMs, we
can assign each VM which is on the wrong server to the
right server. Hence, each server can be fixed in at most
k − 1 swaps. Once m− 1 servers have been fixed, the
last server must already be correct. However, determin-
ing the appropriate number of swaps is not easy and our
heuristic is not guaranteed to find the optimal placement
in G = (k− 1)(m− 1) swaps, or any number of swaps.
Hence, the number of allowed swaps may be set based on
other constraints such as limits on tolerable swap over-
heads or a threshold on minimum improvement expected
from a swap.

While not provably near-optimal, our heuristic is ben-
eficial to the extent that it improves performance com-
pared to naı̈ve methods.

5 Experimental Results

In this section, we quantify the resource savings and per-
formance advantages of using PACMan consolidation for
realistic scenarios. Ideally, we wish to compare the prac-
tical algorithm used in PACMan with the theoretical op-
timal, but the optimal is not feasible to compute (these
problems are NP-Complete) except for very small input
sizes. Hence, we illustrate the performance of the pro-
posed methods with respect to the optimal for a few small
input instances (n = 16 VMs, m ≥ �n/k�). For more re-
alistic inputs, relevant to real data centers (103 VMs),
we compare the performance to naı̈ve methods that are
unaware of the performance degradation and with one
current practice that leaves alternate processor cores un-
used [21]. For these cases, we also compute the degra-
dation overhead compared to a hypothetical case where
resource contention does not cause any degradation. This
comparison shows an upper bound on how much further
improvement one could hope to make over the PACMan
methods.

5.1 Experimental Setup
Degradation Data: We use measured degradation data
for SPEC CPU 2006 benchmark applications. These
degradations are in the same range as measured for
Google’s data center workloads in [21], which includes
batch and interactive workloads. Since the degradation
data is representative of both interactive workloads and
batch workloads, it is relevant for both P-mode and Eco-
mode.

In particular, we select 4 of the SPEC CPU benchmark
applications for which we have detailed interference data

for all possible combinations, namely: lbm, soplex,
povray, and sjeng (some combinations shown in Ta-
ble 2). These span a range of interference values from
low to high. When experimenting with n VMs, we gen-
erate an equal number, n/4, of each. We do not vary VM
degradations over time during VM execution.

Application VMs (Si) Degradations (%)
lbm, soplex 2, 19.7

soplex, soplex 10, 10
lbm, soplex, sjeng 2, 10, 4.1
lbm, povray, lbm 19.6, 5.32, 19.6

lbm, soplex 14.56, 36.9,
soplex, sjeng 36.9, 5.83

lbm, lbm, lbm, lbm 104.6 (each)

Table 2: Sample degradation data for the application
VMs used in experiments. Degradations are measured
on a quad-core processor. For combinations with only 2
or 3 VMs, the remaining cores are unused. Degradations
over 100% imply that the execution time of the workload
increases by more than twice.

Cloud Configuration: We assume that each server
has k = 4 cores since quad-core servers are commonly in
use. While a server may have many cores across multiple
processor sockets, the relevant value of k is the number
of cores sharing the same cache hierarchy, since that is
where most of the interference occurs. Using real world
degradation data, we simulate our proposed algorithm for
the cloud configuration described above.

5.2 Performance Mode

The P-mode problem optimizes resource cost given a
degradation constraint. The evaluation metric of inter-
est is thus the resource cost. We choose energy as our
resource metric. Each server has a fixed and dynamic en-
ergy component (Section 3), resulting in an energy cost
w(S) = c f +∑ j∈S dS

j . Here, the additional cost of each
VM is being modeled as dS

j . Considering that running 4
VMs each with an incremental cost of 1 or more would
add an additional 4 units of dynamic resource cost, we
set the fixed cost c f = 4 to reflect about 50% of the to-
tal server energy as the fixed idle cost, which is repre-
sentative of current server technology. Newer generation
servers are trending towards better energy proportional-
ity and idle power costs as low as 30% are expected in
the near future. A lower idle power cost will only ex-
aggerate the fraction of overhead due to interference and
lead to even greater savings in PACMan.

Comparison with Optimal: To facilitate computa-
tion of the optimal, we use a small number, 16, of VMs,
with equal proportion of VMs from each of the four

8
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benchmarks. We vary the degradation constraint from
10% (D = 1.1), to as high as 50%3. Aside from the op-
timal, we also compare against a naı̈ve method that does
not quantitatively manage degradation but conservatively
leaves every other core unused [21].

Figure 4 shows the energy overhead of the consolida-
tion determined by PACMan, and by the naı̈ve method,
over and above the energy used by the optimal method.
The proposed approach is within 10% of the optimal, and
is significantly better than the naı̈ve approach currently in
use.
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Figure 4: (P-Mode) Excess energy used compared to
that used by the optimal solution (computable for a small
number of VMs).

Figure 5 shows the server utilizations achieved by
the three methods at equivalent performance. The pro-
posed method achieves over 80% utilization in most
cases yielding good resource use. Of course, when
the degradation allowed is small, servers must be left
under-utilized to avoid interference, and even the opti-
mal method cannot use all cores.
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Figure 5: (P-Mode) Server utilizations achieved by the
theoretical optimal, proposed, and naı̈ve algorithms.

3We start at 10% instead of 0%, since if no degradation is allowed,
most VMs would require a dedicated machine, with no benefits from
consolidation.

Large number of VMs: The second set of experi-
ments uses more realistic input sizes, up to n = 1000
VMs, again taking an equal proportion of VMs from
each of the four SPEC CPU applications listed in Sec-
tion 5.1. Since it is not feasible to compute the opti-
mal solution for a large number of VMs, we compare
against a lower bound: resources used when interference
has no effect. In reality, interference will lead to a non-
zero overhead and the optimal should be expected to be
somewhere between 0% and the overhead seen for the
proposed method. Figure 6 shows the results, with a per-
formance constraint of 50% (D = 1.5), for varying n. We
see that the proposed method performs significantly bet-
ter than the naı̈ve one.

0

10

20

30

40

50

60

70

0 200 400 600 800 1000

En
er

gy
 O

ve
rh

ea
d 

(%
) 

Number of VMs 

Proposed Naïve

Figure 6: (P-Mode, Large number of VMs) Resource
overhead comparison, normalized with respect to hypo-
thetical resource use when there is no interference, which
is a lower bound on the optimal.

5.3 Eco-Mode
For the Eco-mode problem, we again compute the op-
timal solution for a small set n = 16 VMs with m = 4
servers, with the VMs taken from the SPEC CPU bench-
marks. The initial allocation of VMs to servers is ar-
bitrary and we repeat the experiment 10 times, starting
with a random initial allocation each time. Since any al-
location can be reached in at most (k − 1)(m− 1) = 9
swaps, we vary the number of allowed swaps G from 2
to 9. As an additional point of comparison we use a naı̈ve
approach that does not consider interference and places
the VMs randomly. The performance of the randomized
approach is averaged across 10 trials.

Figure 7 shows the excess degradation suffered by
the VMs compared to that in the optimal allocation.
The practical heuristic used in PACMan performs very
closely to the optimal and has up to 30% lower degrada-
tion than the naı̈ve method.

Next we vary the number of VMs up to n = 1000,
packed tightly on m = n/4 quad core servers. The ap-
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Figure 7: (Eco-mode) Comparison of proposed heuristic
and a naı̈ve random algorithm with the theoretical opti-
mal (computable for small input instances). Excess worst
case degradation compared to that in the optimal solution
is shown. The error bars show the standard deviation
across 10 random runs for the naı̈ve approach.
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Figure 8: (Eco-mode, Large number of VMs) Reduction
in degradation compared to a naı̈ve approach. The er-
ror bars show the standard deviation across 10 random
placements for the naı̈ve approach.

plications are taken from the SPEC CPU benchmarks as
before, in equal proportion. The naı̈ve approach used for
comparison is a random placement that does not account
for interference (10 random trials are performed for each
point).

Since it is not feasible to compute the optimal solu-
tion, we use the naı̈ve approach as the base case and show
the reduction in degradation achieved by PACMan (Fig-
ure 8). The worst case degradation is reduced by 27% to
52% over the range of the number of VMs. While the
number of servers is a fixed constraint, reduction in per-
formance degradation results in a corresponding increase
in throughput or reduction in runtime, yielding a propor-
tional saving in energy per unit work performed.

In summary, we see that PACMan performs well on
realistic degradation data.

5.4 TCO Analysis

The total cost of ownership (TCO) of a data center in-
cludes both the operating expenses such as energy bills
paid based on usage, and capital expenses, paid upfront.
Consolidation affects multiple components of TCO. The
resultant savings in TCO are described below.

To compare capital costs and operating expenses us-
ing a common metric, James Hamilton provided an
amortized cost calculation of an entire data center on a
monthly basis [14]. In this calculation, the fixed costs are
amortized over the life of the component purchased. For
instance, building costs are amortized over fifteen years
while server costs are amortized over three years. This
converts the capital costs into a monthly expense, similar
to the operating expense.

Figure 9 shows the savings resulting in various data
center cost components. The baseline we use is the cur-
rent practice of leaving alternate cores unused [21], and
we compare this with our proposed performance preserv-
ing consolidation method. In all, a 22% reduction in
TCO is achieved, which for a 10MW data center implies
that the monthly operating expense is reduced from USD
2.8 million to USD 2.2 million.
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Figure 9: (P-Mode) TCO reduction using the proposed
performance preserving consolidation method. Pwr.
Cool. Infra. refers to the power and cooling infrastruc-
ture cost, as defined in [14].

6 Related Work

Performance isolation from memory subsystem inter-
ference has been studied at different levels of the sys-
tem stack: the hardware level [3, 5, 16, 28, 35], the
OS/software level [1, 6, 23, 27], and the VM scheduler
level [2, 4, 32]. Our method is complementary in that we
facilitate determining the placements with lower inter-
ference to which above isolation techniques can then be
applied, and are likely to be more effective.

10
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Performance estimates due to interference [12, 19, 21]
have also been developed to aid VM placement. We build
upon the above works and use the interference charac-
terization provided by them to determine the placements
with lower interference.

Consolidation methods taking interference into ac-
count have been studied in [17], along with variants for
unequal job lengths [29]. Another method to model VM
interference through cache co-locality, and a heuristic for
run-time scheduling to minimize degradation, was pre-
sented in [18]. We allow optimizing for a different ob-
jective. While heuristics were proposed in prior works,
we provide an algorithm with provable guarantees on the
solution quality. We also provide a new inapproximabil-
ity result.

7 Conclusions

VM consolidation is one of the key mechanisms to im-
prove data center efficiency, but can lead to performance
degradation. We presented consolidation mechanisms
that can preserve performance.

The extent of performance degradation depends on
both how many VMs are consolidated together on a
server and which VMs are placed together. Hence, it
is important to intelligently choose the best combina-
tions. For many cases, performance is paramount and
consolidation will be performed only to the extent that it
does not degrade performance beyond the QoS guaran-
tees required for the hosted applications. We presented a
system that consolidated VMs within performance con-
straints. While the problem of determining the best
suited VM combinations is NP-Complete, we proposed a
polynomial time algorithm which yields a solution prov-
ably close to the optimal. In fact, the solution was shown
to be within ln(k) of the optimal where k is the number of
cores in each server, and is independent of the number of
VMs, n. This is a very tight bound for practical purposes.
We also considered the dual scenario where resource ef-
ficiency is prioritized over performance. For this case,
we showed that even near-optimal algorithms with poly-
nomial time complexity are unlikely to be found. Experi-
mental evaluations showed that the proposed system per-
formed well on realistic VM performance degradations,
yielding over 30% savings in energy and up to 52% re-
duction in degradation.

We believe that the understanding of performance
aware consolidation developed above will enable better
workload consolidation. Additional open problems re-
main to be addressed in this space and further work is
required to develop consolidation methods that operate
in an online manner and place VMs near-optimally as
and when they arrive for deployment.
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