
USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 1

Application Placement and Demand Distribution in a Global Elastic Cloud:
A Unified Approach

Hangwei Qian
VMWare

Palo Alto, CA, 94304

Michael Rabinovich
Case Western Reserve University

Cleveland, OH 44106

Abstract
Efficient hosting of applications in a globally distributed

multi-tenant cloud computing platform requires policies to de-
cide where to place application replicas and how to distribute
client requests among these replicas in response to the dynamic
demand. We present a unified method that computes both poli-
cies together based on a sequence of min-cost flow models.
Further, since optimization problems are generally very large-
scale in this environment, we propose a novel demand cluster-
ing approach to make them computationally practical. An ex-
perimental evaluation, both through large-scale simulation and
a prototype in a testbed deployment, shows significant promise
of our approach for the targeted environment.

1 Introduction
An important benefit of cloud computing is that it al-
lows Internet application providers to obtain global foot-
print and elastic capacity without the need to deploy and
maintain their own infrastructure. This service is of-
ten referred to as IaaS (“Infrastructure as a Service”).
Cloud providers can offer IaaS efficiently by deriving
the economy of scale though multiplexing their shared
platforms among multiple applications. A number of
cloud providers, including Google, Microsoft, and Ama-
zon, offer some variation of this capability.

These geo-distributed multi-tenant hosting platforms
need to be able to effectively distribute the hosted ap-
plications across multiple data centers and direct client
demand to the appropriate application replicas. Specif-
ically, this task involves the following two key policies:
(i) At how many and which data centers should each ap-
plication be deployed? We refer to this as the (global) ap-
plication placement problem; and (ii) How should client
demand be distributed to these application replicas? This
is commonly referred to as demand distribution or, inter-
changeably, server selection problem.

Much prior work has targeted environments address-
ing one or the other of these aspects (see § 8). However,
an elastic cloud must deal with both issues simultane-
ously because it distributes demand among dynamically
changing sets of application instances. Consequently, we
propose a unified framework to compute these two poli-
cies simultaneously. A comparison with an existing ap-
proach that also addressed both policies but computed

them in isolation showed a significant advantage of our
approach (§ 6.6).

Computing these policies in a hosting cloud brings
an additional challenge. Because request processing in-
volves accesses of application-specific back-end servers,
the proximity of a request to data centers depends not
just on the client’s location but also on the location of the
back-end servers and hence on the requested application.
This increases the scale of the optimization problems by
orders of magnitude (§ 4). We propose a novel demand
clustering approach we call permutation prefix cluster-
ing, and show that it makes global optimization practical
in many environments.

In summary, this work addresses the application
placement and demand distribution problems in a geo-
distributed and globally-shared cloud platform, and
makes the following contributions: (i) We propose and
evaluate a unified framework to jointly solve the appli-
cation placement and demand distribution problems; (ii)
A novel clustering technique is introduced to scale our
optimization model to realistic platform sizes, which we
believe will prove valuable for other optimization mod-
els as well; and (iii) We prototype our approach and
demonstrate its operation in a testbed deployment.

2 System Overview
The high-level view of our targeted environment is
shown in Fig. 1. Each client connects to a request-
routing component (e.g., DNS server or HTTP redirec-
tor), which directs it to a data center hosting requested
application. Known mechanisms (such as one provided
in WebLogic [1]) ensure continued session state avail-
ability even if a client is redirected to a new instance
mid-session. When processing requests, the application
is assumed to access back-end database located at the
premises of the application providers for security or legal
reasons (the extended version of this paper also consid-
ers the hosted database scenario [27]). Thus, we aggre-
gate the network distances from clients to data centers
and from data centers to databases when calculating the
network delay for the requests. Note, obtaining the dis-
tance information efficiently is a complicated task and an
important part of the providers’ know-how. We assume

2 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

this information is supplied by a separate measurement
component (not considered here).

To effectively manage the proximity information of
all the Internet clients, we assume the platform groups
its clients by the IP prefixes found in multiple BGP ta-
bles [19], with each group dubbed a client cluster (CC).
A key part of our work is to aggregate demand fur-
ther so that computing the application placement and
demand distribution policies becomes tractable. Also,
many cloud providers concentrate their platforms in a
small number of strategically located mega data centers,
leading to the factors of 5 to 7 decrease in the opera-
tional cost [12]. For example, Amazon EC2 is deployed
in four locations (US-East, US-West, Ireland, and Singa-
pore); other infrastructure providers, such as Limelight
and AT&T, have a couple dozens data centers. We as-
sume roughly this number of data centers (around 20).
We do not target platforms such as Akamai with pres-
ence in thousands of locations.

We focus on the business models (e.g., auto-scaling
option in EC2 or Google’s AppEngine), in which the
cloud itself makes the decisions on the number and loca-
tion of various application instances, to maximize the ap-
plication performance and minimize the number of data
centers where these applications are deployed. Remov-
ing underutilized application instances reduces the cus-
tomer costs and frees up resources for other applications.
Another objective is to reduce the number of placement
changes in consecutive configurations. Despite recent
advances in reducing overhead of starting a virtual ma-
chine [21] or an application server [9], deploying an ap-
plication instance remains a heavy-weight operation in
terms of CPU costs and system reconfiguration.

In making placement decisions, we only consider
whether or not an application is deployed in a data center.
Others have addressed the problem of resource alloca-
tion among applications within a data center [37, 26, 33].
In the rest of the paper, an “application instance” means
that the application is deployed at the data center, regard-
less of the amount of resources it is assigned locally.

Resource allocation decisions require monitoring the
demand and utilization of data centers. We assume a
central controller collects this information periodically
from each data center. Like any platform based on re-
quest routing, our target environment requires translation
between requests and service demands; this so-called ap-
plication modeling problem has been studied intensively
(e.g., [32, 34, 35]) and we assume the use of one of these
existing technologies. We also assume that our applica-
tions (i.e., web sites) are sufficiently popular so that even
if different requests to a web site have different service
demands, for a reasonable request rate (e.g., higher than
the deletion threshold - see § 5), these requests will re-
sult in a representative request mix. (If this assumption

Database

Client

Data
Center nData

Center 2

Data
Center 1

Figure 1: Overview

does not hold for an application, its requests must be split
into classes with similar service demands and each class
modeled separately.) Meanwhile, request rates for dif-
ferent applications are normalized so that the same (nor-
malized) request rate will result in the same resource uti-
lization regardless of the application. Thus, a request
rate translates to the proportional resource usage and can
be used to measure the capacity and the utilization of
data centers. (This assumption is supported by our expe-
rience with prototype in § 7.)

2.1 Problem Statement
Let D be the number of data centers, A the number of
applications and C the number of client clusters. The
placement policy can be described as an A × D matrix
P , with element Pij = 1 if application i is deployed at
data center j; Pij = 0, otherwise. The demand distribu-
tion policy is an A × C × D matrix R, whose element
Ramn is the fraction of requests from client cluster m for
application a to be directed to data center n. The system
enacts the distribution policy by directing a request from
client cluster m for application a to data center n with
probability Ramn. Let ram be the request rate for appli-
cation a from client cluster m. Assume each request is
associated with a cost Camn if it is served at data cen-
ter n, and un is the utilization of the data center. We
formulate our problem as a multi-objective optimization
problem [23] fulfilling the following competing objec-
tives:

Minimize

A∑
a=1

C∑
m=1

ram

D∑
n=1

RamnCamn (1)

Minimize

A∑
a=1

D∑
n=1

Pan (2)

Minimize

A∑
a=1

D∑
n=1

|Pan − P prev
an | (3)

subject to
A∑

a=1

C∑
m=1

ramRamn ≤ un, n = 1, 2, . . . , D (4)

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 3

0 ≤ Ramn ≤ 1;

D∑
n=1

Ramn = 1 (5)

Pan ∈ {0, 1}; Ramn > 0 implies Pan = 1 (6)

where P prev
an is the previous placement policy. Objec-

tive (1) minimizes the overall cost. While Camn is an
abstract cost function, we use aggregate distance (mea-
sured as network latency) as the cost function thus try-
ing to minimize the overall user-perceived network la-
tency. Objective (2) minimizes the number of data cen-
ters with deployed application replicas and objective (3)
minimizes the number of placement changes.

While multi-objective optimization problems are
commonly handled by combining all the objectives into
a single one with some weights assigned to each ob-
jective, in our case, this would transform the problem
to a mixed integer programming formulation (in fact, a
variant of a multicommodity capacitated facility location
problem [8]), which is NP-hard. Further, choosing ap-
propriate weights for different objectives is difficult in
our context as their effect on the final policies is indi-
rect and non-intuitive. Instead, we handle the problem
heuristically as follows.

2.2 Framework
Our heuristic approach to arbitrate among the competing
objectives involves two steps. First, we compute optimal
request distribution among data centers assuming every
application is deployed at every data center (full deploy-
ment). Here any optimization technique can be applied.
We explore a centralized approach based on a min-cost
max-flow model (§ 3).

Second, given the optimal demand distribution pol-
icy, we attempt to remove underutilized instances. We
introduce a Deletion Threshold (DT) as the level of de-
mand that justifies the cost of running an application at a
data center (note that the DT can be selected indepen-
dently for each application and has an easily grasped
intuitive meaning). We try to remove instances whose
demand after the first step is below DT by reassigning
their flows to remaining instances in an optimal manner
(§ 5). We also attempt to reduce the number of place-
ment changes in this step by assigning lower deletion
threshold to already-deployed instances (§ 5.3).

3 Full Deployment
We begin by obtaining optimal demand distribution pol-
icy with full deployment. We use a min-cost max-flow
optimization model for this purpose. This model rep-
resents the system as a directed network, with source
nodes generating demand, sink nodes consuming this de-
mand, and demand flowing from sources to sinks along
edges labeled with (cost, capacity). An edge label in-
dicates the maximum amount of demand that can tra-

  



  

 


  





 


  


   

 
 





 





 
 



  


 

 


 





 










 







Figure 2: Min-cost network model

verse this edge and the unit cost of such traversal. There
are efficient algorithms that solve the min-cost max-flow
problem, i.e., find the assignment of demand to edges
that maximizes the total satisfied demand while mini-
mizing the total cost. Refer to [7] for details on min-cost
flow problem and [2] for transforming it to a min-cost
max-flow problem; we use both terms interchangeably.
We utilize the tool [4] in our implementation, which uses
an algorithm with complexity O(V 2Elog(V Cap)) [16]
where V and E are the number of nodes and edges and
Cap is the maximum edge capacity.

3.1 Problem Modeling
We would like to forward client requests to closest data
centers and at the same time avoid overloading any data
centers. We assume the service does not degrade ap-
preciably as long as data center utilization is below its
capacity. (In reality, this means that utilization must stay
below a certain watermark, which for now we view as
capacity but set as a parameter in the simulation – see
§ 6.) Under this notion, we model our problem as the
following min-cost flow network.

Because of different back-end servers, requests for
different applications from the same client may have
different aggregate distances to the same data center.
Thus our model can not simply consider all demand
from the same client cluster as a whole. Therefore,
as shown in Figure 2, we have a pair-node Yam, a =
1, 2, ...A,m = 1, 2, ...C for each application and client
cluster pair (a,m). Also, each data center n has a node
DCn. Finally, we have a source node S and sink node T .
From source S to each pair-node Yam, we add an edge
with cost 0 and capacity ram, the latter being the request
rate from client cluster m for application a. Then we
add an edge from each pair-node Yam to each data cen-
ter node DCn, with cost being the aggregate distance
damn when client cluster m accesses the application a
at data center n, and capacity equal to the full request

4 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

rate from this client cluster for this application (since the
actual data center capacity is enforced by the subsequent
edge), i.e., ram. By connecting each pair-node with ev-
ery data center, we allow the demand from the corre-
sponding client cluster to be potentially split among any
of the data centers. Finally, there is an edge from every
data center node DCn to sink T , with cost 0 and capacity
equal to the capacity of data center un.

We try to move the total amount of flow∑A
a=1

∑C
m=1 ram from source S to sink T with

minimum cost. After we obtain the solution, flow famn

on the edge between nodes Yam and DCn represents the
amount of requests from client cluster m for application
a that should be forwarded to data center n.

4 Permutation Prefix Clustering
The size of the min-cost flow problem in Fig. 2 is ex-
tremely large, with A · C + D + 2 nodes and A · C +
A · C ·D +D edges. According to [19], there were on
the order of 400,000 client clusters in 2000. Then, for
C = 400, 000 client clusters, A = 100 applications, and
D = 20 data centers, the number of nodes and edges are
in the order of 4 × 107 and 8 × 108 respectively, mak-
ing this problem intractable. We address the scalability
problem in this section.

4.1 Basic Idea
With aggregate distance, each pair-node Yam has its own
preference of data centers in terms of proximity, produc-
ing a permutation of data centers. For example, permuta-
tion {1,4,2,3,6,5} means requests for application a from
client cluster m are the closest to DC1, the second clos-
est to DC4, and so on. We define each permutation as
a region, and client requests with the same preference of
data centers are in the same region. There is a region for
each pair-node in Fig. 2. We propose permutation prefix
clustering to reduce the number of regions and thus the
number of edges in Fig. 2.

In this method, we merge regions if their permu-
tations share the same prefix of certain length. For
example, for six data centers, let region1 have per-
mutation {1,4,2,3,6,5} and region2 have permutation
{1,4,2,3,5,6}. With prefix length 4, we could merge
them into region12 with prefix {1,4,2,3}. (Note that
requests from the same client cluster for different ap-
plications may end up in different regions since their
data center preferences may be different due to differ-
ent back-end servers.) After merging, we compute the
distance from the new region to each data center, includ-
ing those beyond the prefix, as the weighted average of
the distances from region1 and region2, with request
rate from each region as the weight.

Our observation is that unless most data centers are
highly loaded, requests for an application will only go

  


  

 

 











 



 


 





 




 










 









 
   





Figure 3: Clustered network model

to a few closest data centers. So for each client request,
we only need to consider the front part of its correspond-
ing permutation. Admittedly, there would be proximity
penalty when the flows do need to go to the data centers
beyond the prefix. However, this happens when most
data centers are highly loaded, in which case the prox-
imity becomes less of a priority as we need to satisfy all
the demand first. Moreover, our use of the weighted av-
erage distance to all data centers, including those beyond
the prefix, significantly reduces this penalty (see § 6.3).

4.2 Application to Min-Cost Model
To illustrate how permutation prefix clustering is applied
in our min-cost flow model, suppose we want to merge
the regions for pair-nodes Y1C and Yam in Fig. 2 because
their permutations share a prefix. We remove nodes Y1C

and Yam along with all their adjacent edges and replace
them with a new node Y ′. An edge is added from source
node S to node Y ′, and from Y ′ to each node DCn, n =
1, 2, ...D. The cost of the edge from S to Y ′ is still zero
and capacity is the sum of the capacities of the edges
(S, Y1C) and (S, Yam), or r′ = r1C + ram. The cost
of the edge (Y ′, DCn), n = 1, 2, ...D is the weighted
average of cost of edges (Y1C , DCn) and (Yam, DCn),
or d′n = d1Cn∗r1C+damn∗ram

r1C+ram
, and capacity is r′. The

updated network is shown in Fig. 3. This technique gen-
eralizes trivially to merging more than two pair-nodes.

Let L be the length of the permutation prefix. Then
the total number of possible regions after merging is:

Min{A ∗ C,
L−1∏
i=0

(D − i)}

which means the same number of merged pair-nodes Y ′.
Also, the dominant element of the total number of edges
in Fig. 2 is reduced from A · C ·D to:

D ∗Min{A ∗ C,
L−1∏
i=0

(D − i)}

Since A ∗C is very large, the total number of nodes and
edges in Fig. 3 are in the order of

∏L−1
i=0 (D − i) and

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 5

D ∗
∏L−1

i=0 (D − i) respectively, depending on D and L
only. Generally, the smaller the prefix length, the smaller
the problem size but the larger the potential proximity
penalty. We study these effects in § 6.3.

5 Partial Application Placement
A solution to the model of Fig. 3 provides a demand dis-
tribution policy assuming full deployment. Our next step
is to remove underutilized application instances.

Let fan be the amount of request flow of application
a assigned to data center n. If fan ≥ DT , we call it
normal flow and keep the instance of application a at data
center n. We denote the set of data centers with these
instances as Ua. We can immediately remove an instance
with zero demand (e.g., if fan = 0). The rest of this
section handles instances with demand 0 < fan < DT .
We call them tiny instances and their flows tiny flows.

5.1 Heuristics
Let set Va = {DCn|0 < fan < DT} contain data cen-
ters with a tiny instance of application a. Also let hn

be the number of normal flows at data center DCn. We
first assume that all tiny instances are removed (unless
all instances of an application are tiny, in which case one
instance with the largest flow is retained) along with their
flows and increase the residual capacities of the affected
data centers accordingly. We then attempt to distribute
these flows (referred to as residual demand) to data cen-
ters with residual capacities. Our procedure is guided by
the following observations:

1. We should try to remove the instances with the smallest
flows first because the reassignment of small flows will
affect fewer requests. In particular, it means that (1a) de-
mand for a tiny instance should not be reassigned to an
even tinier instance, and (1b) we should try to accommo-
date smaller flows (across all applications) first.

2. If we must retain some tiny instances (because data cen-
ters in Ua reach their capacity), we should keep the tiny
instances with the largest flows first. This is again moti-
vated by the desire to keep the largest amount of demand
assigned to the nearest data centers.

3. When selecting data centers in Ua to assign residual de-
mand, we should favor those with smaller hn because
their residual capacity is harder to utilize (since a data
center can only accept additional demand for the applica-
tions it hosts).

While the above set of heuristics may suggest a sim-
ple greedy procedure, where we reassign flows in the
increasing size order and distribute them to normal in-
stances first and then to the largest tiny instance with
residual capacity, this may result in highly suboptimal
flow assignment. Instead, we again build a min-cost flow
model for this problem, so that we reassign the residual
demand optimally, and at the same time manipulate the
costs in the model to follow the above heuristics.









  


 

  









 









 
 



 


  




 













−



Figure 4: Residual demand distribution network

5.2 Tiny Flow Removal
Our min-cost flow model for tiny flow removal is shown
in Fig. 4. Each tiny flow fan has a corresponding node
RDan, referred to as demand node. From source S, we
add an edge to every demand node. Also, from each
demand node RDan, there is an edge to data center node
DCk if the latter has an instance of application a and
fak >= fan. By not including edges to data centers with
smaller flows (note the absence of edges from RDan to
DC1 and DCD−1 in Fig. 4), we enforce heuristic 1a.
Finally, each data center node is connected to sink T .

For edges from source node S to demand node RDan,
the capacity is fan, and the cost is 0 - this represents the
demand to be satisfied. All edges from demand node
RDan to data center nodes have capacity fan (this de-
mand could potentially be satisfied by any of these data
centers), and the edges from data center nodes to the sink
have capacities equal to the residual capacity rcn of each
data center. For data center DCk ∈ Ua, the cost of the
edge from node RDan to DCk is 0 (since it already has
an instance and we would like to assign as much demand
as possible to these nodes – see the edge from RDan to
DC2 in the figure). The cost of other edges is chosen in
a way such that:

1. For any two tiny flows fan and fa′n′ , if fan < fa′n′ then
costi,j of edges going from demand node RDan to data
center nodes in Va is larger than costi′,j′ of edges going
from RDa′n′ to data center nodes in Va′ . In this way,
flow fan would have an advantage over fa′n′ when com-
peting for residual capacity of data centers with instances
of both applications, thus following heuristic 1b.

2. The cost of edges going from residual node RDan to
DCk ∈ Va is inversely proportional to fak. In this way,
the min-cost flow algorithm will try to follow heuristic 2.

3. For the edge from data center node DCn to sink T , the
cost is the number of normal flows hn at data center
DCn. This makes the algorithm follow heuristic 3.

4. Because heuristics 1 and 2 have higher priority than 3,
we make sure that the cost of edges from demand nodes
RDan to data center nodes in Va dominates the cost of
edges from data center nodes in Va to the sink node.
In Fig. 4, Ca,n >> hk and Ca,D >> hk for all

6 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

k = 1, 2, ...D.
After solving this problem, we remove all the tiny in-

stances that became idle (assigned no demand).

5.3 Hysteresis Placement
As described so far, our scheme computes a new place-
ment policy only based on the current demand distribu-
tion, regardless of the previous placement. This can re-
sult in large number of placement changes.

We propose hysteresis placement to control the num-
ber of placement updates. We introduce a parameter
hysteresis ratio (HR) when categorizing flows. If ap-
plication a is deployed at data center n in the previous
placement, we consider fan as tiny instance only when
fan < DT

HR , where HR ≥ 1. In this way, if applica-
tion a is currently deployed at data center n, then it is
more likely to be kept in place in the new placement.
This added ”stickiness” may result in some increase in
the number of application instances and some response
time penalty. We evaluate these effects in § 6.5.

5.4 Further Fine-Tuning
Our scheme so far aggregates demand into flows from
coarse-grained regions and does not distinguish between
requests within a flow. So, when a flow is assigned
to multiple data centers, rather than sending requests
to these data centers at random, we can split this flow
among its assigned data centers according to request
proximity preferences as long as this does not violate
the overall demand distribution. We skip details due to
space limitation but provide them in the extended ver-
sion of this paper [27]. Our evaluation study includes
this optimization in all the experiments.

6 Evaluation
We study the performance of our approach using large-
scale simulation built on CSIM [6], a discrete-event sim-
ulation package. Mimicking the actual system, our sim-
ulator has a decision component and a request routing
component. The decision component periodically up-
dates application placement and server selection policy
(every 30s by default). There is also a workload com-
ponent that generates requests according to load patterns
discussed later. The routing component forwards each
request to the appropriate data center according to the
policy generated by decision component.

6.1 Cloud Model
We simulate a global cloud platform across 20 data cen-
ters hosting 100 applications (except for the scalability
experiments in § 6.7). We parameterize our model as fol-
lows. We got all pingable IP addresses – 157803 total –
from the Gnutella peer list compiled at the University of
Oregon [3] and found their geographical locations using

the GeoIP database (commercial version)[5]. We ”de-
ploy” our 20 data centers in countries according to their
client distribution, i.e., nine data centers in US, three in
China, etc. For the US, we use a similar procedure to
distribute the data centers among states.

We then selected 20 PlanetLab nodes in the same lo-
cales as our data centers and measured ping latencies
from each such PlanetLab node to each client. We were
able to obtain complete distances to 100546 clients. We
then used these clients to represent the locations of client
clusters, the 20 PlanetLab nodes to mimic our data cen-
ters, and the measured ping latencies as the network dis-
tances. Since back-end databases are assumed to stay
outside the cloud (see § 2), we randomly select 100 Plan-
etLab nodes to mimic the databases and use ping laten-
cies from the 20 PlanetLab nodes representing data cen-
ters to these 100 PlanetLab nodes as distances between
data centers and databases.

We divide the world into 20 geographic regions, each
with a data center. Client clusters that share a common
closest data center fall into the same geographic region
with the data center. We also divide applications into two
categories, regional and global. Regional applications
are particularly popular within a specific geographic re-
gion (hot region), e.g., the website of a state govern-
ment; global applications are universally popular. For a
regional application, we define regional rate as the por-
tion of requests it receives from its hot region. We use
regional rate of 0.9.

6.2 Workload
Each data center can serve 10,000 requests peer second
(req/s), resulting in the total capacity of all data centers
of 200,000 req/s. These rates are dictated by the scala-
bility of the simulator itself, but are sufficient to evalu-
ate our approach. We define load factor as the ratio of
the total request rate of all data centers to the total ca-
pacity. Each (normalized –see § 2) request is assumed
to have service time 0.03 second, so every data center in
the simulator has 300 CSIM facilities that mimic servers.
We set the queue length of each facility to 150; requests
are distributed among servers in a data center in a round-
robin fashion and are dropped when arriving at a facility
with full queue. In the optimization models, we assume
the capacity watermark of 0.9, that is, the system tries to
keep each data center utilization within 9,000 req/s.
Demand Generation. We assume applications’ popu-
larity follows Zipf law with parameter 1. The top ap-
plication is global and the remaining 99 are regional,
thus the global application generates around 20% of to-
tal demand. Given the target total request rate, r, de-
termined by the load factor, the workload generates re-
quests sequentially with exponentially distributed inter-
arrival time with mean t = 1/r. For each request, it first

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 7

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 1 2 3 4 5 6 7 8 9 1
0

 1
1

 1
2

 1
3

 1
4

 1
5

 1
6

 1
7

 1
8

 1
9

 2
0

D
el

ay
 P

en
al

ty
 (%

)

Prefix Length

load=0.3
load=0.4
load=0.5
load=0.6
load=0.7
load=0.8
load=0.9

(a) Penalty (aggregated distance)

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 1 2 3 4 5 6 7 8 9 1
0

 1
1

 1
2

 1
3

 1
4

 1
5

 1
6

 1
7

 1
8

 1
9

 2
0

D
el

ay
 P

en
al

ty
 (%

)

Prefix Length

load=0.3
load=0.4
load=0.5
load=0.6
load=0.7
load=0.8
load=0.9

(b) Penalty (no aggregated distance)

 0
 60

 120
 180
 240
 300
 360
 420
 480
 540
 600
 660
 720
 780
 840

 0 1 2 3 4 5 6 7 8 9 1
0

 1
1

 1
2

 1
3

 1
4

 1
5

 1
6

 1
7

 1
8

 1
9

 2
0

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Prefix Length

load=0.3
load=0.4
load=0.5
load=0.6
load=0.7
load=0.8
load=0.9

(c) Execution time

Figure 5: Performance of prefix clustering

selects an application according to the power law prob-
ability distribution. Then if the selected application is
regional, it assigns the request to a random client clus-
ter from its hot region with probability of regional rate
and to a randomly selected client cluster from outside
its hot region otherwise. If the application is global, the
request is assigned to a random client cluster.
Dynamic Demand Patterns. During simulations, the
demand pattern changes every T seconds. We use the
following dynamic load patterns in our experiments:
1) Vary-All-App: starting from the initial distribution
generated as described above, the demand for each ap-
plication changes randomly within ±∆%, where ∆ is
a parameter controlling the extent of variability. This
workload is an extended version of vary-all-apps in [33].
2) Rank-Exchange: popularity rankings of k randomly
picked pairs of applications are swapped, where k con-
trols the extent of demand variability. This workload
mimics the change of popularity among applications.
3) Reshuffle-All: in each cycle, the rankings of the appli-
cations are reset to a random permutation and each re-
gional application is remapped to a new random region.
This workload mimics extreme case of change, where
the demand pattern in each cycle is completely indepen-
dent of the pattern in previous cycle.

6.3 Clustering Performance
We begin with the evaluation of permutation prefix clus-
tering. In each experiment, we initially generate the re-
quests that would occur in one second and re-send these
requests repeatedly every logical second for ten logical
seconds, at which point we recompute the demand to be
used for the next ten seconds, and so on. While we use
the same demand pattern, the demand will be different
due to new random coin tosses during generation. To
factor out the effects of stale demand data, the experi-
ments in this subsection as well as § 6.4 and § 6.5 re-
compute the policy every time the demand is recomputed
(every 10 second here) and use the upcoming demand
data as input. We defer considering online policy com-
putation based on prior demand until policy evaluation
and prototype testing (§ 6.6 and § 7). The simulation

lasts 50 logical seconds. To concentrate on clustering
effect on server selection, all experiments in this subsec-
tion assume full deployment for each application, dele-
tion threshold 0 req/s, and hysteresis ratio 1.

Fig. 5 shows performance effects as clustering level
changes from the extreme case when only the closest
server is considered (prefix 1) to no clustering (prefix
20, although no clustering occurred beyong prefix 18).
We measure the number of dropped requests (although
we did not observe any) and the average response time.
Fig. 5a shows the response time penalty from cluster-
ing (also called delay penalty below), expressed as the
relative difference between average response times with
and without clustering. As seen from the figure, for a
given level of clustering (i.e., the prefix length value),
the penalty is smaller for lower load factors. (The line for
load factor 0.4 deviates slightly from this trend for initial
values of the prefix length. Since the penalty variations
involved are very small - within 1% - we view it as a sta-
tistical aberration.) This makes sense because with low
load, most demand is satisfied by the closest server, and
the discrimination among more distant servers becomes
unimportant. However, even for high loads, the cluster-
ing penalty is small, never exceeding 10%, and drops
quickly with the prefix length. We attribute this to the
effect of our distance aggregation for all members of the
cluster: even when client-application pairs are clustered,
their proximity to servers beyond the common prefix is
still accounted for through aggregated distances. Indeed,
Fig. 5b shows the delay penalty increases significantly
when all distances to data centers beyond the prefix are
assumed equal. Finally, Fig. 5c depicts the effect of clus-
tering on the algorithm execution time. It shows that
clustering trades these small delay penalties for a dra-
matic reduction in the execution time. For instance, for
load factor 0.6, going from no clustering (prefix 20) to
clustering with prefix 3 reduces the execution time from
552.4s to 2.3s, at the expense of only 1.3% delay penalty.
We study the scalability of our approach further in § 6.7.

In summary, our experiments show that prefix cluster-
ing is a promising general technique for aggregating de-
mand. Given these results, we use prefix size 3 for sub-

8 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 0 150 300 450 600 750 900 1050

N
um

. o
f A

ct
iv

e
In

st
an

ce
s

Deletion Threshold (req/s)

load=0.9
load=0.7
load=0.5
load=0.3

(a) Number of instances

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 150 300 450 600 750 900 1050

D
el

ay
 P

en
al

ty
 (%

)

Deletion Threshold (req/s)

load=0.9
load=0.7
load=0.5
load=0.3

(b) Delay penalty

Figure 6: The effects of the deletion threshold

sequent experiments, which allows us to solve the min-
cost problem efficiently while keeping the delay penalty
small - within 4% in the above experiments.

6.4 Deletion Threshold
We now study the deletion threshold (DT) effect. A
higher DT tends to remove more instances but leads to
greater performance penalty, as requests that used to go
to the underutilized instances will now be routed to more
distant data centers, while DT = 0 means no tiny instance
removal, i.e., only completely idle instances are dropped.
We use prefix 3 (see § 6.3) and hysteresis ratio 1 for these
experiments.

Fig. 6 quantifies these effects by showing the total
number of instances and delay penalty for different DT
values. The workload is the same as in the previous sub-
section. Since each simulation run involves five recom-
putations of the demand, each data point represents the
average total number of application instances across the
whole run. The figure shows that as the deletion thresh-
old increases, the number of total instances plunges in
the beginning, but then decreases very slowly. The de-
lay penalty behaves the opposite way, although at low
load the penalty does not flatten. In general, this result
indicates that with an appropriate deletion threshold, our
scheme can drastically reduce the number of application
instances with small performance penalty. We choose
deletion threshold 150 req/s throughout our subsequent
experiments as it obtains factor of 5-7 reduction in the
number of application instances while keeping the delay
penalty under 8% for all loads.

6.5 Hysteresis Placement Effects
We now evaluate the hysteresis ratio effects, using dele-
tion threshold 150 req/s (see § 6.4) and prefix length 3
(see § 6.3) in the experiments.

We use the following workload. At the first logical
second, we generate a demand. At the next second, we
remap the regional applications randomly to regions and
recompute the demand. At all the subsequent seconds,
we recompute the demand with new random coin tosses
but keep the same pattern. So the workload changes dra-
matically in the second second, but keeps stable (except

 0
 150
 300
 450
 600
 750
 900

 1050
 1200
 1350
 1500
 1650
 1800
 1950

-1 0 1 2 3 4 5 6 7 8 9 10 11N
um

. o
f P

la
ce

m
en

t U
pd

at
es

Hysteresis Ratio

load=0.9
load=0.7
load=0.5
load=0.3

(a) Placement updates

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

-1 0 1 2 3 4 5 6 7 8 9 10 11

N
um

. o
f A

ct
iv

e
In

st
an

ce
s

Hysteresis Ratio

load=0.9
load=0.7
load=0.5
load=0.3

(b) Number of instances

Figure 7: The effects of the hysteresis ratio

for statistical variations) in the remaining time. The ap-
plication placement is computed every second: with our
focus on placement changes, this allows us to shorten the
experiment without affecting the results. The experiment
lasts 20s. In Fig. 7, each data point represents the mean
over five simulation runs with different seeds.

Fig. 7a shows the number of placement changes as
the hysteresis ratio increases. For comparison, the fig-
ure also includes results for a heuristic application place-
ment from [29] at 0 point on the x-axis. We see that with
the increase of the hysteresis ratio, the number of place-
ment updates drops but the total number of instances in-
creases. When hysteresis ratio reaches 3, our approach
results in fewer placement updates than algorithm from
[29], even though the latter computes the new placement
by adjusting the current configuration. Admittedly, as
Fig. 7b shows, this comes at the expense of a certain in-
crease in the number of instances, especially at higher
load factors (a third more instances). We argue that this
modest increase is justified by a significantly better per-
formance of our approach, as we will see in the § 6.6.
Interestingly, the delay penalty is negligible - less than
2% – and is not shown here. We use hysteresis ratio 3
for the rest of our experiments.

6.6 Policy Evaluation
This section compares the quality of the policies pro-
duced by our approach and prior work. To our knowl-
edge, the only works that jointly address the problems of
demand distribution and application placement are [29]
and [25]. Since our approach and [25] are not directly
comparable ([25] aims at minimizing the replica load im-
balance rather than optimizing the proximity), we com-
pare our approach with [29]. The latter represents a dras-
tically different approach from ours: it heuristically ad-
justs current placement by replicating or migrating in-
stances and modifies server selection strategy according
to the observed demand.

In these experiments, we use the dynamic load pat-
terns in § 6.2 with load factor 0.5 and regional rate
0.9. Experiments start with full deployment and every
request is forwarded to the closest data center. We gen-
erate the initial demand according to § 6.2. For the first

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 9

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0 10 20 30 40 50 60 70

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(s
ec

)

Demand Change Ratio (%)

heuristic
min-cost

(a) Average response time

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07
 1e+08
 1e+09

 0 10 20 30 40 50 60 70

D
ro

pp
ed

-re
qu

es
t N

um
be

r

Demand Change Ratio (%)

heuristic
min-cost

(b) Dropped requests

Figure 8: Policy performance (Vary-All-App)

15 logical seconds, the system is in a warm-up stage,
where we update the policies every second so that the
policies reflect the initial demand pattern after this stage.
This is done for fairness to [29] as it adopts to the desired
configuration incrementally. Then the system goes into
the measurement stage, lasting 900 logical seconds, in
which the demand is recomputed every 150 sec. accord-
ing to the dynamic load pattern used, and the policies are
updated every 30 sec. When computing the policies, we
collect request rates through the statistics from all data
centers as in reality. We use exponential moving average
(smoothing factor 0.6) to maintain these statistics.

Fig. 8, 9 show the average response time and number
of dropped requests for the two approaches, for the first
two workloads (Reshuffle-All is not shown due to the
space limit and is included in the extended version [27]).
The curves corresponding to our approach and the ap-
proach of [29] are labeled, respectively, ”min-cost” and
”heuristic”. The results show dramatic performance ad-
vantage of our approach for both metrics. The average
response time shows improvements at least by a factor of
2, and dropped requests reduce by orders of magnitude.

6.7 Scalability
We turn to the scalability of our approach. Our baseline
setup of the system includes 100,546 client clusters, 20
data centers and 100 applications. We measure the exe-
cution time of our algorithms by increasing one of these
parameters and keeping the other two constant. For the
purpose of simulations, whenever we add a new entity
to the setup and need a network delay between it and
other entities, we pick the delay at random between 0
and 500ms. We utilize Dell PowerEdge 2950 server with
8 cores and 16G memory in the experiments.

The results are presented in Fig. 10. They show that
the execution time grows almost linearly with the num-
ber of client clusters and applications, but superlinearly
with the number of data centers. The latter makes sense
since, for the prefix length 3 we used, the size of the
min-cost flow model of Fig. 3 grows as the power of 4 of
the number of data centers (§ 4.2). Meanwhile, when the
number of client clusters and applications increases, the
size of the min-cost flow problem used in the first phase

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0 4 8 12 16 20 24 28

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(s
ec

)

Number of Rank Pairs

heuristic
min-cost

(a) Average response time

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07
 1e+08
 1e+09

 0 4 8 12 16 20 24 28

D
ro

pp
ed

-re
qu

es
t N

um
be

r

Number of Rank Pairs

heuristic
min-cost

(b) Dropped requests

Figure 9: Policy performance (Exchange-Rank)

(optimization with full deployment) does not change, but
the size of the problems used in the second phase (ap-
plication placement) and in the flow-splitting phase in-
crease linearly. As shown, the execution time remains
within tens of seconds for thousands of applications, mil-
lions of client clusters, and tens of data centers.

We argue this reflects realistic platform sizes and ac-
ceptable execution time. Indeed, Krishnamurthy and
Wang found roughly 400K client clusters on the In-
ternet [19], and most infrastructure providers, such as
Limelight and AT&T, operate up to 20-30 data centers.
Execution time in the order of tens of seconds also seems
acceptable: Oppenheimer et al., considering three real
workloads, recommend application placement be done
in the order of every 30 min. [24]; Wendell et al. found
demand to be fairly stable on the 10-min. time scale [36].

7 Prototype
To demonstrate the operation of our system, we imple-
mented our approach and deployed a testbed that mim-
ics a global platform. We use five machines to emulate
five data centers: one in Japan, one in UK, one in Aus-
tralia, one in California and one in New York. We use
another five machines to mimic the clients at these lo-
cations. To emulate global deployment, we hard-code
the distances between the machines representing clients
and data centers using measured ping RTTs between
PlanetLab nodes in the mimicked locations. We used
MyXDNS [10], a DNS server configurable with external
server selection policies, as a request router.

In the prototype, a decision component collects uti-
lization and demand distribution from data centers, pe-
riodically computes placement and server selection poli-
cies using our approach, and uploads the new server se-
lection policy into MyXDNS. MyXDNS and our deci-
sion component both run on a separate machine, updat-
ing the policy every 30 seconds. On machines that mimic
data centers, we install the WebSphere application server
running the TPC-W benchmark (with the browsing mix
workload) as the application. We set server capacity to
100 req/s and capacity watermark at 70%. Yet we report
results in terms of actual server utilization, thus justify-
ing (at least for this application) our assumption about

10 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Ex
ec

ut
io

n
Ti

m
e (

se
c)

Number of apps (thousand)

load=0.9
load=0.7
load=0.5
load=0.3

(a) Execution time vs. app number

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Ex
ec

ut
io

n
Ti

m
e (

se
c)

Number of CCs (million)

load=0.9
load=0.7
load=0.5
load=0.3

(b) Execution time vs. CC number

 0
 30
 60
 90

 120
 150
 180
 210
 240
 270
 300
 330
 360
 390
 420
 450

 0 10 20 30 40 50 60 70 80 90 100 110

Ex
ec

ut
io

n
Ti

m
e (

se
c)

Number of DCs

load=0.9
load=0.7
load=0.5
load=0.3

(c) Execution time vs. DC number

Figure 10: Scalability of Policy Computation

feasibility of using request rates as measure of demand
and utilization. We use the following two scenarios to
demonstrate how our system responds to the dynami-
cally changing demand.

7.1 Demand Shift
Our first scenario shows the ability of the system to han-
dle demand shifts from one region to another. In this
scenario, we generate requests from only one location at
a time and at a level that a single data center can cope
with, but we change the location every 120s.

Fig. 11 shows the CPU utilization of the five machines
imitating data centers. It indicates that the system han-
dles this scenario successfully. Indeed, the application
placement follows the demand after the delay induced
by the periodicity of policy updates. Only one instance
of the application is deployed at a time except during
transitions, since our prototype is careful not to enact in-
stance deletion until it completes pending requests - this
is seen from an overlap in utilization curves.

7.2 Flash Crowd
Our second scenario imitates a flash crowd coming from
one region. In this experiment, we generate requests
from a single fixed location throughout the experiment
but the amount of requests increases in the first 220s,
then stays constant for 120s, and then drops in the final
220s. The application is initially placed in the data cen-
ter in the region that generates the demand.

Fig. 12 shows the CPU utilization of the data centers
in this scenario, again demonstrating successful opera-
tion of the system. Initially, data center DC1, the near-
est to client demand, is sufficient to handle the work-
load. As its utilization exceeds the watermark, the ap-
plication is deployed at two more data centers - first at
the second closest data center DC2 and then at DC3,
the third closest. Once the flash crowd subsides, the sys-
tem removes the application from the two distant data
centers, first from DC3 and then from DC2. Note that
during the flash crowd, the two closest data centers are
utilized equally (up to their capacity watermark) and the
more distant data center DC3 receives only the overflow

-10
 0

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 1 2 3 4 5 6 7 8 9 10 11

Ut
ili

za
tio

n
of

 D
Cs

 (%
)

Time (minute)

DC1DC2DC3DC4DC5

Figure 11: DC utilization with demand shift

-10
 0

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 1 2 3 4 5 6 7 8 9 10 11

Ut
ili

za
tio

n
of

 D
Cs

 (%
)

Time (minute)

DC1DC2DC3DC4DC5

Figure 12: DC utilization with flash crowd

demand. Also note transient effects around 60 and
150 seconds, due to periodicity in policy recomputation
(hence an inherent lag in reaction to changing demand)
and an occasional unpredictable change in demand. E.g.,
at around 120 sec, the request rate produced by the de-
mand generator unexpectedly dropped (not following the
workload pattern), causing the system to lower selection
probability of DC2. But right after that, the workload
increased back to normal, leading to spike in utilization
of DC1, while leaving DC2 only modestly utilized.

8 Related Work
While many efforts have addressed application place-
ment and server selection, they mostly consider only one
of these two problems. Schemes in [28, 22, 14, 15,
17, 18, 20] address the placement problem assuming re-
quests are always forwarded to the closest replica. This
makes these approaches suboptimal in practice as servers
have limited capacity. Some works formulate global op-
timization problems [28, 14] but use them only as the ba-

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 11

sis for comparison since they are impractical due to com-
putational cost. Our prefix clustering approach makes
global optimization practical in many cases.

Other approaches focus on the server selection assum-
ing a given set of replicas [11, 36, 30, 13, 31]. None of
them take into account the distance between server and
back-end database, partly because they mostly consider
server selection for CDNs, which do not have this is-
sue. In particular, [36] proposes an optimal decentral-
ized server selection algorithm done by a set of mapping
nodes. We address a joint placement and selection prob-
lem in a centralized manner but handle the scale issue
through a novel prefix clustering technique. In [11], the
authors use a min-cost flow model to generate the server
selection strategy. However, they assume that the place-
ment of applications is fixed while our approach includes
the placement aspect. Furthermore, unlike our clustering
technique, their approach to scalability depends on a for-
tuitous placement configuration.

Among the few works that tackle both placement and
server selection, [25] proposes distributed placement and
server selection algorithms. However, their server selec-
tion aims to balance load without considering proxim-
ity. In [29], the authors propose decentralized placement
and centralized server selection algorithms that take into
account both server load and proximity but compute both
policies in isolation. Our unified approach showed per-
formance advantages over it. None of them considers
the distance between server and back-end database.

9 Conclusion and Future Work
This paper addresses a problem of efficient hosting
of multiple applications in a globally distributed cloud
computing platform and makes two main contributions.
First, we design a unified approach for application place-
ment and demand distribution policies and show its
promise through both simulation experiments and a pro-
totype testbed demonstration. Second, we propose a
novel demand clustering technique and show that it
makes policies based on global optimization models
practical for realistic-size environments. We hope our
clustering technique will be found useful beyond its ap-
plication to the particular algorithms discussed here.

Important issues for future work include extending
out approach to account for energy consumption, con-
sider inter-dependencies among hosted applications, al-
low applications to have different priorities, and ensure
pre-defined quality of service levels.

References
[1] http://download.oracle.com/docs/cd/e13222 01/wls/

docs60/cluster/servlet.html.
[2] http://en.wikipedia.org/wiki/minimum cost flow

problem.
[3] http://mirage.cs.uoregon.edu/p2p/snapshots.html.
[4] http://www.igsystems.com/cs2/index.html.

[5] http://www.maxmind.com.
[6] http://www.mesquite.com/documentation.
[7] AHUJA, R., MAGNANTI, T., AND ORLIN, J. Network flows:

theory, algorithms, and applications. Prentice hall, 1993.
[8] AKINC, U. Multi-activity facility design and location problems.

Management Science 31, 3 (MAR 1985), pp. 275–283.
[9] AL-QUDAH, Z., ALZOUBI, H., ALLMAN, M., RABINOVICH,

M., AND LIBERATORE, V. Efficient application placement in a
dynamic hosting platform. In WWW (2009), pp. 281–290.

[10] ALZOUBI, H., RABINOVICH, M., AND SPATSCHECK, O.
MyXDNS: A request routing DNS server with decoupled server
selection. In WWW (2007), pp. 351–360.

[11] ANDREWS, M., SHEPHERD, B., SRINIVASAN, A., WINKLER,
P., AND ZANE, F. Clustering and server selection using passive
monitoring. In IEEE INFOCOM (2002), pp. 1717–1725.

[12] ARMBRUST, M., FOX, A., GRIFFITH, R., JOSEPH, A., KATZ,
R., KONWINSKI, A., LEE, G., PATTERSON, D., RABKIN, A.,
STOICA, I., ET AL. Above the clouds: A Berkeley view of
cloud computing. UC Berkeley, Tech. Rep. UCB/EECS-2009-28
(2009).

[13] BAKIRAS, S. Approximate server selection algorithms in con-
tent distribution networks. In IEEE ICC (2005), pp. 1490–1494.

[14] BARTOLINI, N., PRESTI, F., AND PETRIOLI, C. Optimal dy-
namic replica placement in Content Delivery Networks. In IEEE
ICON (2003), pp. 125–130.

[15] CIDON, I., KUTTEN, S., AND SOFFER, R. Optimal allocation
of electronic content. In IEEE INFOCOM (2001), pp. 205–218.

[16] GOLDBERG, A. V. An efficient implementation of a scaling
minimum-cost flow algorithm. In J. Algorithms (1997), Aca-
demic Press, Inc.

[17] JAMIN, S., JIN, C., KURC, A., RAZ, D., AND SHAVITT, Y.
Constrained mirror placement on the Internet. In IEEE INFO-
COM (2001), pp. 31–40.

[18] JIA, X., LI, D., HU, X., AND DU, D. Placement of read-write
web proxies in the internet. In IEEE ICDCS (2001), pp. 687–690.

[19] KRISHNAMURTHY, B., AND WANG, J. On network-aware clus-
tering of web clients. In ACM SIGCOMM (2000), pp. 97–110.

[20] KRISHNAN, P., RAZ, D., AND SHAVITT, Y. The cache location
problem. IEEE/ACM ToN 8, 5 (2000), 568–582.

[21] LAGAR-CAVILLA, H., WHITNEY, J., BRYANT, R., PATCHIN,
P., BRUDNO, M., DE LARA, E., RUMBLE, S., SATYA-
NARAYANAN, M., AND SCANNELL, A. SnowFlock: Virtual
Machine Cloning as a First-Class Cloud Primitive. ACM TOCS
29 (2011), 2:1–2:45.

[22] LI, B., GOLIN, M., ITALIANO, G., DENG, X., AND SOHRABY,
K. On the optimal placement of web proxies in the internet. In
IEEE INFOCOM (1999), pp. 1282–1290.

[23] MARLER, R., AND ARORA, J. Survey of multi-objective op-
timization methods for engineering. Structural and Multidisci-
plinary Optimization 26, 6 (2004), 369–395.

[24] OPPENHEIMER, D., CHUN, B., PATTERSON, D., SNOEREN,
A., AND VAHDAT, A. Service placement in a shared wide-area
platform. In USENIX ATC (2006), pp. 26–26.

[25] PRESTI, F., PETRIOLI, C., AND VICARI, C. Distributed dy-
namic replica placement and request redirection in Content De-
livery Networks. In ACM/IEEE MASCOTS (2007), pp. 366–373.

[26] QIAN, H., MILLER, E., ZHANG, W., RABINOVICH, M., AND
WILLS, C. E. Agility in virtualized utility computing. In VTDC,
pp. 9:1–9:8.

[27] QIAN, H., AND RABINOVICH, M. Applica-
tion placement and demand distribution in a global
cloud platform: A unified approach. Available at
http://engr.case.edu/qian hangwei/files/tech report global.pdf.

12 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

[28] QIU, L., PADMANABHAN, V., AND VOELKER, G. On the
placement of web server replicas. In IEEE INFOCOM (2001),
pp. 1587–1596.

[29] RABINOVICH, M., XIAO, Z., AND AGGARWAL, A. Computing
on the edge: A platform for replicating internet applications. In
WCW (2003), pp. 57–77.

[30] RANJAN, S., KARRER, R., AND KNIGHTLY, E. Wide area redi-
rection of dynamic content by Internet data centers. In IEEE
INFOCOM (2004), pp. 816–826.

[31] SAYAL, M., BREITBART, Y., SCHEUERMANN, P., AND VIN-
GRALEK, R. Selection algorithms for replicated web servers.
ACM SIGMETRICS Performance Evaluation Review 26 (1998),
44–50.

[32] STEWART, C., AND SHEN, K. Performance modeling and
system management for multi-component online services. In
USENIX NSDI (2005), pp. 71–84.

[33] TANG, C., STEINDER, M., SPREITZER, M., AND PACIFICI, G.
A scalable application placement controller for enterprise data
centers. In WWW (2007), pp. 331–340.

[34] TESAURO, G., JONG, N., DAS, R., AND BENNANI, M. A hy-
brid reinforcement learning approach to autonomic resource al-
location. In USENIX ICAC (2006), pp. 65–73.

[35] URGAONKAR, B., SHENOY, P., AND ROSCOE, T. Resource
overbooking and application profiling in shared hosting plat-
forms. In USENIX OSDI (2002), pp. 239–254.

[36] WENDELL, P., JIANG, J., FREEDMAN, M., AND REXFORD, J.
DONAR: decentralized server selection for cloud services. In
ACM SIGCOMM (2010), pp. 231–242.

[37] ZHANG, W., QIAN, H., WILLS, C., AND RABINOVICH, M.
Agile resource management in a virtualized data center. In ACM
WOSP/SIPEW (2010), pp. 129–140.

