
USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 247

Reliability and Timeliness Analysis of Fault-tolerant Distributed Publish /
Subscribe Systems

Thadpong Pongthawornkamol∗
University of Illinois

Urbana, IL
tpongth2@illinoisalumni.org

Klara Nahrstedt
University of Illinois

Urbana, IL
klara@illinois.edu

Guijun Wang
Boeing Research & Technology

Seattle, WA
guijun.wang@boeing.com

Abstract
Distributed publish / subscribe paradigm is a powerful
data dissemination paradigm that offers both scalability
and flexibility for time-sensitive applications. However,
its nature of high expressiveness makes it difficult to an-
alyze or predict the performance of publish / subscribe
systems such as event delivery probability and end-to-
end delivery delay, especially when the publish / sub-
scribe systems are deployed over distributed, large-scale
networks. While several fault tolerance techniques to in-
crease reliability in distributed publish / subscribe sys-
tems have been proposed, event delivery probability and
timeliness of publish / subscribe systems with such re-
liability enhancement techniques have not yet been an-
alyzed. This paper proposes a generic model that ab-
stracts the basic distributed publish / subscribe protocol,
along with several commonly used fault-tolerant tech-
niques, on top of distributed, large-scale networks. The
overall goal of this model is to predict quality of service
(QoS) in terms of event delivery probability and time-
liness based on statistical attributes of each component
in the distributed publish / subscribe systems. The eval-
uation results via extensive simulations with parameters
computed from real-world traces verifies the correctness
of the proposed prediction model. The proposed predic-
tion model can be used as a building block for automatic
QoS control in distributed, time-sensitive publish / sub-
scribe systems such as subscriber admission control, bro-
ker deployment, and reliability optimization.

1 Introduction

Recently, distributed publish / subscribe systems have
emerged as an effective multi-source, multi-sink commu-
nication paradigm for large-scale, time-sensitive applica-
tions such as stock report, live sportcasting, and social
network messaging. The main concept of publish / sub-
scribe paradigm is that senders and receivers of informa-

∗The author is currently employed at Google Inc.

tion are connected loosely based on the content of the
information. Specifically, in a publish / subscribe sys-
tem, a publisher (i.e., sender) can produce its events (i.e.
messages) without specifying the set of subscribers (i.e.,
receivers). Instead, each subscriber specifies the content
(or topic) of event it is interested to receive. All events
produced from publishers containing content (or topic)
that match a subscriber’s interest are then delivered to that
subscriber via a network of intermediary servers called
brokers. Since the information flows based on the con-
tent of the information, publishers and subscribers are de-
coupled in space, time, and synchronization [16]. Such
transparency allows the system to scale and adapt well
under dynamic environments, resulting in wide adoption
of publish / subscribe paradigm in many contexts such as
cloud computing [26], mobile computing [9], and peer-
to-peer services [36].

While distributed publish / subscribe systems achieve
scalability and fault tolerance, failures at brokers or links
between brokers can still cause time-sensitive events to
be lost or expired before being delivered to the sub-
scribers [19, 28]. Several reports have shown that while
high-end commercial servers with high maintenance gen-
erally achieve at least 99.9% availability (i.e., available
99.9% of the time) [4], most standard, off-the-shelf com-
modity servers with low to moderate maintenance may
have less than 90% availability [3]. To cope with such
component failures in the context of publish / subscribe
systems, several fault-tolerant / fault-recovery techniques
have been proposed to increase service availability in dis-
tributed publish / subscribe systems [13,14]. However, to
the best of our knowledge, the effect of such commonly-
used fault-tolerant techniques to a publish / subscribe sys-
tem’s reliability and timeliness has not been analyzed yet.

In this paper, we propose a quantitative, analytical
model to predict the effect of failures and commonly used
recovery techniques to the quality of service (QoS) each
subscriber receives in distributed, time-sensitive publish
/ subscribe systems. The primary goal of such analyti-
cal model is to estimate each subscriber’s real-time re-

1

248 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

liability, which is the percentage of events that are suc-
cessfully delivered to each subscriber on time (i.e., be-
fore the event is expired). The analytical model covers
common component failures and recovery mechanisms,
resulting in the model’s high applicability. The evalu-
ation results via simulations with parameters computed
from real-world traces yield correctness of the proposed
analytical model. The proposed model can be used as a
building block for automatic QoS control in distributed,
time-sensitive publish / subscribe systems such as sub-
scriber admission control, broker deployment, and relia-
bility optimization.

The organization of this paper is as follows. In Sec-
tion 2, we first describe the basic publish / subscribe
model, failure model, and commonly used fault toler-
ance / recovery techniques. In Section 3, we then formu-
late the subscriber real-time reliability estimation prob-
lem and propose a generic, protocol-independent analyt-
ical framework to solve such problem. In Section 4, we
propose a set of protocol-dependent, publisher-subscriber
pairwise reliability estimation models for each fault tol-
erance / recovery mechanism from Section 2. Section 5
then presents the evaluation results to validate the pro-
posed analytical model via simulations. Related work is
summarized in Section 6. Conclusions and future work
are then discussed in Section 7.

2 Model and Assumptions

In this section, we describe the details of the distributed
publish / subscribe architecture model, quality of service
(QoS) model, failure model, and commonly used fault-
tolerant techniques used in this paper. In the next sec-
tion, we will then present the mathematical framework
that realizes the model described in this section in order
to predict QoS level each subscriber receives.

2.1 Distributed Publish / Subscribe Model

We model the publish / subscribe network as a network of
brokers. Brokers can be placed inside the same domain
(e.g, brokers within cloud), across different private do-
mains (e.g., federated clouds), or across different public
domains (e.g., peer-to-peer systems). Each subscriber /
publisher is connected to only one of the brokers. The
broker that is connected to a subscriber / publisher is
called the home broker with respect to that subscriber /
publisher. Figure 1 shows an example of a publish / sub-
scribe network with 4 brokers , where the home brokers
of subscriber s1, subscriber s2, and publisher p1 are bro-
ker b3, b4, and b1 respectively.

When a subscriber joins the system, it chooses a bro-
ker in the system as its home broker and sends its sub-
scription message to the home broker. The subscription

message specifies a topic1 value, which describes the cat-
egory of event that the subscriber wants to receive. Upon
receiving the subscription from the subscriber, the home
broker stores the subscription and the subscriber into its
routing table before propagating the subscription mes-
sage to other brokers. Each published event has topic and
deadline associated with it. When a publisher publishes
a new event, the publisher sends the published event to
its home broker, who then routes the event via the broker
network to all subscribers whose subscriptions have the
same topic as the published event. If the event arrives at
a subscriber before the event’s deadline, we say that the
event is delivered to that subscriber on time. Otherwise,
we consider that event to be expired with respect to that
subscriber.

For genericity, this paper does not make any assump-
tion about subscription propagation / event routing pro-
cesses within broker network. The only assumptions are
that the broker network must be stable (i.e., neighbor-
hood relationships between brokers do not change fre-
quently over time) and the event routing path must be
consistent (i.e., for each publisher-subscriber pair, bro-
kers will always use the same path to route all events
from the publisher to the subscriber). For demonstration,
this paper focuses on tree-based forwarding (e.g., Fig-
ure 1), which is a publish / subscribe routing scheme that
satisfies path consistency assumption. In tree-based for-
warding scheme, a broker tree overlay is arbitrarily but
consistently formed for each topic. When a broker re-
ceives a new subscription, the broker stores the subscrip-
tion and its source to the broker’s routing table before
forwarding the subscription to its neighbors in the sub-
scription’s topic broker tree. Figure 1(a) shows an exam-
ple when subscriber s1 subscribes to topic “Stock”, which
forms the broker tree rooted at broker b2. Note that sub-
scriptions with different topics can have different corre-
sponding broker trees. For example in Figure 1(b), sub-
scriber s2 subscribes to topic “Temp”, which forms the
broker tree rooted at broker b3. Upon receiving a pub-
lished event from a publisher, the publisher’s home bro-
ker checks the event with each subscription stored in its
routing table. For each subscription whose topic matches
the event, the broker forwards the event to the link which
it receives that subscription from. Note that an event is
forwarded once per link even though there are multiple
matching subscriptions from that link. The event for-
warding process then continues, and the event is prop-
agated hop-by-hop along the topic tree in the reverse di-
rection of the subscription until it reaches the designated
subscribers. Figure 1(c) shows an example of publisher
p1 publishing an event with topic “Stock”.

While Figure 1 describes topic-based, tree-based pub-

1While this paper focuses on topic-based publish / subscribe, our
approach can be extended to support content-based publish / subscribe
as well [29].

2

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 249

(a) s1 subscribes with topic ’Stock’ (b) s2 subscribes with topic ’Temp’ (c) p1 publishes an event with topic ’Stock’

Figure 1: Example of subscription propagation and event routing in a tree-based publish / subscribe network

lish / subscribe model, our analytical model can be ap-
plied to content-based publish / subscribe systems with
any routing scheme that satisfies the path consistency as-
sumption [29].

2.2 QoS Model
In our previous work, we proposed the subscriber-level
QoS metric called subscriber real-time reliability [30].
Subscriber real-time reliability can be defined as follows:
A subscriber s is said to receive the service with real-time
reliability rs ∈ [0,1], where rs is defined as the fraction of
all events of s’s interest that arrives at s before its deadline
(i.e., delivery delay less than the message lifetime). This
metric both standard reliability and timeliness properties,
making it a suitable indicator of QoS in time-sensitive
publish / subscribe applications.

2.3 Failure Model
In this paper, we discuss two types of failures that could
affect subscriber real-time reliability : link failures and
broker failures. We assume crash-recovery failure model
for both broker failures and link failures, which means
each broker / link is assumed to be either on or off at
any point of time. When a broker fails (i.e., is in off
state), it stops its activity until it recovers (i.e., is repaired
back to on state). When a failed broker recovers, it loses
all of its soft-state information (e.g., subscription routing
table and queued events) that it had before the failure.
However, we assume that the failed broker does not lose
the broker graph information (i.e., the list of all brokers
and their neighborhood relationship), which is stored in
each broker’s persistent, non-volatile storage. When a
link fails, any event that is sent to the link will be lost.

In this paper, we assume that link failures and broker
failures are independent and exponentially distributed for
analysis feasibility. Previous studies also have shown that
the assumption of exponential time between failures is
true in many distributed systems [3, 35].

2.4 Fault-Tolerant Mechanisms
In order to cope with broker and link failures, several
fault tolerance / recovery schemes for publish / subscribe
systems have been proposed [7, 8, 13, 19, 22]. This sec-
tion summarizes and discusses such techniques. Note
that some of these techniques are generic and not lim-
ited to publish / subscribe systems. However, this paper
focuses on the analysis of such techniques in the publish
/ subscribe context.

2.4.1 Periodic Subscription

In periodic subscription scheme [33], each subscriber pe-
riodically re-issues its subscription message to its home
broker, which then propagates the subscription to other
brokers in the network. Each broker also maintains a
timestamp for each subscription entry in its routing table.
The timestamp is refreshed every time the broker receives
the corresponding subscription. The broker discards any
subscription from its routing table if the subscription is
not refreshed within a period of time (i.e., timeout). The
periodic subscription scheme can help prevent subscrip-
tion loss, but it cannot prevent event loss. More details
about periodic subscription can be found by several pre-
vious works [19, 20].

2.4.2 Event Buffering / Retransmission

In event buffering scheme [8, 13], each broker ensures
event delivery to its next hop neighbor as follows. When
a broker receives an event from one of its immediate
neighbors, it performs the event matching and calcu-
lates the event’s forwarding set (i.e., the set of immedi-
ate neighbors to forward the event to). The broker then
stores the event and its forwarding set into the broker’s
non-volatile storage and sends the acknowledgment mes-
sage (ACK) containing the event sequence number back
to its upstream neighbor. The broker then forwards the
event to the event’s forwarding set. The broker then waits

3

250 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

(a) Publisher publishes an event (b) Home broker stores and forwards event (c) Broker receives ACK and discards event

Figure 2: Example of event buffering / retransmission scheme

for the ACK message from each next-hop neighbor in
the event’s forwarding set. The broker discards the event
from its non-volatile storage once it collects all the ACK
messages from all brokers in the forward set, as now it
is certain that the event has been received by all of the
next-hop brokers. If, due to failures, the broker does not
receive ACK messages from some next-hop neighbors,
it retransmits the event to each of such neighbors until
all ACK messages are collected or the buffered event be-
comes expired. Figure 2 illustrates an example of event
buffering / retransmission scheme.

The event buffering / retransmission guarantees that
the events will not be lost due to broker / link failures.
However, if the routing path is disconnected for too long,
the event may be expired before it is delivered to the sub-
scribers.

2.4.3 Redundant Path Bypassing

Redundant path bypassing scheme relies on the fact that
even when the routing path between a publisher to a sub-
scriber is disconnected due to broker / link failures, it
might be possible to find another publisher-subscriber
path that excludes the failed brokers / links [8,19,22,23].

The detail of the redundant path bypassing in the con-
text of tree-based publish / subscribe is as follows2.
Whenever a broker detects a change of its neighbor’s
state (e.g., neighbor fails, neighbor recovers), it uses a
link state protocol to broadcast the update message to
all other reachable brokers. Each broker can update the
global view of the entire broker network. With the up-to-
date global view of the network, each broker can identify
the set of immediately reachable children of a failed bro-
ker along the tree. The immediately reachable children
of a broker b is the set of b’s next-hop brokers that are
available and reachable. For example in Figure 3, the im-
mediately reachable children set of failed broker b2 are
b3 and b4. Hence, each event that is supposed to be sent
to the failed broker will be forwarded to the failed bro-
ker’s immediately reachable children instead (i.e., detour

2The path bypassing technique can be used with other routing
schemes as well.

Figure 3: Example of path bypassing scheme where bro-
ker b1 bypasses failed broker b2

routing). The same approach applies to subscription for-
warding as well.

The goal of this paper is to estimate each subscriber’s
real-time reliability when each of such fault-tolerant tech-
niques is employed in the publish / subscribe system.
Section 3 will present the generic estimation framework
while Section 4 will present the estimation algorithm for
each specific fault-tolerant technique.

3 Subscriber Real-time Reliability Estima-
tion Framework

In this section, we propose a mathematical model of the
publish / subscribe system and use the proposed model to
formulate the subscriber real-time reliability estimation
problem. We then present the generic estimation algo-
rithm to solve the problem.

3.1 Problem Formulation
We present the mathematical model of each component
in the publish / subscribe system as follows.

3.1.1 Real-time Event Model

Let E be the set of all events ever published in the sys-
tem. Each event e ∈ E contains topic τe and lifetime de,
which is the duration since the time the event was pub-
lished until the time the event is expired. Without loss of

4

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 251

generality, we assume that all events in the system have
the same lifetime D (i.e., ∀e ∈ E : de = D), which is a
known constant. Our scheme can be modified to work
when events have different lifetime values as well.

3.1.2 Publisher / Subscriber Model

Let P and S be the set of all publishers / subscribers in
the system. Each publisher p ∈ P publishes events with
topic τp with rate λp. Each subscriber s ∈ S is interested
in events with topic τs. A subscriber s is said to be a
recipient of a publisher p if they share the same topic of
interest (i.e., τs = τp). We assume that λp, τp, and τs are
known for all publishers and subscribers.

3.1.3 Broker / Link Model

Let B be the set of all brokers in the system. We model
each broker b ∈ B as a tuple (γb,σb), where γb and σb
are exponentially distributed failure rate and repair rate,
respectively. That is, the broker b has exponentially dis-
tributed time between failures and time to repair with
mean 1

γb
and 1

σb
, respectively.

Hence, broker b’s availability, denoted by ab, is the
fraction of time the broker b is on, which can be com-

puted as ab =
1

γb
1
γb
+ 1

σb
.

Likewise, let L be the set of all links in the system.
Each link l ∈ L has exponentially distributed time
between failure and time to repair with rate γl and
σl respectively3. Link l’s availability value al is also

calculated as al =
1
γl

1
γl
+ 1

σl

We assume that each broker’s failure / repair rates
(γb,σb) and each link’s failure / repair rates (γl ,σl) are
known via statistical history data collection [1, 17, 21].

With the described mathematical model, we formulate
the subscriber real-time reliability estimation as follows.

Subscriber Real-time Reliability Estimation Problem :
Given a publish / subscribe overlay network G = (N,L)
where N = B∪ P∪ S, estimate the value of subscriber
real-time reliability rs for each subscriber s ∈ S.

We use the term r′s to denote the estimated value of
subscriber real-time reliability rs. The goal of our analyt-
ical model is to calculate r′s that estimates rs as accurately
as possible (i.e., min|r′s − rs|).

3Without loss of generality, we assume that the local link connected
between publish / subscriber to its home broker does not fail. Our
scheme can be simply modified for non-reliable local link scenarios.

3.2 Generic Estimation Framework
This section describes a generic framework to estimate
subscriber real-time reliability. The subscriber real-
time reliability estimation problem can be generally bro-
ken down into two sub-problems, which are estimating
publisher-subscriber pairwise flow rate and estimating
publisher-subscriber pairwise flow reliability.

3.2.1 Pairwise Flow Rate

The publisher-subscriber pairwise flow rate is the average
event traffic flow rate from a publisher to a subscriber
when no failure occurs. The publisher-subscriber pair-
wise flow rate λps between a publisher p ∈ P and a sub-
scriber s ∈ S can be calculated as follows.

λps =

{
λp if τp = τs

0 otherwise (1)

That is, the pairwise traffic flow rate from publisher p
to subscriber s is equal to publisher p’s publishing rate if
they share the same topic, and equal to zero otherwise.
Since λp, τp, and τs are known for each publisher p ∈ P

and subscriber s ∈ S in the system, we can calculate pair-
wise traffic flow rate λps for each publisher-subscriber
pair in the system.

3.2.2 Pairwise Reliability

The publisher-subscriber pairwise reliability is the prob-
ability that a publisher’s event of a subscriber’s interest
will be delivered to that subscriber before it is expired.
We use the notation r′ps ∈ [0,1] to denote the pairwise re-
liability between publisher p∈P and subscriber s∈ S. As
mentioned, the pairwise reliability depends on the fault-
tolerant technique used in the publish / subscribe system.
Section 4 presents the calculation of pairwise reliability
for each technique discussed in Section 2.4.

3.2.3 Generic Estimation Algorithm

Subscriber s’s real-time reliability rs is the probability
that s will receive an event of its interest successfully be-
fore the deadline D. Hence, the estimated value of rs,
denoted by rs can be calculated as the weighted average
of publisher-subscriber pairwise reliability between each
publisher to that subscriber, with the weight equal to the
pairwise event flow rate from the corresponding publisher
to that subscriber. That is,

r′s =
E[rate of events delivered on time to s]

E[total rate of events of s’s interest]

=
∑p∈P(r′ps·λps)

∑p∈Pλps
(2)

Equation (2) is a generic equation that can be used with
any fault-tolerant mechanism discussed in Section 2.4.

5

252 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

Figure 4: Example of a publisher-subscriber path with
length 3

However, different mechanisms require different equa-
tions to estimate pairwise reliability r′ps, which will be
demonstrated in the next Section.

4 Pairwise Reliability Estimation

This section proposes an analytical model to calculate
the estimated publisher-subscriber pairwise reliability r′ps
for each different fault tolerance/recovery protocols pre-
sented in Section 2.4.

4.1 Static Path
Without any reliable mechanism, the subscription infor-
mation stored at each broker about the subscriber will be
eventually lost when that broker fails. If a subscriber does
not have reliable subscription or periodic subscription
mechanisms, its subscription along the routing path will
be eventually lost, preventing any subsequently published
event to be delivered to the subscriber. Hence, the steady-
state pairwise reliability each publisher-subscriber pair
(p,s) will be zero (i.e., r′ps = 0).

4.2 Static Path + Periodic Subscription
With the use of periodic subscription (Section 2.4.1),
each failed broker can recover its routing information
once it recovers from its failure. However, event loss is
still possible as there is no reliable acknowledgement.

We analyze the pairwise reliability of each publisher-
subscriber pair with static path as follows. Let δps de-
note the event routing path between a publisher p and a
subscriber s. Since we assume our publish / subscribe
routing scheme to be consistent, δps is static and known
for each publisher-subscriber pair (p,s). We define path
length, denoted by |δps|, as the number of brokers in
the path. Hence, a path δps can be expressed as the
sequence (p, l0,b0, l1,b1, ..., l|δps|−1,b|δps|−1, l|δps|,s). Fig-
ure 4 shows an example of a path of length 3.

Since the static path scheme always uses only one path
δps to forward events between publisher-subscriber pair
(p,s), the pairwise real-time reliablity r′ps is equal to the
fraction of time that the path δps is connected. That is,

r′ps = P[path δps is connected]

= ab0Π|δps|−1
i=1 (ali ·abi) (3)

where ax is the availability of component (broker or
link) x.

4.3 Static Path + Event Buffering
With the reliable acknowledgment protocol (i.e., Section
2.4.2) in static path, an event of a subscriber s’s interest
that is published by a publisher p will be eventually deliv-
ered to s, given that p’s home broker is available when p
publishes the event (since we assume that p does not have
retransmission capability). This is because the event will
always be buffered at some broker along the path between
p and s, even when the path is disconnected4. The event
will then be forwarded when the next-hop broker and link
are available, and eventually delivered to the subscriber.
However, the delay the event spends in the buffer may
be longer than its lifetime, which causes the event to be
expired.

To analyze the pairwise reliability r′ps between a pub-
lisher p and a subscriber s under static path with event
buffering scheme, consider the single, unique path δps
connecting p and s. Assuming the event arrival time to
be independent from the path δps’s state, we estimate the
path real-time reliability as follows.

r′ps = P[an event from p arrives at s on time]
= P[p’s home broker is on].

P[end-to-end delay less than event lifetime]
= ab0 ·P[dps < D] (4)

where dps is the end-to-end delivery delay and D is
the event lifetime. Thus, it is necessary to calculate the
end-to-end delivery delay distribution dps first in order to
estimate path reliability r′ps.

To calculate delay distribution dps for path δps, we
need to calculate per-hop buffering delay at each broker
bi(0 ≤ i < |δps|) in the path (we assume that link trans-
mission delay and broker processing delay are negligible
compared to buffering delay). Consider when the event is
received successfully at broker bi and hence broker bi will
try to forward the event to broker bi+1. If both link li+1
and broker bi+1 are up at the moment, the event will be
transmitted successfully to broker bi+1 immediately, thus
incurring zero buffering delay at broker bi. However, if
either link li+1 or broker bi+1 is down at the moment, the
event will be buffered at the broker bi, which will keep
retransmitting the event until the event gets through to
broker bi+1. The broker bi discards the event if the event
expires. Note that the event will get through only when
all bi, li+1, and bi+1 are up at the same time.

Let dbi be the buffering delay at each broker bi (0≤ i<
|δps|). We first calculate the probability that dbi = 0 (i.e.,
the probability that the event is successfully delivered to
bi+1 immediately), which can be calculated as

4In the analysis, we assume each broker to have unbounded buffer
such that it can always store any incoming event.

6

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 253

P[dbi = 0] = P[bi, li+1,bi+1 are on|bi is on]
= P[li+1,bi+1 are on]
= ali+1 ·abi+1 (5)

Given that delay is always non-negative, we have

P[dbi > 0] = 1−P[dbi = 0]
= 1− ali+1·abi+1 (6)

Now, in the case that the buffering delay at each broker
bi is not zero (with probability 1− ali+1 .abi+1), we need
to find the delay distribution in such case. Let d+

bi
be the

conditional buffering delay at broker bi under the condi-
tion that dbi > 0. Assuming the event arrives at arbitrary
time at broker bi, the conditional buffering delay d+

bi
is

equal to the time it takes for the next-hop path to be re-
paired (i.e., time until li+1 and bi+1 are both in on state).
Assuming each component’s time between failure and
time to repair to be exponentially distributed, we can cal-
culate such delay distribution by using continuous-time
Markov process diagram that represents the state of bro-
ker bi, link li+1, and bi+1. The diagram is shown in Figure
5. Each of 8 states depicts each possible state of sub-path
(bi,li+1,bi+1), with each bit representing each individual
component’s state (0 = off, 1 = on). The first bit (least
significant bit) represents bi’s state. The second bit repre-
sents li+1’s state. The third bit (most significant bit) rep-
resent bi+1’s state. For example, state “011” represents
the state where broker bi is on, link li+1 is on, and broker
bi+1 is off. Note that in the scenario where an event ar-
rives at broker bi and needs to be buffered at bi, an event
will find the system state in either state “001”, “011“,
or “101” with probability

(1−ali+1)(1−abi+1)

1−ali+1 .abi+1
,

ali+1 (1−abi+1)

1−ali+1 .abi+1
,

and
(1−ali+1)abi+1
1−ali+1 .abi+1

respectively. The event will continue
to be buffered at broker bi (note that bi can also fail but
the event is kept in its non-volatile storage) until the state
becomes “111”, which the event will be transmitted to
broker bi+1 successfully. Hence, the diagram depicts the
absorbing Markov process with three start states = “001”,
“011“, “101” and one absorbing state “111”with the cor-
responding transition rate matrix Q̇ as

Q̇ =

−q̇0 σbi σli+1 0 σbi+1 0 0 0
γbi −q̇1 0 σli+1 0 σbi+1 0 0

γli+1 0 −q̇2 σbi 0 0 σbi+1 0
0 γli+1 γbi −q̇3 0 0 0 σbi+1

γbi+1 0 0 0 −q̇4 σbi σli+1 0
0 γbi+1 0 0 γbi −q̇5 0 σli+1
0 0 γbi+1 0 γli+1 0 −q̇6 σbi
0 0 0 0 0 0 0 0

(7)

where γx and σx are component x’s exponential fail-
ure rate and exponential repair rate described in Section
3.1, and q̇i is state i’s total outgoing rate. For example,
q̇0 = (σbi + σli + σbi+1). Thus, the conditional buffer-
ing delay at broker bi is equal to the time to absorption
of the absorbing matrix Q̇, which is a phase-type distri-

Figure 5: 8-state continuous, absorbing Markov process
diagram for per-hop buffering delay analysis

bution [25] and can be calculated by breaking down the
matrix Q̇ in to the form of

Q̇ =

�
Ṡ Ṡ0

0 0

�
(8)

Where Ṡ and Ṡ0 are the 7x7 top-left sub-matrix and
the 7x1 top-right sub-vector of Q̇ defined in Equation (7)
respectively. Hence, the cumulative distribution of d+

bi
can be calculated as

P[d+
bi
< t] = 1−α·exp(Ṡt)·1 (9)

where exp(Ṡ) is the matrix exponential [27] of Ṡ, α is
the 1x7 starting state vector

α = [0,
(1−ali+1)(1−abi+1)

1−ali+1.abi+1

,0,
ali+1(1−abi+1)

1−ali+1.abi+1

,0,

(1−ali+1)abi+1

1−ali+1.abi+1

,0]

and 1 is an 7x1 vector with every element being 1.
With Equation (9), we can compute the conditional

buffering delay distribution d+
bi

at broker bi. Hence, we
can estimate buffering delay dbi at broker bi as

dbi =

�
d+

bi
with probability 1−ali+1·abi+1

0 with probability ali+1 ·abi+1
(10)

Once we calculate per-hop buffering delay
dbi with Equation (10), we then can calcu-
late the end-to-end buffering delay dps for path

7

254 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

δps = (p, l0,b0, l1,b1, ..., l|δps|−1,b|δps|−1, l|δps|,s) as

dps =
|δps|−1

∑
i=0

dbi (11)

Hence, Equation (11) completes the calculation of
pairwise reliability for static path with event buffering
scheme in Equation (4).

4.4 Path Bypassing + Periodic Subscription
With the path bypassing scheme discussed in Section
2.4.3, a new routing path between p and s will be used if
the old path fails. Hence, an event of a subscriber s’s in-
terest that is published by a publisher p will be delivered
to s as long as the broker graph G is not partitioned be-
tween p and s. Thus, pairwise reliability r′ps is then equal
to the graph G’s connection probability between p and s.
However, the calculation of such connection probability
for any generic graph is considered to be a #P-complete
problem [34], which has higher complexity that a NP-
complete problem.

Due to such computational complexity, we propose an
algorithm to approximate the lower bound of graph G’s
connection probability between any publisher-subscriber
pair (p,s) by constructing a subgraph G′ ⊆ G that con-
sists only parallel, broker-disjoint paths between p’s
home broker and s’s home broker.

That is, the multi-path subgraph G′ contains multi-
ple, broker-disjoint path between p’s home broker and
s’s home broker, assuming there are m of such paths in
subgraph G′, namely δ (0)

ps ,δ (1)
ps , ...,δ (m−1)

ps where
δ (i)

ps = (p, l(i)0 ,b(i)0 , l(i)1 ,b(i)1 , ..., l(i)
|δ (i)

ps |−1
,b(i)

|δ (i)
ps |−1

, l(i)
|δ (i)

ps |
,s)

Note that b(i)0 refers to the same broker for all 0 ≤
i < m, which is publisher p’s home broker. Likewise,
b(i)
|δ (i)

ps |−1
refers to the same broker, which is the subscriber

s’s home broker. Let b0 and b|δps|−1 denote publisher p’s
home broker and subscriber s’s home broker respectively.
Hence, the pairwise reliability r′ps between publisher p
and subscriber s in dynamic tree scheme is estimated as

r′ps = P[G is connected between p and s]
≥ P[G′ is connected between p and s]
≥ P[p’s home broker is on]·

P[s’s home broker is on]·
P[at least one path is connected]

≥ ab0 ·ab|δps|−1 ·

(1−Πm−1
i=0 (1−

r(i)ps

ab0 ·ab|δps|−1

)) (12)

where r(i)ps is the pairwise reliability of each path δ (i)
ps in

subgraph G′, which can be calculated by Equation (3).

4.5 Path Bypassing + Event Buffering
We can combine the path bypassing scheme with the
event buffering scheme in order to exploit path diver-
sity as well as guarantee eventual delivery as follows.
Each broker uses the event acknowledgement / buffering
scheme as mentioned in Section 4.3. When a broker b1
detects its neighbor b2’s failure, it uses the bypass rout-
ing without acknowledgement to forward the event to the
failed broker b2’s immediately reachable children. The
broker b1 also keeps the event in its buffer and keeps
retransmitting the event to the failed broker b2 until b2
recovers, receives the event, and sends the acknowledge-
ment back to b1. b1 then discards the event. This scheme
combines eventual delivery guarantee of the retransmis-
sion scheme with path diversity of the path bypassing
scheme. The drawback of this approach is the addi-
tional overhead and potential event duplication at the sub-
scribers. Event duplication, however, can be filtered out
at the last-hop broker.

We can calculate the publisher-subscriber pairwise
reliability for the path bypassing with event buffering
scheme as follows. Let r′Aps be the estimated publisher-
subscriber pairwise reliability for the path bypassing
scheme (i.e., Equation (12) and dps be the end-to-end
buffering delay for the event buffering scheme (i.e.,
Equation (11)). We can calculate the estimated pairwise
reliability for the combined scheme as

r′ps = P[event delivered immediately]+
P[partition]·P[event delivered on time]

= r′Aps +(1− r′Aps)·
P[dps ≤ D]

P[dps > 0]
(13)

where D is event lifetime. That is the total reliability is
the probability that either the event can be delivered im-
mediately via path bypassing scheme, or the event suffers
network partition but the delay caused by the buffering
scheme is still less than the event lifetime.

Note that estimated pairwise reliability r′ps can be ei-
ther calculated by Equation (3), Equation (4), Equation
(12), or Equation (13), depending on which fault-tolerant
technique is used. Once the estimated reliability r′ps val-
ues of all publisher-subscriber pairs are calculated, they
can be used to calculate the estimated subscriber reliabil-
ity r′s using Equation (2).

5 Evaluation

We evaluate the proposed analytical model via simula-
tions with NS-2 network simulator [2]. In the simulator,
we implement a topic-based, tree-based publish / sub-
scribe protocol with four different reliability mechanisms
described in Section 2.4 and analyzed in Section 4. In the
experiment, we assume each publisher publishes its own
unique topic. We assign a topic to each subscriber such

8

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 255

that each topic’s popularity follows Power law model.

5.1 Parameter Settings
We investigated several host availability traces and re-
ports, ranging from commercial server log to distributed
testbed log [3, 4, 18, 35]. In most cases, server’s time be-
tween failures tends to range from several days to weeks,
while time to repair usually range within hours.

Motivated by such finding, we describe a component5
from availability perspective by two metrics, period and
availability. We define the term period of a component
as the summation of the component’s mean time between
failure and mean time to repair (i.e., mean failure-repair
cycle length) and the term availability as the fraction of
time the component is on. Thus, given a component x’s
period PRx and availability ax, we can calculate x’s mean
time between failures MT BFx = ax.PRx and mean time to
repair MT TRx = (1− ax).PRx respectively.

In the simulation, a component x will be on for the
time period which is drawn from the exponential distri-
bution with mean MT BFx before going to off state. Like-
wise, the component x will then be off for the time pe-
riod drawn from the exponential distribution with mean
MT T Rx before going to on state again. Thus, such com-
ponent x will have exponential failure rate γx = 1

MT BFx

and exponential repair rate σx =
1

MT T Rx
.

Based on the previous work [11], we set each over-
lay link’s availability set to 0.99 and period to 60,000
seconds. Each publisher has default publishing interval
equal to 1 minute. Each event has default lifetime equal
to 3,600 seconds (1 hours). Each simulation is run for
14 days of simulation time. The evaluation result of each
simulation parameter set is averaged from 10 runs.

5.2 Evaluation Results
We conduct the experiment with two sets of broker net-
work topology. The first set is tree-based broker topology
in order to study the performance of static path schemes
(Section 4.2 and 4.3) without the effect of path diver-
sity. The second set is random broker topology in or-
der to study both static path schemes and path bypassing
schemes (Section 4.4 and 4.5) with the effect of path di-
versity.

5.2.1 Tree-based Broker Network Topology

To study the performance of static-path reliability
schemes (Section 4.2 and 4.3), we generate a random
broker tree consisting of 10 brokers, 10 publishers, and
500 subscribers. We randomly assign a home broker to
each publisher and each subscriber. We divide all gen-
erated trees into four sets. The first set of trees has

5A component means a link or a broker

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5 0.6 0.7 0.8 0.9 1

A
ct

ua
l r

el

Estimated rel

Average subscriber reliability with 60k s period in 10-broker trees

low-end, periodic sub
low-end, event buffer

high-end, periodic sub
high-end, event buffer

Figure 6: Subscriber reliability in static random tree with
10 brokers and 60K s period

each broker availability falling into [0.9, 0.95] range and
use periodic subscription scheme. The second set of
trees has each broker availability falling into [0.9, 0.95]
range and use event buffering scheme. The third set
of trees has each broker availability falling into [0.99,
0.999] range and use periodic subscription scheme. The
fourth set of trees has each broker availability falling into
[0.99, 0.999] range and use event buffering scheme. The
[0.9, 0.95] availability range represents standard, off-the-
shelf servers with low-to-moderate maintenance [3]. The
[0.99, 0.999] availability range represents high-end, com-
mercial servers with high maintenance [4].

Figure 6 shows the predicted subscriber reliability on x
axis and the actual subscriber reliability on y axis. Each
point in the graph represents one subscriber. The color
of the point represents the broker configuration and fault-
tolerant scheme used. As shown in the graph, our pro-
posed analytical model can accurately predict the sub-
scriber reliability for each subscriber (i.e., all the points
are clustered around x=y diagonal line). Also, there is
a clear distinction of reliability value between different
groups of broker configuration. The group with low-
est reliability is the low-end servers with periodic sub-
scription scheme, followed by the low-end servers with
event buffering scheme. Notice that the event buffering
scheme could achieve high reliability than the periodic
subscription scheme, although the performance gain ef-
fect may be less, compared to the performance gain from
the server’s quality.

5.2.2 Random Broker Network Topology

We generate a random graph consisting of 10 brokers,
10 publishers, and 500 subscribers. Publishers and sub-
scribers are randomly assigned to each broker. Again, we
run the simulations with two broker availability specifi-
cations named low-end (0.9 - 0.95 availability) and high-
end (0.99 - 0.999 availability). We compare the perfor-

9

256 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5 0.6 0.7 0.8 0.9 1

A
ct

ua
l r

el

Estimated rel

Low-end subscriber reliability with 60k s period in 10-broker graph

periodic sub
event buffer

periodic sub + bypassing
event buffer + bypassing

(a) Low-end brokers

 0.9
 0.91
 0.92
 0.93
 0.94
 0.95
 0.96
 0.97
 0.98
 0.99

 1

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

A
ct

ua
l r

el

Estimated rel

High-end subscriber reliability with 60k s period in 10-broker graph

periodic sub
periodic sub + bypassing
event buffer + bypassing

event buffer

(b) High-end brokers

Figure 7: Subscriber reliability in 10-broker overlay
graph with average degree 4 and 60K s period

mance in terms of subscriber reliability among four fault-
tolerant techniques (i.e., from Section 4.2 - 4.5).

Figure 7 shows the performance comparison between
the four protocols in 10-broker overlay graph. Again, our
analytical model accurately predicts the real-time relia-
bility of each subscriber. For the low-end broker config-
uration, the path bypassing scheme with event buffering
has the best performance, followed by the path bypassing
scheme with periodic subscription, the static path scheme
with event buffering, and the static path scheme with peri-
odic subscription respectively. However, for the high-end
broker configuration, the static path scheme with event
buffering performs best and as well as the path bypass-
ing scheme with event buffering. This finding suggests
that one should prefer to use the static path scheme with
event buffering in high-end broker configuration, as it
has lower overhead than the path bypassing scheme with
event buffering.

6 Related Work

Improving reliability, timeliness, and other QoS metrics
in wide-area overlay networks have been a significant
topic of researchs for many years [5, 6, 12]. However,

the approaches in this category are designed for point-
to-point routing and do not specifically address decou-
pling nature between publishers and subscribers in pub-
lish/subscribe systems.

Several fault-tolerant mechanisms have been proposed
specially for publish/subscribe systems under failures
without considering timeliness property [8, 10, 13, 23].
On the other hand, several works have proposed per-
formance analytical model to predict timeliness in pub-
lish/subscribe systems in perfect scenarios (i.e., without
broker/link failures) [24,31,32]. This paper bridges such
two approaches by quantitatively analyzing commonly
used fault-tolerant techniques and their effect to both
reliability and timeliness of publish/subscribe systems.
There have been a few works that discuss timeliness of
event delivery in publish/subscribe systems under com-
ponent failures [14, 20]. However, they did not provide
analytical model of their proposed systems. Recently, Es-
posito et al proposed and analyzed the use of network
coding and gossiping to provide reliability and timeli-
ness in tree-based publish / subscribe systems [15]. In
contrast, our model discusses more commonly used fault-
tolerant techniques such as path diversity and buffering.
Also, our work does not assume tree-based publish / sub-
scribe, but also works for any generic broker topology.

7 Conclusions

In this paper, we proposed an analytical model to esti-
mate the subscriber real-time reliability for publish / sub-
scribe systems with faulty brokers and links. We first de-
scribed broker failure and link failure model before dis-
cussing several existing fault-tolerant techniques for dis-
tributed publish / subscribe systems. We then proposed
the generic analytical model to estimate subscriber relia-
bility. The evaluation via simulation has proved the cor-
rectness of our predictive model. Our proposed model
can then be used as a building block for optimization
problems such as subscriber assignment problem or bro-
ker network planning problem.

There are a few possible directions for future works.
The first direction is to use the proposed analytical model
to optimize performance of the publish / subscribe sys-
tems. Second, the analytical model could be extended to
the case where component failure time is not exponen-
tially distributed. Finally, another possible direction is
to validate the proposed analytical model using data col-
lected from real systems.

References
[1] Apache logging services. http://logging.apache.org/.

[2] The network simulator - ns-2. http://www.isi.edu/nsnam/ns/.

[3] Planetlab - all pairs pings. http://pdos.csail.mit.edu/ strib/pl app/.

[4] Site5 uptime reports for all servers.
http://www.site5.com/support/uptime/.

10

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 257

[5] AMIR, Y., AND DANILOV, C. Reliable communication in overlay
networks. In DSN (2003), IEEE Computer Society, pp. 511–520.

[6] ANDERSEN, D. G. Improving End-to-End Availability Using
Overlay Networks. Ph.D., Massachusetts Institute of Technology,
Feb. 2005.

[7] ARIANFAR, S. Optimizing publish/subscribe systems with con-
gestion handling. Master’s thesis, Helsinki University of Technol-
ogy, 2008.

[8] CHAND, R., AND FELBER, P. Xnet: A reliable content-based
publish/subscribe system. In SRDS ’04: Proceedings of the 23rd
IEEE International Symposium on Reliable Distributed Systems
(Washington, DC, USA, 2004), IEEE Computer Society, pp. 264–
273.

[9] CUGOLA, G., AND JACOBSEN, H.-A. Using publish/subscribe
middleware for mobile systems. SIGMOBILE Mob. Comput.
Commun. Rev. 6, 4 (2002), 25–33.

[10] CUGOLA, G., PICCO, G. P., AND MURPHY, A. L. Towards
dynamic reconfiguration of distributed publish-subscribe middle-
ware. In SEM (2002), A. Coen-Porisini and A. van der Hoek,
Eds., vol. 2596 of Lecture Notes in Computer Science, Springer,
pp. 187–202.

[11] DAHLIN, M., CHANDRA, B. B. V., GAO, L., AND NAYATE, A.
End-to-end wan service availability. IEEE/ACM Trans. Netw. 11,
2 (2003), 300–313.

[12] DUAN, Z., ZHANG, Z.-L., AND HOU, Y. T. Service overlay net-
works: Slas, qos, and bandwidth provisioning. IEEE/ACM Trans.
Netw. 11, 6 (2003), 870–883.

[13] ESPOSITO, C., COTRONEO, D., AND GOKHALE, A. S. Reliable
publish/subscribe middleware for time-sensitive internet-scale ap-
plications. In DEBS (2009), A. S. Gokhale and D. C. Schmidt,
Eds., ACM.

[14] ESPOSITO, C., COTRONEO, D., AND RUSSO, S. Reliable event
dissemination over wide-area networks without severe perfor-
mance fluctuations. In ISORC ’10: Proceedings of the 2010 13th
IEEE International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing (Washington, DC,
USA, 2010), IEEE Computer Society, pp. 97–101.

[15] ESPOSITO, C., RUSSO, S., BERALDI, R., PLATANIA, M., AND
BALDONI, R. Achieving reliable and timely event dissemination
over wan. In Proceedings of the 13th international conference
on Distributed Computing and Networking (Berlin, Heidelberg,
2012), ICDCN’12, Springer-Verlag, pp. 265–280.

[16] EUGSTER, P. T., FELBER, P. A., GUERRAOUI, R., AND KER-
MARREC, A.-M. The many faces of publish/subscribe. ACM
Comput. Surv. 35, 2 (2003), 114–131.

[17] GERHARDS, R. The Syslog Protocol. RFC 5424 (Proposed Stan-
dard), March 2009.

[18] GODFREY, P. B. Repository of availability traces.
http://www.cs.uiuc.edu/homes/pbg/availability/.

[19] JAEGER, M. A. Self-Managing Publish/Subscribe Systems. PhD
thesis, Technische Universität Berlin, 2007.

[20] JERZAK, Z., AND FETZER, C. Soft state in publish/subscribe. In
DEBS ’09: Proceedings of the Third ACM International Confer-
ence on Distributed Event-Based Systems (New York, NY, USA,
2009), ACM, pp. 1–12.

[21] KALBFLEISCH, J. D., AND PRENTICE, R. L. The statistical
analysis of failure time data. Wiley-Interscience, 2011.

[22] KAZEMZADEH, R. S., AND JACOBSEN, H.-A. Reliable and
highly available distributed publish/subscribe service. In SRDS
’09: Proceedings of the 2009 28th IEEE International Symposium
on Reliable Distributed Systems (Washington, DC, USA, 2009),
IEEE Computer Society, pp. 41–50.

[23] KAZEMZADEH, R. S., AND JACOBSEN, H.-A. Opportunis-
tic multipath forwarding in content-based publish/subscribe over-
lays. In Middleware (2012), pp. 249–270.

[24] KOUNEV, S., SACHS, K., BACON, J., AND BUCHMANN, A. P.
A methodology for performance modeling of distributed event-
based systems. In ISORC (2008), pp. 13–22.

[25] LATOUCHE, G., AND RAMASWAMI, V. Introduction to Matrix
Analytic Methods in Stochastic Modelling, 1 ed. ASA SIAM,
1999, ch. 2: PH Distributions.

[26] LI, M., YE, F., KIM, M., CHEN, H., AND LEI, H. A scalable
and elastic publish/subscribe service. In Proceedings of the 2011
IEEE International Parallel & Distributed Processing Symposium
(Washington, DC, USA, 2011), IPDPS ’11, IEEE Computer So-
ciety, pp. 1254–1265.

[27] MOLER, C., AND LOAN, C. V. Nineteen dubious ways to com-
pute the exponential of a matrix. SIAM Review (1978), 801–836.

[28] MUHL, G. Large-scale Content-based Publish/Subscribe Sys-
tems. PhD thesis, University of Technology Darmstadt, 2002.

[29] PONGTHAWORNKAMOL, T., AND NAHRSTEDT, K. Towards
timeliness and reliability analysis of distributed content-based
publish/subscribe systems over best-effort networks. Tech.
Rep. http://hdl.handle.net/2142/14415, University of Illinois at
Urbana-Champaign, November 2009.

[30] PONGTHAWORNKAMOL, T., NAHRSTEDT, K., AND WANG, G.
Probabilistic qos modeling for reliability/timeliness prediction in
distributed content-based publish/subscribe systems over best-
effort networks. In ICAC ’10: Proceeding of the 7th interna-
tional conference on Autonomic computing (New York, NY, USA,
2010), ACM, pp. 185–194.

[31] SACHS, K. Performance Modeling and Benchmarking of Event-
Based Systems. PhD thesis, TU Darmstadt, 2010. SPEC Distin-
guished Dissertation Award 2011.

[32] SCHRÖTER, A., MÜHL, G., KOUNEV, S., PARZYJEGLA, H.,
AND RICHLING, J. Stochastic performance analysis and ca-
pacity planning of publish/subscribe systems. In Proceedings of
the Fourth ACM International Conference on Distributed Event-
Based Systems (New York, NY, USA, 2010), DEBS ’10, ACM,
pp. 258–269.

[33] SHANKAR, A. U., AND LAM, S. S. Time-dependent distributed
systems: Proving safety, liveness and real-timeproperties. Tech.
rep., Austin, TX, USA, 1985.

[34] VALIANT, L. G. The complexity of enumeration and reliability
problems. SIAM Journal on Computing 8, 3 (1979), 410–421.

[35] YALAGANDULA, P., NATH, S., YU, H., GIBBONS, P. B., AND
SESHAN, S. Beyond availability: Towards a deeper understand-
ing of machine failure characteristics in large distributed systems.
In In Proc. of USENIX Workshop on Real, Large Distributed Sys-
tems (WORLDS (2004).

[36] ZHANG, C., KRISHNAMURTHY, A., WANG, R. Y., AND SINGH,
J. P. Combining flexibility and scalability in a peer-to-peer pub-
lish/subscribe system. In Proceedings of the ACM/IFIP/USENIX
2005 International Conference on Middleware (New York, NY,
USA, 2005), Middleware ’05, Springer-Verlag New York, Inc.,
pp. 102–123.

11

