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Abstract

Dynamically adjusting the number of virtual machines

(VMs) assigned to a cloud application to keep up with

load changes and interference from other uses typically

requires detailed application knowledge and an ability to

know the future, neither of which are readily available

to infrastructure service providers or application owners.

The result is that systems need to be over-provisioned

(costly), or risk missing their performance Service Level

Objectives (SLOs) and have to pay penalties (also

costly). AGILE deals with both issues: it uses wavelets

to provide a medium-term resource demand prediction

with enough lead time to start up new application server

instances before performance falls short, and it uses

dynamic VM cloning to reduce application startup times.

Tests using RUBiS and Google cluster traces show that

AGILE can predict varying resource demands over the

medium-term with up to 3.42× better true positive rate

and 0.34× the false positive rate than existing schemes.

Given a target SLO violation rate, AGILE can efficiently

handle dynamic application workloads, reducing both

penalties and user dissatisfaction.

1 Introduction

Elastic resource provisioning is one of the most attractive

features provided by Infrastructure as a Service (IaaS)

clouds [2]. Unfortunately, deciding when to get more

resources, and how many to get, is hard in the face of

dynamically-changing application workloads and service

level objectives (SLOs) that need to be met. Existing

commercial IaaS clouds such as Amazon EC2 [2] de-

pend on the user to specify the conditions for adding

or removing servers. However, workload changes and

interference from other co-located applications make this

difficult.

Previous work [19, 39] has proposed prediction-driven

resource scaling schemes for adjusting how many re-
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Figure 1: The overall structure of the AGILE system. The

AGILE slave continuously monitors the resource usage of

different servers running inside local VMs. The AGILE master

collects the monitor data to predict future resource demands.

The AGILE master maintains a dynamic resource pressure

model for each application using online profiling. We use the

term server pool to refer to the set of application VMs that

provide the same replicated service. Based on the resource

demand prediction result and the resource pressure model,

the AGILE master invokes the server pool manager to add or

remove servers.

sources to give to an application within a single host.

But distributed resource scaling (e.g., adding or remov-

ing servers) is more difficult because of the latencies

involved. For example, the mean instantiation latency

in Amazon EC2 is around 2 minutes [8], and it may then

take a while for the new server instance to warm up: in

our experiments, it takes another 2 minutes for a Cassan-

dra server [4] to reach its maximum throughput. Thus,

it is insufficient to apply previous short-term (i.e., less

than a minute) prediction techniques to the distributed

resource scaling system.

In this paper, we present our solution: AGILE, a

practical elastic distributed resource scaling system for

IaaS cloud infrastructures. Figure 1 shows its overall

structure. AGILE provides medium-term resource de-

mand predictions for achieving enough time to scale up

the server pool before the application SLO is affected by

the increasing workload. AGILE leverages pre-copy live
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cloning to replicate running VMs to achieve immediate

performance scale up. In contrast to previous resource

demand prediction schemes [19, 18], AGILE can achieve

sufficient lead time without sacrificing prediction accu-

racy or requiring a periodic application workload.

AGILE uses online profiling and polynomial curve

fitting to provide a black-box performance model of the

application’s SLO violation rate for a given resource

pressure (i.e., ratio of the total resource demand to the

total resource allocation for the server pool). This model

is updated dynamically to adapt to environment changes

such as workload mix variations, physical hardware

changes, or interference from other users. This allows

AGILE to derive the proper resource pressure to maintain

to meet the application’s SLO target.

By combining the medium-term resource demand pre-

diction with the black-box performance model, AGILE

can predict whether an application will enter the overload

state and how many new servers should be added to avoid

this.

Contributions

We make the following contributions in this paper.

• We present a wavelet-based resource demand pre-

diction algorithm that achieves higher prediction ac-

curacy than previous schemes when looking ahead

for up to 2 minutes: the time it takes for AGILE to

clone a VM.

• We describe a resource pressure model that can

determine the amount of resources required to keep

an application’s SLO violation rate below a target

(e.g., 5%).

• We show how these predictions can be used to clone

VMs proactively before overloads occur, and how

dynamic memory-copy rates can minimize the cost

of cloning while still completing the copy in time.

We have implemented AGILE on top of the KVM

virtualization platform [27]. We conducted extensive

experiments using the RUBiS multi-tier online auction

benchmark, the Cassandra key-value store system, and

resource usage traces collected on a Google cluster [20].

Our results show that AGILE’s wavelet-based resource

demand predictor can achieve up to 3.42× better true

positive rate and 0.34× the false positive rate than

previous schemes on predicting overload states for real

workload patterns. AGILE can efficiently handle chang-

ing application workloads while meeting target SLO vi-

olation rates. The dynamic copy-rate scheme completes

the cloning before the application enters the overload

state with minimum disturbance to the running system.

AGILE is light-weight: its slave modules impose less

than 1% CPU overhead.

Figure 2: Wavelet decomposition of an Apache web server

CPU demand under a real web server workload from the

ClarkNet web server [24]. The original signal is decomposed

into four detailed signals from scale 1 to 4 and one approxi-

mation signal using Haar wavelets. At each scale, the dotted

line shows the predicted signal for the next future 16 seconds

at time t = 32 second.

2 AGILE system design

In this section, we first describe our medium-term re-

source demand prediction scheme. By “medium-term”,

we mean up to 2 minutes (i.e., 60 sampling intervals

given a 2-second sampling interval). We then introduce

our online resource pressure modeling system for map-

ping SLO requirements to proper resource allocation.

Next, we describe the dynamic server pool scaling mech-

anism using live VM cloning.

2.1 Medium-Term Resource demand pre-

diction using Wavelets

AGILE provides online resource demand prediction

using a sliding window D (e.g., D = 6000 seconds)

of recent resource usage data. AGILE does not re-

quire advance application profiling or white-box/grey-

box application modeling. Instead, it employs wavelet

transforms [1] to make its medium-term predictions: at

each sampling instant t, predicting the resource demand

over the prediction window of length W (e.g., W = 120
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seconds). The basic idea is to first decompose the

original resource demand time series into a set of wavelet

based signals. We then perform predictions for each

decomposed signal separately. Finally, we synthesize the

future resource demand by adding up all the individual

signal predictions. Figure 2 illustrates our wavelet-

based prediction results for an Apache web server’s CPU

demand trace.

Wavelet transforms decompose a signal into a set of

wavelets at increasing scales. Wavelets at higher scales

have larger duration, representing the original signal at

coarser granularities. Each scale i corresponds to a

wavelet duration of Li seconds, typically Li = 2i. For

example, in Figure 2, each wavelet at scale 1 covers 21

seconds while each wavelet at scale 4 covers 24 = 16

seconds. After removing all the lower scale signals

called detailed signals from the original signal, we obtain

a smoothed version of the original signal called the

approximation signal. For example, in Figure 2, the

original CPU demand signal is decomposed into four

detailed signals from scale 1 to 4, and one approximation

signal. Then the prediction of the original signal is

synthesized by adding up the predictions of these decom-

posed signals.

Wavelet transforms can use different basis functions

such as the Haar and Daubechies wavelets [1]. In

contrast, Fourier transforms [6] can only use the sinusoid

as the basis function, which only works well for cyclic

resource demand traces. Thus, wavelet transforms have

advantages over Fourier transforms in analyzing acyclic

patterns.

The scale signal i is a series of independent non-

overlapping chunks of time, each with duration of 2i

(e.g., the time intervals [0-8), [8-16)). We need to predict

W/2i values to construct the scale i signal in the look-

ahead window W as adding one value will increase the

length of the scale i signal by 2i.

Since each wavelet in the higher scale signal has a

larger duration, we have fewer values to predict for

higher scale signals given the same look-ahead window.

Thus, it is easier to achieve accurate predictions for

higher scale signals as fewer prediction iterations are

needed. For example, in Figure 2, suppose the look-

ahead window is 16 seconds, we only need to predict 1

value for the approximation signal but we need to predict

8 values for the scale 1 detail signal.

Wavelet transforms have two key configuration pa-

rameters: 1) the wavelet function to use, and 2) the

number of scales. AGILE dynamically configures these

two parameters in order to minimize the prediction

error. Since the approximation signal has fewer values to

predict, we want to maximize the similarity between the

approximation signal and the original signal. For each

sliding window D, AGILE selects the wavelet function

Figure 3: Dynamically derived CPU resource pressure models

mapping from the resource pressure level to the SLO violation

rate using online profiling for RUBiS web server and database

server. The profiling time for constructing one resource pres-

sure model is about 10 to 20 minutes.

that results in the smallest Euclidean distance between

the approximation signal and the original signal. Then,

AGILE sets the number of values to be predicted for the

approximation signal to 1. It does this by choosing the

number of scales for the wavelet transforms. Given a

look-ahead window W , let U denote the number of scales

(e.g., scale of the approximation signal). Then, we have

W/2U = 1, or U = ⌈log2(W )⌉. For example, in Figure 2,

the look-ahead window is 16 seconds, so AGILE sets the

maximum scale to U = ⌈log2(16)⌉= 4.

We can use different prediction algorithms for predict-

ing wavelet values at different scales. In our current pro-

totype, we use a simple Markov model based prediction

scheme presented in [19].

2.2 Online resource pressure modeling

AGILE needs to pick an appropriate resource allocation

to meet the application’s SLO. One way to do this would

be to predict the input workload [21] and infer the future

resource usage by constructing a model that can map

input workload (e.g., request rate, request type mix) into

the resource requirements to meet an SLO. However,

this approach often requires significant knowledge of the

application, which is often unavailable in IaaS clouds

and might be privacy sensitive, and building an accurate

workload-to-resource demand model is nontrivial [22].

Instead, AGILE predicts an application’s resource

usage, and then uses an application-agnostic resource

pressure model to map the application’s SLO violation

rate target (e.g., < 5%) into a maximum resource pres-

sure to maintain. Resource pressure is the ratio of

resource usage to allocation. Note that it is necessary to

allocate a little more resources than predicted in order to

accommodate transient workload spikes and leave some

headroom for the application to demonstrate a need for
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more resources [39, 33, 31]. We use online profiling

to derive a resource pressure model for each application

tier. For example, Figure 3 shows the relationship be-

tween CPU resource pressure and the SLO violation rate

for the two tiers in RUBiS, and the model that AGILE

fits to the data. If the user requires the SLO violation rate

to be no more than 5%, the resource pressure of the web

server tier should be kept below 78% and the resource

pressure of the database tier below 77%.

The resource pressure model is application specific,

and may change at runtime due to variations in the

workload mix. For example, in RUBiS, a workload

with more write requests may require more CPU than

the workload with more browse requests. To deal with

both issues, AGILE generates the model dynamically at

runtime with an application-agnostic scheme that uses

online profiling and curve fitting.

The first step in building a new mapping function

is to collect a few pairs of resource pressure and SLO

violation rates by adjusting the application’s resource

allocation (and hence resource pressure) using the Linux

cgroups interface. If the application consists of multi-

ple tiers, the profiling is performed tier by tier; when one

tier is being profiled, the other tiers are allocated suffi-

cient resources to make sure that they are not bottlenecks.

If the application’s SLO is affected by multiple types of

resources (e.g., CPU, memory), we profile each type of

resource separately while allocating sufficient amounts

of all the other resource types. We average the resource

pressures of all the servers in the profiled tier and pair

the mean resource pressure with the SLO violation rate

collected during a profiling interval (e.g., 1 minute).

AGILE fits the profiling data against a set of polyno-

mials with different orders (from 2 to 16 in our experi-

ment) and selects the best fitting curve using the least-

square error. We set the maximum order to 16 to avoid

overfitting. At runtime, AGILE continuously monitors

the current resource pressure and SLO violation rate, and

updates the resource pressure model with the new data. If

the mapping function changes significantly (e.g., due to

variations in the workload mix), and the approximation

error exceeds a pre-defined threshold (e.g., 5%), AGILE

replaces the current model with a new one. Since we

need to adjust the resource allocation gradually and wait

for the application to become stable to get a good model,

it takes about 10 to 20 minutes for AGILE to derive a new

resource pressure model from scratch using the online

profiling scheme. To avoid frequent model retraining,

AGILE maintains a set of models and dynamically se-

lects the best model for the current workload. This

is useful for applications that have distinct phases of

operation. A new model is built and added only if the

approximation errors of all current models exceed the

threshold.

Figure 4: Performance of a new Cassandra server using

different server instantiation mechanisms in KVM. All mea-

surements start at the time of receiving a new server cloning

request. We expect post-copy live cloning would behave

similar to cold cloning.

2.3 Dynamic server pool scaling

Our technique for scaling up the server pool when

overload is predicted distinguishes itself from previous

work [28, 8] in terms of agility: servers can be dy-

namically added with little interference, provide near

immediate performance scale-up, and low bandwidth

cost using adaptive copy rate configuration.

There are multiple approaches to instantiate a new

application server:

1. Boot from scratch: create a new VM and start the

OS and application from the beginning.

2. Cold cloning: create a snapshot of the application

VM beforehand and then instantiate a new server

using the snapshot.

3. Post-copy live cloning [28]: instantiate a new server

by cloning one of the currently running VMs, start

it immediately after instantiation and use demand

paging for memory copy.

4. Pre-copy live cloning: instantiate a new server from

an already running VM. The new server is started

after almost all the memory has been copied.

AGILE uses the last of these, augmented with rate

control over the data transfer to achieve rapid perfor-

mance scale-up, minimize interference with the source

VMs, and avoid storing and maintaining VM snapshots.

Figure 4 shows the throughput of a new Cassandra

server [4] using different server instantiation schemes.

AGILE allows the new instance to reach its maximum

performance immediately, while the others take about

2 minutes to warm up. Note that AGILE triggers the

live cloning before the application enters the overload

state, so its performance is still good during the pre-copy

phase, as we will show later.

Our live VM cloning scheme is similar to previous

VM/process migration systems [13, 51]. In the pre-copy

phase, the dirty memory pages of the source VM are

copied iteratively in multiple rounds without stopping the
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source VM. A stop-and-copy phase, where the source

VM is paused temporarily, is used for transferring the

remaining dirty pages. A typical pause is within 1

second.

AGILE also performs disk cloning to make the new

VM independent of the source VM. In IaaS clouds, the

VM’s disk is typically located on a networked storage

device. Because a full disk image is typically large

and would take a long time to copy, AGILE performs

incremental disk cloning using QEMU Copy On Write

(QCOW). When we pause the source VM to perform the

final round of memory copy, we make the disk image of

the source VM a read-only base image, and build two

incremental (copy-on-write) images for the source VM

and the new VM. We can associate the new incremental

image with the source VM on-the-fly without restarting

the VM by redirecting the disk image driver at the

hypervisor level. This is transparent to the guest OS of

the source VM.

Because live VM cloning makes the new VM instance

inherit all the state from the source VM, which includes

the IP address, the new VM may immediately send out

network packets using the same IP address as the source

VM, causing duplicate network packets and application

errors. To avoid this, AGILE first disconnects the

network interface of the new VM, clears the network

buffer, and then reconnects the network interface of the

new VM with a new IP address.

AGILE introduces two features to live VM cloning.

Adaptive copy rate configuration. AGILE uses the

minimum copy rate that can finish the cloning before

the overload is predicted to start (To), and adjusts this

dynamically based on how much data needs to be trans-

ferred. This uses the minimal network bandwidth, and

minimizes impact on the source machine and application.

If the new application server configuration takes

Tcon f ig seconds, the cloning must finish within Tclone =
To − Tcon f ig. Intuitively, the total size of transferred

memory should equal the original memory size plus the

amount of memory that is modified while the cloning

is taking place. Suppose the VM is using M memory

pages, and the desired copy rate is rpage copy pages per

second. We have: rpage copy×Tclone = M+ rdirty ×Tclone.

From this, we have: rpage copy = M/Tclone + rdirty. To

estimate the page-dirty rate, we continuously sample the

actual page-dirtying rate and use an exponential moving

average of these values as the estimated value. AGILE

will also adjust the copy rate if the predicted overload

time To changes.

Event-driven application auto-configuration. AG-

ILE allows VMs to subscribe to critical events that

occur during the live cloning process to achieve auto-

configuration. For example, the new VM can subscribe

to the NetworkConfigured event so that it can configure

itself to use its new IP address. The source VM can

subscribe to the Stopping event that is triggered when

the cloning enters the stop-and-copy phase, so that it

can notify a front-end load balancer to buffer some

user requests (e.g., write requests). Each VM image

is associated with an XML configuration file specifying

what to invoke on each cloning event.

Minimizing unhelpful cloning. Since live cloning

takes resources, we want to avoid triggering unnecessary

cloning on transient workload spikes: AGILE will only

trigger cloning if the overload is predicted more than k

(e.g. k=3) consecutive times. Similarly, AGILE cancels

cloning if the overload is predicted to be gone more than

k consecutive times. Furthermore, if the overload state

will end before the new VM becomes ready, we should

not trigger cloning.

To do this, AGILE checks whether an overload con-

dition will appear in the look ahead window [t, t +W ].
We want to ignore those transient overload states that

will be gone before the cloning can be completed. Let

TRML < W denote the required minimum lead time that

AGILE’s predictor needs to raise an alert in advance

for the cloning to complete before the system enters the

overload state. AGILE will ignore those overload alarms

that only appear in the window [t, t+TRML] but disappear

in the window [t +TRML, t +W ]. Furthermore, cloning is

triggered only if the overload state is predicted to last

for at least Q seconds in the window [t + TRML, t +W ]
(0 < Q ≤W −TRML) .

The least-loaded server in the pool is used as the

source VM to be cloned. AGILE also supports concur-

rent cloning where it creates multiple new servers at the

same time. Different source servers are used to avoid

overloading any one of them.

Online prediction algorithms can raise false alarms.

To address this issue, AGILE continuously checks

whether previously predicted overload states still exist.

Intuitively, as the system approaches the start of the over-

load state, the prediction should become more accurate.

If the overload state is no longer predicted to occur, the

cloning operation will be canceled; if this can be done

during the pre-copy phase, it won’t affect the application

or the source VM.

3 Experimental evaluation

We implemented AGILE on top of the KVM virtual-

ization platform, in which each VM runs as a KVM

process. This lets AGILE monitor the VM’s resource

usage through the Linux /proc interface. AGILE

periodically samples system-level metrics such as CPU

consumption, memory allocation, network traffic, and

disk I/O statistics. To implement pre-copy live cloning,

we modified KVM to add a new KVM hypervisor mod-
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ule and an interface in the KVM monitor that supports

starting, stopping a clone, and adjusting the memory

copy rate. AGILE controls the resources allocated to

application VMs through the Linux cgroups interface.

We evaluated our KVM implementation of AGILE

using the RUBiS online auction benchmark (PHP ver-

sion) [38] and the Apache Cassandra key-value store

0.6.13 [4]. We also tested our prediction algorithm using

Google cluster data [20]. This section describes our

experiments and results.

3.1 Experiment methodology

Our experiments were conducted on a cloud testbed in

our lab with 10 nodes. Each cloud node has a quad-

core Xeon 2.53GHz processor, 8GiB memory and 1Gbps

network bandwidth, and runs 64 bit CentOS 6.2 with

KVM 0.12.1.2. Each guest VM runs 64 bit CentOS 5.2

with one virtual CPU core and 2GiB memory. This setup

is enough to host our test benchmarks at their maximum

workload.

Our experiments on RUBiS focus on the CPU re-

source, as that appears to be the bottleneck in our

setup since all the RUBiS components have low memory

consumption. To evaluate AGILE under workloads

with realistic time variations, we used one day of per-

minute workload intensity observed in 4 different real

world web traces [24] to modulate the request rate of

the RUBiS benchmark: (1) World Cup 98 web server

trace starting at 1998-05-05:00.00; (2) NASA web server

trace beginning at 1995-07-01:00.00; (3) EPA web server

trace starting at 1995-08-29:23.53; and (4) ClarkNet web

server trace beginning at 1995-08-28:00.00. These traces

represent realistic load variations over time observed

from well-known web sites. The resource usage is

collected every 2 seconds. We perform fine-grained

sampling for precise resource usage prediction and ef-

fective scaling [43]. Although the request rate is changed

every minute, the resource usage may still change faster

because different types of requests are generated.

At each sampling instant t, the resource demand

prediction module uses a sliding window of size D of

recent resource usage (i.e., from t −D to t) and predicts

future resource demands in the look-ahead window W

(i.e., from t to t +W ). We repeat each experiment 6

times.

We also tested our prediction algorithm using real

system resource usage data collected on a Google

cluster [20] to evaluate its accuracy on predicting

machine overloads. To do this, we extracted CPU

and memory usage traces from 100 machines randomly

selected from the Google cluster data. We then aggregate

the resource usages of all the tasks running on a given

machine to get the usage for that machine. These

Parameter RUBiS Google data

Input data window (D) 6000 seconds 250 hours

Look-ahead window (W ) 120 seconds 5 hours

Sampling interval (Ts) 2 seconds 5 minutes

Total trace length one day 29 days

Overload duration threshold (Q) 20 seconds 25 minutes

Response time SLO 100 ms NA

Table 1: Summary of parameter values used in our experiments.

traces represent various realistic workload patterns. The

sampling interval in the Google cluster is 5 minutes and

the trace lasts 29 days.

Table 1 shows the parameter values used in our

experiments. We also performed comparisons under

different threshold values by varying D, W , and Q, which

show similar trends. Note that we used consistently

larger D, W , and Q values for the Google trace data

because the sampling interval of the Google data (5

minutes) is significantly larger than what we used in the

RUBiS experiments (2 seconds).

To evaluate the accuracy of our wavelet-based

prediction scheme, we compare it against the best

alternatives we could find: PRESS [19] and auto-

regression [9]. These have been shown to achieve

higher accuracy and lower overheads than other

alternatives. We calculate the overload-prediction

accuracy as follows. The predictor is deemed to

raise a valid overload alarm if the overload state

(e.g., when the resource pressure is bigger than the

overload threshold) is predicted earlier than the required

minimum lead time (TRML). Otherwise, we call the

prediction a false negative. Note that we only consider

those overload states that last at least Q seconds

(Section 2.3). Moreover, we require that the prediction

model accurately estimates when the overload will start,

so we compare the predicted alarm time with the true

overload start time to calculate a prediction time error. If

the absolute prediction time error is small (i.e., ≤ 3 ·Ts),

we say the predictor raises a correct alarm. Otherwise,

we say the predictor raises a false alarm.

We use the standard metrics, true positive rate (AT )

and false positive rate (AF ), given in equation 1.

Ptrue, Pfalse, Ntrue, and Nfalse denote the number of

true positives, false positives, true negatives, and false

negatives, respectively.

AT =
Ptrue

Ptrue +Nf alse

, AF =
Pf alse

Pf alse +Ntrue

(1)

A service provider can either rely on the application

itself or an external tool [5] to tell whether the application

SLO is being violated. In our experiments, we adopted

the latter approach. With the RUBiS benchmark, the

workload generator tracks the response time of the HTTP

requests it makes. The SLO violation rate is the fraction

6
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(a)

(b)

Figure 5: CPU demand prediction accuracy comparison for

RUBiS web server driven by one-day request traces of different

real web servers with TRML = 60 and 100 seconds.

of requests that have response time larger than a pre-

defined SLO threshold. In our experiments, this was

100ms, the 99th percentile of observed response times

for a run with no resource constraints. We conduct our

RUBiS experiments on both the Apache web server tier

and the MySQL database tier.

For comparison, we also implemented a set of

alternative resource provisioning schemes:

• No scaling: A non-elastic resource provisioning

scheme that cannot change the size of the server

pool, which is fixed at 1 server as this is sufficient

for the average resource demand.

• Reactive: This scheme triggers live VM cloning

when it observes that the application has become

overloaded. It uses a fixed memory-copy rate, and

for a fair comparison, we set this to the average copy

rate used by AGILE so that both schemes incur a

similar network cost for cloning.

• PRESS: Instead of using the wavelet-based

prediction algorithm, PRESS uses a Markov+FFT

resource demand prediction algorithm [19] to

predict future overload state and triggers live

cloning when an overload state is predicted to

occur. PRESS uses the same false alarm filtering

mechanism described in Section 2.3.

• FixThreshold-65% and -80%: This scheme triggers

Figure 6: Cumulative distribution function of the prediction

time error for the RUBiS web server driven by the ClarkNet

workload.

live VM cloning if the resource pressure exceeds

65% and 80%. This allows us to evaluate the effects

of the resource pressure model.

Note that the reactive and PRESS schemes use the

AGILE same resource pressure model to decide the

resource pressure threshold for the target 5% SLO

violation rate.

3.2 Experimental results

Prediction accuracy results. In this set of experiments,

no cloning is performed. Figure 5 shows the overload

prediction accuracy comparisons for RUBiS driven by

different real workload traces. We test the prediction

system with different lead time requirements (TRML).

The results show that our wavelet prediction scheme is

statistically significantly better than the PRESS scheme

and the auto-regression scheme (the independent two-

sample t-test indicates p-value ≤ 0.01). Particularly,

the wavelet scheme can improve the true positive rate

by up to 3.42× and reduce the false positive rate by

up to 0.41×. The accuracy of the PRESS and auto-

regression schemes suffers as the number of iterations

increases, errors accumulate, and the correlation between

the prediction model and the actual resource demand

becomes weaker. This is especially so for ClarkNet, the

most dynamic of the four traces.

In the above prediction accuracy figure, we consider

the predictor raises a correct alarm if the absolute

prediction time error is less than ≤ 3 · Ts. We further

compare the distributions of the absolute prediction time

error among different schemes. Figure 6 compares

the cumulative distribution functions of the absolute

prediction time error among different schemes. We

observe that AGILE achieves much lower prediction

time error (78% alarms have 0 absolute prediction time

7
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(a)

(b)

Figure 7: Prediction accuracy for 100 Google cluster CPU

traces with TRML = 100 and 150 minutes. The bottom and top

of the box represent 25th and 75th percentile values, the ends

of the whiskers represent 10th and 90th percentile values.

error) than auto-regression (34% alarms have 0 absolute

prediction time error) and PRESS (46% alarms have

0 absolute prediction time error). Other traces show

similar trend, which are omitted due to space limitation.

Figure 7 and Figure 8 show the prediction accuracy

for the CPU and memory usage traces on 100 machines

in a Google cluster. The overload threshold is set to the

70th percentile of all values in each trace. We observe

that the wavelet scheme again consistently outperforms

the PRESS scheme and the auto-regression scheme with

up to 2.1× better true positive rate and 0.34× the false

positive rate.

Overload handling results. Next, we evaluate how

well AGILE handles overload using dynamic server pool

scaling. The experiment covers 7000 seconds of a

RUBiS run driven by the ClarkNet web server trace. The

first 6000 seconds are used for training and no cloning is

performed. The overload state starts at about t = 6500s.

When examining the effects of scaling on different tiers

in RUBiS, we limit the scaling to one tier and allocate

sufficient resources to the other tier. We repeat each

experiment 3 times.

Figure 9 shows the overall results of different schemes.

Overall SLO violation rate denotes the percentage of

requests that have response times larger than the SLO

(a)

(b)

Figure 8: Prediction accuracy comparison for 100 Google

cluster memory traces.

violation threshold (e.g., 100ms) during the experiment

run. SLO violation time is the total time in which SLO

violation rate (collected every 5 seconds) exceeds the

target (e.g., 5%). We observe that AGILE consistently

achieves the lowest SLO violation rate and shortest

SLO violation time. Under the no scaling scheme, the

application suffers from high SLO violation rate and

long SLO violation time in both the web server tier

and the database tier scaling experiments. The reactive

scheme mitigates this by triggering live cloning to create

a new server after the overload condition is detected,

but since the application is already overloaded when

the scaling is triggered, the application still experiences

a high SLO violation rate for a significant time. The

FixThreshold-80% scheme triggers the scaling too late,

especially in the database experiment and thus does

not show any noticeable improvement compared to

without scaling. Using a lower threshold, FixThreshold-

65% improves the SLO violation rate but at a higher

resource cost: resource pressure is maintained at 65%

while AGILE maintains the resource pressure at 75%.

In contrast, AGILE predicts the overload state in

advance, and successfully completes live cloning before

the application enters the overload state. With more

accurate predictions, AGILE also outperforms PRESS by

predicting the overload sooner.

Figure 10 shows detailed performance measurements

8
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Figure 9: SLO violation rates and times for the two RUBiS tiers

under a workload following the ClarkNet trace.

Application In use Copied Ratio

RUBiS Webserver 530MiB 690MiB 1.3×
RUBiS Database 1092MiB 1331MiB 1.2×
Cassandra 671MiB 1001MiB 1.5×

Table 2: Amount of memory moved during cloning for

different applications.

for the web server tier during the above experiment. We

sample the average response time every second and plot

the cumulative distribution functions for the whole run

and during cloning. From Figure 10(a), we can see

that the response time for most requests meets the SLO

when using the AGILE system. In contrast, if no scaling

is performed, the application suffers from a significant

increase in response time. Figure 10(b) shows that all

the scaling schemes, except AGILE, cause much worse

performance during the cloning process: the application

is overloaded and many requests suffer from a large

response time until a new server is started. In contrast,

using AGILE, the application experiences little response

time increase since the application has not yet entered the

overload state. Figure 11 shows the equivalent results for

the database server and has similar trends.

Figure 12 and Figure 13 show the SLO violation

rate timeline of RUBiS application under the ClarkNet

workload. Compared to other schemes, AGILE triggers

scaling before the system enters the overload state.

Under the reactive scheme, the live cloning is executed

when the system is already overloaded, which causes a

significant impact to the application performance during

the cloning time. Although PRESS can predict the

overload state in advance, the lead time is not long

enough for cloning to finish before the application is

overloaded.

Dynamic copy-rate configuration results. Table 2

shows the amount of memory moved during cloning for

different applications. AGILE moved at most 1.5 times

the amount of the memory in use at the source VM.

We also tested AGILE under different overload pending

(a) Overall CDF

(b) During cloning

Figure 10: Scaling up the RUBiS web server tier from 1 server

to 2 servers under a dynamic workload following the ClarkNet

trace. (a) Overall CDF denotes the whole experiment. (b)

During cloning denotes the period in which the scaling is being

executed. AGILE always triggers scaling earlier than other

schemes.

time deadlines (i.e., target time to finish cloning) and

check whether the cloning can finish within the pending

time. Figure 14 shows that our dynamic copy-rate setting

can accurately control the cloning time under different

deadlines.

We measured the time spent in the different stages of

the live VM cloning for different applications (Table 3).

As expected, pre-copy dominates the cloning time (tens

of seconds), while the stop-and-copy time is only 0.1 s,

so the downtime of the source VM is negligible.

Overhead results. We first present the overhead

imposed by our online profiling mechanism. Figure 15

shows the timeline of the average response time during

profiling. Figure 16 shows the performance impact of the

online profiling on the average response time over the

period of 6 hours, in which AGILE performs profiling

three times. Overall, the overhead measurements show

that AGILE is practical for online system management.

We also evaluated the overhead of the AGILE system.

The AGILE slave process on each cloud node imposes

9
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(a) Overall CDF

(b) During cloning

Figure 11: Scaling up the RUBiS database server tier from 1

server to 2 servers under a dynamic workload following the

ClarkNet trace. We used 9 web servers to make the database

tier become the bottleneck.

Application Pre-copy Stop-and-copy Configuration

RUBiS Webserver 31.2 ± 1.1 s 0.10 ± 0.01 s 16.8 ± 0.6 s

RUBiS Database 33.1 ± 0.9 s 0.10 ± 0.01 s 17.8 ± 0.8 s

Cassandra 31.5 ± 1.1 s 0.10 ± 0.01 s 17.5 ± 0.9 s

Table 3: Time spent in the different stages of live VM cloning.

less than 1% CPU overhead. The most computationally

intensive component is the prediction module that runs

on the master node. Table 4 shows the online training

time and prediction time for AGILE, PRESS, and auto-

regression schemes. AGILE has similar overheads at the

master node as does PRESS. The auto-regression scheme

is faster, however its accuracy is much worse than

AGILE. Clearly, these costs still need to be reduced (e.g.,

by incremental retraining mechanisms and decentralized

masters), and we hope to work on this in the future.

4 Related Work

AGILE is built on top of previous work on resource

demand prediction, performance modeling, and VM

Figure 12: SLO violation timeline for web server tier

experiment under the ClarkNet workload. The number in the

bracket indicates the SLO violation time in seconds.

Figure 13: SLO violation timeline for database tier experiment

under the ClarkNet workload.

cloning. Most previous work on server pool scaling

(e.g., [29, 17]) adopts a reactive approach while AGILE

provides a prediction-driven solution that allows the

system to start new instances before SLO violation

occurs.

Previous work has proposed white-box or grey-box

approaches to addressing the problem of cluster sizing.

Elastisizer [22] combines job profiling, black-box and

white-box models, and simulation to compute an optimal

cluster size for a specific MapReduce job. Verma

et al. [47] proposed a MapReduce resource sizing

framework that profiles the application on a smaller data

set and applies linear regression scaling rules to generate

a set of resource provisioning plans. The SCADS

director framework [44] used a model-predictive control

(MPC) framework to make cluster sizing decisions based

on the current workload state, current data layout, and

predicted SLO violation. Huber et al. [23] presented

a self-adaptive resource management algorithm which

leverages workload prediction and a performance

model [7] that predicts application’s performance

10
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Figure 14: Cloning time achieved against predicted time to

overload.

Scheme Training time

(3000 samples)

Prediction time

(60 steps)

AGILE 575 ± 7 ms 2.2 ± 0.1 ms

PRESS 595 ± 6 ms 1.5 ± 0.1 ms

Auto-regression 168 ± 5 ms 2.2 ± 0.1 ms

Table 4: Prediction model training time and the prediction

time comparison between AGILE, PRESS, and auto-regression

schemes. The prediction module runs on the master host.

under different configurations and workloads. In

contrast, AGILE does not require any prior application

knowledge.

Previous work [53, 26, 35, 36, 34, 29] has applied

control theory to achieve adaptive resource allocation.

Such approaches often have parameters that need to be

specified or tuned offline for different applications or

workloads. The feedback control system also requires

a feedback signal that is stable and well correlated with

SLO measurement. Choosing suitable feedback signals

for different applications is a non-trivial task [29]. Other

projects used statistical learning methods [41, 42, 15, 40]

or queueing theory [46, 45, 14] to estimate the impact

of different resource allocation policies. Overdriver [48]

used offline profiling to learn the memory overload

probability of each VM to select different mitigation

strategies: using migration for sustained overloads or

network memory for transient overloads. Those models

need to be built and calibrated in advance. Moreover,

the resource allocation system needs to make certain

assumptions about the application and the running

platform (e.g., input data size, cache size, processor

speed), which often is impractical in a virtualized, multi-

tenant IaaS cloud system.

Trace-driven resource demand prediction has been

applied to several dynamic resource allocation problems.

Rolia et al. [37] described a resource demand prediction

scheme that multiplies recent resource usage by a

burst factor to provide some headroom. Chandra et

al. [11] developed a prediction framework based on

auto-regression to drive dynamic resource allocation

decisions. Gmach et al. [18] used a Fourier transform-

based scheme to perform offline extraction of long-term

cyclic workload patterns. Andrzejak et al. [3] employed a

Figure 15: The effect of profiling on average response time for

the RUBiS system under the ClarkNet workload.

Figure 16: Profiling overhead for the RUBiS system under the

ClarkNet workload. Profiling occurs every two hours.

genetic algorithm and fuzzy logic to address the problem

of having little training data. Gandhi et al. [16] combined

long-term predictive provisioning using periodic patterns

with short-term reactive provisioning to minimize SLO

violations and energy consumption. Matsunaga et

al. [30] investigated several machine learning techniques

for predicting spatio-temporal resource utilization.

PRESS [19] developed a hybrid online resource demand

prediction model that combines a Markov model and

a fast Fourier transform-based technique. Previous

prediction schemes either focus on short-term prediction

or need to assume cyclic workload patterns. In contrast,

AGILE focuses on medium-term prediction and works

for arbitrary workload patterns.

VM cloning has been used to support elastic cloud

computing. SnowFlock [28] provides a fast VM

instantiation scheme using on-demand paging. However,

the new instance suffers from an extended performance

warmup period while the working set is copied over from

the origin. Kaleidoscope [8] uses fractional VM cloning

with VM state coloring to prefetch semantically-related

regions. Although our current prototype uses full pre-

copy, AGILE could readily work with fractional pre-

11
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copy too: prediction-driven live cloning and dynamic

copy rate adjustment can be applied to both cases.

Fractional pre-copy could be especially useful if the

overload duration is predicted to be short. Dolly [10]

proposed a proactive database provisioning scheme that

creates a new database instance in advance from a disk

image snapshot and replays the transaction log to bring

the new instance to the latest state. However, Dolly did

not provide any performance predictions, and the new

instance created from an image snapshot may need some

warmup time. In contrast, the new instance created by

AGILE can reach its peak performance immediately after

start.

Local resource scaling (e.g., [39]) or live VM

migration [13, 50, 49, 25] can also relieve local, per-

server application overloads, but distributed resource

scaling will be needed if the workload exceeds the

maximum capacity of any single server. Although

previous work [39, 50] has used overload prediction

to proactively trigger local resource scaling or live

VM migration, AGILE addresses the specific challenges

of using predictions in distributed resource scaling.

Compared to local resource scaling and migration,

cloning requires longer lead time and is more sensitive

to prediction accuracy, since we need to pay the cost

of maintaining extra servers. AGILE provides medium-

term predictions to tackle this challenge.

5 Future Work

Although AGILE showed its practicality and efficiency

in experiments, there are several limitations which we

plan to address in our future work.

AGILE currently derives resource pressure models

for just CPU. Our future work will extend the resource

pressure model to consider other resources such as

memory, network bandwidth, and disk I/O. There are

two ways to build a multi-resource model. We can build

one resource pressure model for each resource separately

or build a single resource pressure model incorporating

all of them. We plan to explore both approaches and

compare them.

AGILE currently uses resource capping (a Linux

cgroups feature) to achieve performance isolation

among different VMs [39]. Although we observed that

the resource capping scheme works well for common

bottleneck resources such as CPU and memory, there

may still exist interference among co-located VMs [52].

We need to take such interference into account to build

more precise resource pressure models and achieve more

accurate overload predictions.

Our resource pressure model profiling can be triggered

either periodically or by workload mix changes. To

make AGILE more intelligent, we plan to incorporate

workload change detection mechanism [32, 12] in

AGILE. Upon detecting a workload change, AGILE

starts a new profiling phase to build a new resource

pressure model for the current workload type.

6 Conclusion

AGILE is an application-agnostic, prediction-driven,

distributed resource scaling system for IaaS clouds.

It uses wavelets to provide medium-term performance

predictions; it provides an automatically-determined

model of how an application’s performance relates to

the resources it has available; and it implements a way

of cloning VMs that minimizes application startup time.

Together, these allow AGILE to predict performance

problems far enough in advance that they can be avoided.

To minimize the impact of cloning a VM, AGILE

copies memory at a rate that completes the clone just

before the new VM is needed. AGILE performs

continuous prediction validation to detect false alarms

and cancels unnecessary cloning.

We implemented AGILE on top of the KVM

virtualization platform, and conducted experiments

under a number of time-varying application loads

derived from real-life web workload traces and real

resource usage traces. Our results show that AGILE can

significantly reduce SLO violations when compared to

existing resource scaling schemes. Finally, AGILE is

lightweight, which makes it practical for IaaS clouds.
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