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Abstract
An increasing number of MapReduce applications are written us-
ing high-level SQL-like abstractions on top of MapReduce engines.
Such programs are translated into MapReduce workflows where the
output of one job becomes the input of the next job in a workflow.
A user must specify the number of reduce tasks for each MapRe-
duce job in a workflow. The reduce task setting may have a signifi-
cant impact on the execution concurrency, processing efficiency, and
the completion time of the worklflow. In this work, we outline an
automated performance evaluation framework, called AutoTune, for
guiding the user efforts of tuning the reduce task settings in MapRe-
duce sequential workflows while achieving performance objectives.
We evaluate performance benefits of the proposed framework using
a set of realistic MapReduce applications: TPC-H queries and cus-
tom programs mining a collection of enterprise web proxy logs.

1 Introduction

Many companies are embracing MapReduce environments
for advanced data analytics over large datasets. Optimiz-
ing the execution efficiency of these applications is a chal-
lenging problem that requires the user experience and exper-
tize. Pig [4] and Hive [10] frameworks offer high-level SQL-
like languages and processing systems on top of MapReduce
engines. These frameworks enable complex analytics tasks
(expressed as high-level declarative abstractions) to be com-
piled into directed acyclic graphs (DAGs) and workflows of
MapReduce jobs. Currently, a user must specify the number
of reduce tasks for each MapReduce job (the default setting
is 1 reduce task). Determining the right number of reduce
tasks is non-trivial: it depends on the input sizes of the job,
on the Hadoop cluster size, and the amount of resources avail-
able for processing this job. In the MapReduce workflow, two
sequential jobs are data dependent: the output of one job be-
comes the input of the next job, and therefore, the number
of reduce tasks in the previous job defines the number (and
size) of input files of the next job, and may affect its per-
formance and processing efficiency in unexpected ways. To
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demonstrate these issues we use a Grep program provided
with the Hadoop distribution. This program consists of a
workflow with two sequential jobs: the first job (J1) searches
for strings with the user-specified patterns and counts them
for each matched pattern. The second job (J2) reads the out-
put of the first job and sorts the patterns according to their
appearance frequencies. We execute this program with 15
GB of input data on a Hadoop cluster with 64 worker nodes.
Each node is configured with 2 map and 1 reduce slots, i.e.,
with 128 map and 64 reduce slots overall. Figure 1 shows the
execution times of both jobs J1 and J2 as we vary the number
of reduce tasks in J1. (The number of reduce task for J2 is
fixed to 1).
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Figure 1: A Motivating Example.

Figure 1 (a) shows that the J1 execution time significantly
depends on the number of reduce tasks. A low number of re-
duce tasks limits the job execution concurrency and leads to
an increased job completion time. A high number of reduce
tasks improves the execution parallelism and the job process-
ing time, but at some point (e.g., 512 reduce tasks), it leads to
an increased overhead and increased job processing time.

As the outputs generated by J1 become inputs of J2, the
number of output files and their sizes may have a significant
impact on the performance of J2. Figure 1 (b) shows how the
reduce task settings of J1 impact the completion time of J2.

In this work, we outline a novel performance evaluation
framework, called AutoTune, that automates the user efforts
of tuning the numbers of reduce tasks along the MapReduce
workflow. It consist of the following key components:
• The ensemble of performance models that orchestrates
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the prediction of the workflow completion time at the
cluster and application levels.

• Optimization strategies that are used for determining the
numbers of reduce tasks along the jobs in the MapRe-
duce workflow for achieving the performance objectives
and for analyzing the performance trade-offs.

We validate the accuracy, efficiency, and performance bene-
fits of the proposed framework using a set of realistic MapRe-
duce applications executed on 66-nodes Hadoop cluster. This
set includes TPC-H queries and custom programs mining a
collection of enterprise web proxy logs. Our case study shows
that the proposed ensemble of models accurately predicts
workflow completion time. Moreover, the proposed frame-
work enables users to analyze the efficiency trade-offs. Our
experiments show that in many cases, by allowing 5%-10%
increase in the workflow completion time one can gain 40%-
90% of resource usage savings. The ability to optimize the
amount of resources used by the programs enables efficient
workload management in the cluster.

This paper is organized as follows. Section 2 presents the
problem definition and outlines our solution. Sections ??-3
describe the ensemble of performance models and optimiza-
tion strategies. Section 4 evaluates the framework accuracy
and effectiveness of optimization strategies. Section 5 out-
lines related work. Section 6 presents conclusion and future
work directions.

2 AutoTune Solution Outline

Currently, a user must specify the number of reduce tasks for
each MapReduce job in a workflow (the default setting is 1
reduce task). The reduce task setting defines the number of
paraller tasks that are created for processing data at the reduce
stage and the amount of data which is processed and written
by each task. As a result, the reduce tasks settings impact
the efficiency of the map stage processing in the next job. If
too many small output files created it leads to a higher pro-
cessing overhead and a higher number of map slots is needed
for these files processing. Our main goal is to determine the
reduce tasks settings that optimize the workflow overall com-
pletion time. Typically, the Hadoop cluster is shared by mul-
tiple users and their jobs are scheduled with Fair or Capacity
Schedulers. Under these schedulers the cluster resources are
partitioned into pools with separate queues and priorities for
each pool. The unused cluster resources can be allocated to
any pool(s) with jobs that can utilize these resources. There-
fore, an additional goal is to minimize the workflow resource
usage for achieving this optimized time. Often nearly optimal
completion time can be achieved with a significantly smaller
amount of resources (compare the outcome of 32 and 64 re-
duce task settings in Figure 1).

AutoTune solution relies on the following Pairwise Op-
timization Theorem: the optimization problem of the entire
workflow can be efficiently solved through the optimization
problem of the pairs of its sequential jobs.

Proof: Figure 2 shows a workflow that consists of three se-
quential jobs: J1,J2, and J3. To optimize the workflow com-

Figure 2: Example workflow with 3 sequential jobs

pletion time we need to tune the reduce task settings in jobs
J1,J2, and J3. A question to answer is whether the choice of
reduce task setting in job J1 impacts the choice of reduce task
setting in job J2, etc.

A critical observation here is that the size of overall data
generated between the map and reduce stages of the same
job and between two sequential jobs does not depend on the
reduce task settings of these jobs. For example, the over-
all amount of output data Dout

1 of job J1 does not depend on
the number of reduce tasks in J1. It is defined by the size
and properties of Dinterm

1 , and the semantics of J1’s reduce
function. Similarly, the amount of Dinterm

2 is defined by the
size of Dout

1 , properties of this data, and the semantics of J2’s
map function. Again, the size of Dinterm

2 does not depend
on the number of reduce tasks in J1. Therefore the amount
of intermediate data generated by the map stage of J2 is the
same (i.e., invariant) for different settings of reduce tasks in
the previous job J1. It means that the choice of an appropri-
ate number of reduce tasks in job J2 does not depend on the
choice of reduce task setting of job J1. It is primarily driven
by an optimized execution of the next pair of jobs J2 and J3.
Finally, tuning the reduce task setting in J3 is driven by opti-
mizing its own completion time.�

In such a way, the optimization problem of the entire work-
flow can be efficiently solved through the optimization prob-
lem of the pairs of its sequential jobs. Therefore, for two
sequential jobs J1 and J2, we need to design a model that
evaluates the execution times of J1’s reduce stage and J2’s
map stage as a function of a number of reduce tasks in J1.
Such a model will enable us to iterate through a range of re-
duce tasks’ parameters and identify a parameter that leads to
the minimized completion time of these jobs and evaluate the
amount of utilized resources (both reduce and map slots used
over time).

While there were quite a few research efforts to design a
model for predicting the completion time of a MapReduce
job [6, 5, 11, 12, 13], it still remains a challenging research
problem. The main challenge is to estimate the durations of
map and reduce tasks (and the entire job) when these tasks
process different amount of data (compared to past job runs).

Some earlier modeling efforts for predicting the job com-
pletion time analyze map and reduce task durations [12] from
the past job runs, and then derive some scaling factors for task
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execution times when the original MapReduce application is
applied for processing a larger dataset [13, 11]. Some other
efforts [6, 5, 11] aim to perform a more detailed (and more ex-
pensive) job profiling and time prediction at a level of phases
that comprise the execution of map and reduce tasks.

In this work, we pursue a new approach for designing
a MapReduce performance model that can efficiently pre-
dict the completion time of a MapReduce application for
processing different given datasets as a function of allo-
cated resources. It combines the useful rationale of the de-
tailed phase profiling method [6] for estimating durations of
map/reduce tasks with fast and practical analytical model de-
signed in [12]. However, our new framework proposes a
very different approach to estimate the execution times of
these job phases. We observe that the executions of map and
reduce tasks consist of specific, well-defined data process-
ing phases. Only map and reduce functions are custom and
their computations are user-defined for different MapReduce
jobs. The executions of the remaining phases are generic,
i.e., strictly regulated and defined by the Hadoop processing
framework. The execution time of each generic step depends
on the amount of data processed by the phase and the per-
formance of underlying Hadoop cluster. In the earlier pa-
pers [6, 5, 11], profiling is done for all the phases (including
the generic ones) for each application separately. Then these
measurements are used for predicting a job completion time.

In our work, we design a set of parameterizable mi-
crobenchmarks [16] to measure generic phases and to derive
a platform performance model of a given Hadoop cluster. We
distinguish five phases of the map task execution and three
phases of the reduce task execution as shown in Figure 3.

Figure 3: MapReduce Processing Pipeline.

We concentrate on profiling of generic (non-customized)
phases of the MapReduce processing pipeline (opposite to
phase profiling of specific MapReduce jobs). By run-
ning a set of diverse benchmarks on a given Hadoop clus-
ter we collect a useful training set (that we call a plat-
form profile) that characterizes the execution time of dif-
ferent phases while processing different amounts of data.
This profiling can be done in a small test cluster with
the same hardware and configuration as the production
cluster. Using the created training set and a robust lin-
ear regression we derive a platform performance model
Mplatform = (Mread,Mcollect,Mspill,Mmerge,Mshuffle,Mwrite)
that estimates each phase duration as a function of processed
data:

T J
phase = Mphase(DataJ

phase), (1)

where phase ∈ {read, collect, spill, merge, shuffle, write}.

The proposed evaluation framework aims to divide i) the
performance characterization of the underlying Hadoop clus-
ter and ii) the extraction of specific performance properties
of different MapReduce applications. It aims to derive once
an accurate performance model of Hadoop’s generic execu-
tion phases as a function of processed data, and then reuse
this model for characterizing performance of generic phases
across different applications (with different job profiles).

For profiling map and reduce phases (user-defined map
and reduce functions) of production MapReduce jobs we
apply our alternative profiling tool based on BTrace ap-
proach [2]. It can be applied to jobs in the production cluster.
Since we only profile map and reduce phase execution – the
overhead is small.

Once we approximate the execution times of map and re-
duce tasks, we could model the completion time of a single
job by applying the analytical model designed in ARIA [12].
The proposed performance model utilizes the knowledge
about average and maximum of map/reduce task durations for
computing the lower and upper bounds on the job completion
time as a function of allocated map and reduce slots. Equa-
tion 2 shows the lower-bound on the job completion time:

T low
J =

NJ
M ·MJ

avg

SJ
M

+
NJ

R ·RJ
avg

SJ
R

(2)

where MJ
avg (RJ

avg) represent the average map (reduce) task
duration, NJ

M (NJ
R) denote the map (reduce) task number and

SJ
M (SJ

R) reflect the number of map (reduce) slots for process-
ing the job. The computation of the upper bound on the job
completion time is slightly different (see [12] for details: the
formula involves the estimates of maximum map/reduce task
durations). As it is shown in [12], the average of lower and
upper bounds serves as a good prediction of the job comple-
tion time (it is within 10% of the measured one).

3 Two Optimization Strategies

According to Pairwise Optimization Theorem the optimiza-
tion problem of reduce task settings for a given workflow
W = {J1, ...,Jn} can be efficiently solved via the optimiza-
tion problem of the pairs of its sequential jobs. Therefore, for
any two sequential jobs (Ji,Ji+1), where i = 1, ...,n− 1, we
need to evaluate the execution times of Ji’s reduce stage and
Ji+1’s map stage as a function of the number of reduce tasks
NJi

R in Ji (see the related illustration in Figure 2, Section 2).
Let us denote this execution time as Ti,i+1(N

Ji
R ).

By iterating through the number of reduce tasks in Ji we
can find the reduce task setting NJi,min

R that results in the
minimal completion time T min

i,i+1 for the pair (Ji,Ji+1), i.e.,

T min
i,i+1 = Ti,i+1(N

Ji,min
R ). By determining the reduce task set-

tings s for all the job pairs, i.e., smin = {NJ1,min
R , ...,NJn,min

R },
we can determine the minimal workflow completion time
TW (smin). AutoTune can be used with Hadoop Fair Sched-
uler or Capacity Scheduler and multiple jobs executed on a



178 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

cluster. Both schedulers allow configuring different size re-
source pools each running jobs in the FIFO manner. Note,
that the proposed approach for finding the reduce task setting
that minimizes the workflow completion time can be applied
to a different amount of available resources, e.g., the entire
cluster or a fraction of available cluster resources. Therefore,
the optimized workflow execution can be constructed for any
size resource pool managed (available) in a Hadoop cluster.

We aim to design the optimization strategy that enables
a user to analyze the possible trade-offs, such as workflow
performance versus its resource usage. We aim to answer the
following question: if the performance goal allows a specified
increase of the minimal workflow completion time TW (smin),
e.g., by 10%, then what is the resource usage under this work-
flow execution compared to RW (smin)?

We define the resource usage Ri,i+1(N
Ji
R ) for a sequential

job pair (Ji,Ji+1) executed with the number of reduce tasks
NJi

R in job Ji as follows:

Ri,i+1(N
Ji
R ) = T Ji

R task ×NJi
R +T Ji+1

M task ×NJi+1
M

where NJi+1
M represent the number of map tasks of job Ji+1,

and T Ji
R task and T Ji+1

M task represent the average execution time of
reduce and map tasks of Ji and Ji+1 respectively. The resource
usage for the entire MapReduce workflow is defined as the
sum of resource usage for each job within the workflow.

Table 1 summarizes the notations that we use for defining
the optimization strategies below.

Table 1: Notation Summary
Ti,i+1(N

Ji
R ) Completion time of (Ji,Ji+1) with NJi

R reduce tasks
Ri,i+1(N

Ji
R ) Resource usage of pair (Ji,Ji+1) with NJi

R reduce tasks
TW (s) Completion time of the entire workflow W with setting s
RW (s) Resource usage of the entire workflow W with setting s
T min

i,i+1 Minimal completion time of a job pair (Ji,Ji+1)

NJi ,min
R Number of reduce tasks in Ji that leads to T min

i,i+1
w increase Allowed increase of the min workflow completion time
NJi ,incr

R Number of reduce tasks in Ji to meet the increased time

The first algorithm is based on the local optimization. The
user specifies the allowed increase w increase of the min-
imal workflow completion time TW (smin). Our goal is to
compute the new workflow reduce task settings that allow
achieving this increased completion time. To accomplish this
goal, a straightforward approach is to apply the user-defined
w increase to the minimal completion time T min

i,i+1 of each pair
of sequential jobs (Ji,Ji+1), and then determine the corre-
sponding number of reduce tasks in Ji. The pseudo-code
defining this strategy is shown in Algorithm 1. The com-
pletion time of each job pair is locally increased (line 2), and
then the reduce task settings are computed (lines 4-6).

While this local optimization strategy is simple to imple-
ment, there could be additional resource savings achieved if
we consider a global optimization. Intuitively, the resource
usage for job pairs along the workflow might be quite differ-
ent depending on the job characteristics. Therefore, we could
identify the job pairs with the highest resource savings (gains)

Algorithm 1 Local optimization strategy for deriving workflow
reduce tasks’ settings

1: for i ← 1 to n do
2: T incr

i,i+1 = T min
i,i+1 × (1+w increase)

3: NJi,cur
R ← NJi,min

R
4: while Ti,i+1(N

Ji,cur
Ri

)< T incr
i,i+1 do

5: NJi,cur
R ← NJi,cur

R −1
6: end while
7: NJi,incr

R ← NJi,cur
R

8: end for

for their increased completion times. The pseudo-code defin-
ing this global optimization strategy is shown in Algorithm 2.

Algorithm 2 Global optimization strategy for deriving workflow
reduce tasks’ settings

1: scur = smin = {NJ1,min
R , ...,NJn,min

R }
2: Tw incr = TW (smin)× (1+w increase)
3: for i ← 1 to n do
4: NJi,incr

R ← NJi,min
R

5: end for
6: while true do
7: bestJob =−1, maxGain = 0
8: for i ← 1 to n do
9: NJi,tmp

R ← NJi,incr
R −1

10: stmp = scur ∪{NJi,tmp
R }−{NJi,incr

R }
11: if TW (stmp)≤ Tw incr then

12: Gain =
RW (smin)−RW (stmp)
TW (stmp)−TW (smin)

13: if Gain > MaxGain then
14: maxGain ← Gain, bestJob ← i
15: end if
16: end if
17: end for
18: if bestJob =−1 then
19: break
20: else
21: NbestJob,incr

R ← NbestJob,incr
R −1

22: end if
23: end while

First, we apply the user-specified w increase to determine the
targeted completion time Tw incr (line 2). The initial number
of reduce task for each job Ji is set to NJi,min

R (lines 3-5), and
then we go through the iteration that at each round estimates
the gain we can get by decreasing the number of reduce tasks
by one for each job Ji. We aim to identify the job that has the
smallest response time increase with the decreased amount
of reduce tasks while satisfying the targeted workflow com-
pletion time (lines 8-17). We pick the job which brings the
largest gain and decrease its reduce task setting by 1 (line 21).
Then the iteration repeats until the number of reduce tasks in
any job cannot be further decreased because it would cause
a violation of the targeted workflow completion time Tw incr
(line 11).
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4 Evaluation

Experimental Testbed and Workloads. All experiments
are performed on 66 HP DL145 G3 machines. Each ma-
chine has four AMD 2.39GHz cores, 8 GB RAM and two
160 GB 7.2K rpm SATA hard disks. The machines are set
up in two racks and interconnected with gigabit Ethernet. We
use Hadoop 1.0.0 and Pig-0.7.0 with two machines dedicated
toJobTracker and NameNode, and remaining 64 machines as
workers. Each worker is configured with 2 map and 2 reduce
slots. The HDFS blocksize is set to 64MB. The replication
level is set to 3. We disabled speculative execution since it
did not lead to significant improvements in our experiments.

To validate the accuracy, effectiveness, and performance
benefits of the proposed framework, we use queries from
TPC-H benchmark and custom queries mining a collection
of web proxy logs. TPC-H [3] is a standard database bench-
mark for decision-support workloads. It comes with a data
generator for creating the test database. The input dataset
size is controlled by the scaling factor: the scaling factor of 1
generates 1 GB input dataset. Our second dataset contains 6
months access logs of the enterprise web proxy during 2011-
2012 years.

TPC-H and proxy queries are implemented using Pig [4].
Queries are translated into sequential MapReduce workflows
that are graphically represented in Fig. 4.

Sort Group 

(a) TPC-H Q1

Join Group 

(b) TPC-H Q19

Sort 

Join 

Group 

(c) proxy-Q1

Join 

Group 

Group Group 

(d) proxy-Q2

Figure 4: Workflows for TPC-H and Proxy queries.

AutoTune Performance Benefits. Since it is infeasible
to validate optimal settings by testbed executions (unless we
exhaustively execute the programs with all possible settings),
we evaluate the models’ accuracy to justify the optimal set-
tings procedure.

We execute two queries TPC-H Q1 and TPC-H Q19 with
the total input size of 10 GB in our 66-node Hadoop clus-
ter. Figure 5 shows measured and predicted query comple-
tion times for a varied number of reduce tasks in the first job
of both workflows (the number of reduce tasks for the second
job is fixed in these experiments). First of all, results pre-
sented in Figure 5 reflect a good quality of our models: the
difference between measured and predicted completion times
for most of the experiments is less than 10%. Moreover, the
predicted completion times accurately reflect a similar trend
observed in measured completion times of the studied work-
flows as a function of the reduce task configuration. These
experiments demonstrate that there is a significant difference

(up to 4-5 times) in the workflow completion times depending
on the reduce task settings.
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(b) TPC-H Q19
Figure 5: Model validation for TPC-H Q1 and TPC-H Q19.

Figure 5 shows that the query completion time decreases
with the increased number of reduce tasks (because it leads
to a higher concurrency degree and a smaller amount of data
processed by each task). However, at some point job settings
with a high number of reduce tasks (e.g., 256) may have a
negative effect due to higher overheads and higher resource
allocation required to process such a job.

Another interesting observation from the results in Fig-
ure 5 is that under two settings with a number of reduce tasks
equal to 64 and 128 the workflow completion times are very
similar while the number of required reduce slots for a job ex-
ecution increases twice. As shown later in this section, Auto-
Tune enables the user to identify useful trade-offs in achieving
the optimized workflow completion time while minimizing
the amount of resources required for a workflow execution.

Why Not Use Best Practices? There is a list of best
practices [1] that offers useful guidelines in determining the
appropriate configuration settings. The widely used rule of
thumb suggests to set the number of reduce tasks to 90%
of all available resources (reduce slots) in the cluster. In-
tuitively, this maximizes the concurrency degree in job ex-
ecutions while leaving some “room” for recovering from the
failures. This approach may work under the FIFO scheduler
when all the cluster resource are (eventually) available to the
next scheduled job. This guideline does not work well when
the Hadoop cluster is shared by multiple users, and their jobs
are scheduled with Fair or Capacity Schedulers. Moreover,
the rule of thumb suggests the same number of reduce tasks
for all applications without taking into account the amount of
input data for processing in these jobs.

To illustrate these issues, Figure 6 shows the impact of the
number of reduce tasks on the measured query completion
time for executing TPC-H Q1 and TPC-H Q19 with different
input dataset sizes. The rule of thumb suggests to use 115
reduce tasks (128*0.9=115). However, as we can see from
the results in Figure 6 (a), for dataset sizes of 10 GB and
15 GB the same performance could be achieved with 50% of
the suggested resources. The resource savings are even higher
for TPC-H Q1 with 5 GB input size: it can achieve the nearly
optimal performance by using only 24 reduce tasks (this rep-
resents 80% savings against the rule of thumb setting). The
results for TPC-H Q19 show similar trends and conclusion.
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Figure 6: Effect of reduce task settings for processing the same job
with different input dataset sizes (measured results).

In addition, Figure 7 shows the effect of reduce task set-
tings on the measured completion time of TPC-H Q1 query
when only a fraction of resources (both map and reduce slots)
is available for the job execution. Figures 7 (a) and (b) show
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Figure 7: Effect of reduce task settings when only a fraction of
resources is available (measured results).

the results with the input dataset size of 10 GB and 1 GB
respectively. The graphs reflect that when less resources are
available to a job (e.g., 10% of all map and reduce slots in
the cluster), the offered rule of thumb setting (115 reduce
tasks) could even hurt the query completion time since the
expected high concurrency degree in the job execution cannot
be achieved with limited resources while the overhead intro-
duced by a higher number of reduce tasks causes a longer
completion time. This negative impact is even more pro-
nounced when the input dataset size is small as shown in Fig-
ure 7 (b). For example, when the query can only use 10% of
cluster resources, the query completion time with the rule of
thumb setting (115 reduce tasks) is more than 2 times higher
compared to the completion time of this query with eight re-
duce tasks.

Analyzing Performance Trade-offs. Now, we evaluate
two optimization strategies introduced in Section 3 for deriv-
ing workflow reduce task settings and analyzing the achiev-
able performance trade-offs. Figure 8 presents the normalized
resource usage under local and global optimization strategies
when they are applied with different thresholds for a work-
flow completion time increase, i.e., w increase= 0%, 5%,
10%, 15%. Figures 8 (a)-(b) show the measured results for
two TPC-H queries with the input size of 10GB (i.e., scal-
ing factor of 10), and Figures 8 (c)-(d) show results for two

proxy queries that process 3-month data of web proxy logs.
For presentation purposes, we show the normalized workflow
resource usage with respect to the resource usage under the
rule of thumb setting that sets the number of reduce tasks in
the job to 90% of the available reduce slots in the cluster. In
the presented results, we also eliminate the resource usage of
the map stage in the first job of the workflow as its execution
does not depend on reduce task settings.
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Figure 8: Local and global optimization strategies: resource usage
with different w increase thresholds.

The results are quite interesting. The first group of bars
in Figure 8 shows the normalized resource usage when a
user aims to achieve the minimal workflow completion time
(w increase= 0%). Even in this case, there are 5%-30% re-
source savings compared to the rule of thumb settings. When
w increase= 0% the local and global optimization strategies
are identical and produce the same results. However, if a
user accepts 5% of the completion time increase it leads to
very significant resource savings: 40%-95% across different
queries shown in Figure 8. The biggest resource savings are
achieved for TPC-H Q1 and Proxy Q1: 95% and 85% respec-
tively. Moreover, for these two queries global optimization
strategy outperforms the local one by 20%-40%. As we can
see the performance trade-offs are application dependent.

In summary, AutoTune offers a useful framework for a
proactive analysis of achievable performance trade-offs to en-
able an efficient workload management in a Hadoop cluster.

5 Related Work

Several different approaches were proposed for predicting the
performance of MapReduce applications [6, 5, 11, 12, 17].

In Starfish [6], the authors apply dynamic Java instrumen-
tation to collect a run-time monitoring information about job
execution. They create a fine granularity job profile that con-
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sists of a diverse variety of metrics. This detailed job profil-
ing enables the authors to predict the job execution under dif-
ferent Hadoop configuration parameters, automatically derive
an optimized cluster configuration, and solve cluster sizing
problem [5]. Tian and Chen [11] propose predicting a given
MapReduce application performance from a set of test runs
on small input datasets and a small Hadoop cluster. By exe-
cuting a variety of 25-60 test runs the authors create a training
set for building a model of a given application. It is an inter-
esting approach but the model has to be built for each appli-
cation and cannot be applied for parameter tuning problems.
ParaTimer [7] offers a progress estimator for parallel queries
expressed as Pig scripts [4]. In the earlier work [8], the au-
thors design Parallax – a progress estimator that aims to pre-
dict the completion time of a limited class of Pig queries that
translate into a sequence of MapReduce jobs. These models
are designed for estimating the remaining execution time of
workflows and DAGs of MapReduce jobs. However, the pro-
posed models are not applicable for optimization problems.

ARIA [12] builds an automated framework for extracting
compact job profiles from the past application run(s). These
job profiles form the basis of a MapReduce analytic per-
formance model that computes the lower and upper bounds
on the job completion time. ARIA provides an SLO-based
scheduler for MapReduce jobs with timing requirements. The
later work [17] enhances and extends this approach for per-
formance modeling and optimization of Pig programs. In
our work, we design a different profiling of MapReduce jobs
via eight execution phases. The phases are used for estimat-
ing map/reduce tasks durations when the job configuration is
modified.

MRShare [9] and CoScan [14] offer frameworks that
merge the executions of MapReduce jobs with common data
inputs in such a way that this data is only scanned once, and
the workflow completion time is reduced. AQUA [15] pro-
poses an automatic query analyzer for MapReduce workflow
on relational data analysis. It tries to optimize the workflow
performance by reconstructing the MapReduce DAGs to min-
imize the intermediate data generated during the workflow
execution.

In our work, we focus on optimizing the workflow perfor-
mance via tuning the number of reduce tasks of its jobs under
a given Hadoop cluster configuration. We are not aware of
any published work solving this problem.

6 Conclusion
Optimizing the execution efficiency of MapReduce work-
flows is a challenging problem that requires the user experi-
ence and expertize. In this work, we outline the design of Au-
toTune - the automated framework for tuning the reduce task
settings while achieving multiple performance objectives. We
observe that the performance gain for minimizing a workflow
completion time has a point of diminishing return. In the fu-
ture, we plan to design useful utility functions for automating
the trade-off part of analysis in the optimization process.
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