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Abstract

YinzCam is a cloud-hosted service that provides sports
fans with real-time scores, news, photos, statistics, live
radio, streaming video, etc., on their mobile devices.
YinzCam’s infrastructure is currently hosted on Ama-
zon Web Services (AWS) and supports over 7 million
downloads of the official mobile apps of 40+ profes-
sional sports teams and venues. YinzCam’s workload is
necessarily multi-modal (e.g., pre-game, in-game, post-
game, game-day, non-gameday, in-season, off-season)
and exhibits large traffic spikes due to extensive usage by
sports fans during the actual hours of a game, with nor-
mal game-time traffic being twenty-fold of that on non-
game days.

We discuss the system’s performance in the three
phases of its evolution: (i) when we initially deployed the
YinzCam infrastructure and our users experienced unpre-
dictable latencies and a large number of errors, (ii) when
we enabled AWS’ Auto Scaling capability to reduce the
latency and the number of errors, and (iii) when we an-
alyzed the YinzCam architecture and discovered oppor-
tunities for architectural optimization that allowed us to
provide predictable performance with lower latency, a
lower number of errors, and at lower cost, when com-
pared with enabling Auto Scaling.

1 Introduction

Sports fans often have a thirst for real-time information,
particularly game-day statistics, in their hands. The as-
sociated content (e.g., the game clock, the time at which
a goal occurs in a game along with the players involved)
is often created by official sources such as sports teams,
leagues, stadiums and broadcast networks.

From checking real-time scores to watching the game
preview and post-game reports, sports fans are using
their mobile devices extensively [11] and in growing
numbers in order to access online content and to keep up

to date on their favorite teams, according to a 2012 re-
port from Burst Media [10]. Among the surveyed sports
fans, 45.7% said that they used smartphones (with 31.6%
using tablets) to access online sports-content at least oc-
casionally, while 23.8% said that they used smartphones
(with 17.1% using tablets) to watch sporting events live.
This trend prevails despite the presence of television—
in fact, fans continued to use their mobile devices to
check online content as a second-screen or third-screen
viewing-experience even while watching television.

YinzCam started as a Carnegie Mellon research
project in 2008, with its initial focus being on provid-
ing in-venue replays and in-venue live streaming camera
angles to hockey fans inside a professional ice-hockey
team’s arena [5]. The original concept consisted of a
mobile app that fans could use on their smartphones, ex-
clusively over the in-arena Wi-Fi network in order to re-
ceive the unique in-arena video content. While YinzCam
started with an in-arena-only mobile experience, once the
research project moved to commercialization, the result-
ing company, YinzCam, Inc. [15], decided to expand its
focus beyond the in-venue (small) market to include the
out-of-venue (large) market.

YinzCam is currently a cloud-hosted service that pro-
vides sports fans with real-time scores, news, photos,
statistics, live radio, streaming video, etc., on their mo-
bile devices anytime, anywhere, along with replays from
different camera angles inside sporting venues. Yinz-
Cam’s infrastructure is currently hosted on Amazon Web
Services (AWS) and supports over 7 million downloads
of the official mobile apps of 40+ professional sports
teams and venues within the United States.

Given the real-time nature of events during a game and
the range of possible alternate competing sources of on-
line information that are available to fans, it is critical for
YinzCam’s mobile apps to remain attractive to fans by
exhibiting low user-perceived latency, a minimal num-
ber of user errors (visible to user in the form of time-
outs occuring during the process of loading a page), and
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Figure 1: The trend of a week-long workload for a hockey-team’s mobile app, illustrating modality and spikiness. The
workload exhibits the spikes due to game-day traffic during the three games in the week of April 15, 2012.

real-time information updates, regardless of the load of
the system. Ensuring a responsive user experience is
the overarching goal for our system. Our infrastructure
needs to be able to handle our unique spiky workload,
with game-day traffic often exhibiting a twenty-fold in-
crease over normal, non-game-day traffic, and with un-
predictable game-time events (e.g., a hat-trick from a
high-profile player) resulting in even larger traffic spikes.

Contributions. This paper describes the evolution of
YinzCam’s production architecture and distributed in-
frastructure, from its beginnings three years ago, when
it was used to support thousands of concurrent users, to
today’s system that supports millions of concurrent users
on any game day. We discuss candidly the weaknesses
of our original system architecture, our rationale for en-
abling Amazon Web Services’ Auto Scaling capability
[2] to cope with our observed workloads, and finally,
the application-specific optimizations that we ultimately
used to provide the best possible scalability at the best
possible price point. Concretely, our contributions in this
paper are:

e An AWS Auto Scaling policy that can cope with
such unpredictably spiky workloads, without com-
promising the goals of a responsive user experience;

e Leveraging application-specific opportunities for
optimization that can cope with these workloads
at lower cost (compared to the Auto Scaling-
alone approach), while continuing to meet the user-
experience goals;

e Lessons learned on how Auto Scaling can often
mask architectural inefficiencies, and perform well
(in fact, too well), but at higher operational costs.

The rest of this paper is organized as follows. Section
2 explores the unique properties of our workload, includ-
ing its modality and spikiness. Sections 3, 4, and 5 de-
scribe our Baseline, Auto Scaling, and Optimized system
configurations, respectively. Section 6 presents a perfor-
mance comparison of our three system-configurations.
Section 7 describes related work. Finally, we conclude
in section 8.

2 Motivation

In this section, we explore the properties our workload
in depth, describing the natural phenomena that cause its
modality and spikiness. First, let’s consider the modal
nature of our workloads. Each workload begins in the
non-game mode, where the usage is nearly constant and
follows a predictable day-night cycle. In Figure 1, this
can be seen on April 16, 17, 19, and 20. On game days,
such as April 15, 18, and 20, our workload changes con-
siderably. In the hours prior to the game event, there is a
slow build-up in request throughput, which we refer to as
pre-game mode. As the game-start time nears, we typi-
cally see a load spike where the request rate increases
rapidly as shown in Figure 2. The system now enters
in-game mode, where the request rate fluctuates rapidly
throughout the game. In the case of hockey games, these
fluctuations define sub-modes where usage spikes during
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Figure 2: The trend of a game-time workload for a
hockey-team’s mobile app, illustrating modality and
spikiness. The workload shown is for a hockey game
in April 2012.

the first, second, and third hockey periods and drops dur-
ing the 20-minute intermissions between periods. The
load drops off quickly following the end of the game
during what we call the post-game mode. Following the
post-game decline, the system re-enters non-game mode
and the process repeats.

In addition to modality, our workload exhibits what
we call spikiness. We define a spiky workload to be
one where the request rate more than doubles within a
15-minute period. The workload shown in Figure 2 ex-
hibits spikiness at 7:30pm, towards the end of the pre-
game phase. Between 7:30 and 7:45, the request rate
of our workload more than doubled, and it nearly dou-
bled again by 8:00pm. The request rate reached its max-
imum between 9:15 and 9:30 in the middle of the sec-
ond period, when several significant scoring-events oc-
curred. In addition to the rapid increases, our workload
also shows equally-rapid decreases as the system enters
the post-game mode, with the workload nearly halving
in request rate between 10:15pm and 10:30pm.

To understand why our workload has these properties,
we have to consider our users’ demand for app content.
Both figures 1 and 2 show the number of home-screen
views in one of our hockey-team apps. Typically, this
page shows news and media items as well as the box
score of the previous game played. However, during
games, the home screen shows real-time data such as live
team-statistics and the game clock as well as a portion
of team’s Twitter feed. This effectively provides fans
with a way to follow the game without being tuned in

via radio or television. It also provides a second screen
that can augment an existing radio or television broad-
cast with live statistics and Twitter updates. Our fans
have found these features to be tremendously useful and
compelling, and our workload shows that these features
are used heavily during periods when the game is in play.
At other times, the app provides a wealth of information
about the team, players, statistics, and the latest news.
These functions, which lack a real-time aspect, have their
usage spread evenly throughout the day.

3 Configuration 1: Baseline

Figure 3 shows the architecture of our system when we
first began publishing our mobile apps in 2010. The
system is composed of two subsystems using a three-
tier architecture, one consuming new content and the
other pushing views of this content to our mobile apps.
The two subsystems share a common relational database,
shown in the middle of the diagram.

The content-aggregation tier is responsible for keep-
ing the relational database up-to-date with the latest app-
content, such as sports statistics, game events, news and
media items, and so on. It runs across multiple EC2
instances, periodically polling information sources and
identifying changes to the data. The content-aggregation
tier then transforms these changes into database update
queries, which it executes to bring the relational database
up-to-date. Since these updates are small and infrequent,
the load on the EC2 instances and database is negligi-
ble. The infrequency of updates also allows us to use
aggressive query-caching on our app servers, preventing
the database from becoming a bottleneck.

Our apps periodically retrieve new information from
the content-storage tier in the form of XML documents.
The app then displays information from the XML docu-
ment to the user in various ways. The content-delivery
tier is responsible for composing views of the relational
data as XML documents that are ready for consumption
by our apps. In response to a request for XML data,
the content-delivery tier executes one or more database
queries and synthesizes the results into an XML docu-
ment on the fly. This task is both I/O-intensive and CPU-
intensive. Fortunately, scaling up this component is sim-
ply a matter of adding additional EC2 instances behind a
load balancer.

However, despite being conceptually simple, we en-
countered multiple problems scaling up our system as the
size of our user-base increased. Initially, scaling up the
content-delivery tier was an entirely-manual task. We did
this before every sporting event, and we could only guess
how many additional servers we would need to handle
the CPU load for the game. Since the spikes we see
are of varying magnitude, we would often provision too
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Figure 3: Baseline Configuration

much or too little, either wasting money on resources we
didn’t need or frustrating our users with high latency and
errors. In the results section, we describe the high re-
sponse latency of our baseline architecture when under-
provisioned for a game workload.

4 Configuration 2: With Auto Scaling

We first adopted EC2 Auto Scaling [2] to deal with the
CPU-load-management problem. Auto Scaling is a
technique that allows system administrators to automat-
ically scale a fleet of EC2 resources up or down to meet
current workload-demands. We defined an Auto Scaling
policy that allowed our system to adapt to the spikes in
our workload.

We follow an aggressive scale-up policy in our sys-
tem to cope with our spiky workloads. Spikes in our
workload happen very quickly, and if we do not scale
our resources quickly, many of our users experience high
latency and errors while additional resources are be-
ing added. We use current CPU-usage in our content-
delivery tier to determine when to add additional servers.
We have set the CPU-usage threshold for scale up to a
low value of 30% average over 1 minute, in an attempt to
catch spikes early. We also scale up by doubling the size
of the fleet to make sure that we have enough instances
available to handle double the workload volume.

On the other hand, we defined a scale-down policy
that was slow and cautious. There are periods of lower-
volume usage (such as between periods in a hockey

game) where we did not want to scale down prematurely.
Furthermore, scaling down too rapidly could remove too
many resources from the pool, forcing the system to im-
mediately scale up after the next CPU-utilization check.
This could cause the system to flap back and forth be-
tween two fleet sizes, wasting EC2 resources.

We downscale our fleet of servers by removing
one server at a time and making sure that the CPU
usage in our content-delivery tier is stable for a
longer period of time before we do another round
of downscaling. Thus, our Auto Scaling policy can
be described as Multiplicative-Increase-Linear-Decrease
(MILD). This policy was inspired by the Additive-
Increase-Multiplicative-Decrease (AIMD) policy for
congestion control used in TCP. As with congestion con-
trol, our scaling policy attempts to prevent load-collapse
by cautiously modifying parameters of the system until
the workload matches the system’s capacity. The major
difference between MILD and TCP’s AIMD is that TCP
gradually increases the workload until the network is at
capacity. Since we do not have the ability to rate-limit
our workload, we take the opposite approach of gradu-
ally reducing our system’s maximum capacity until this
capacity matches the workload.

As described in section 6, Auto Scaling does solve the
high-latency problem caused by high CPU load for the
baseline configuration. Adding additional instances ef-
fectively adds more CPU resources, and when placed be-
hind a round-robin load-balancer such as Amazon’s ELB
[3], each instance gets an equal share of the workload.
Furthermore, Auto Scaling only increases the size of the
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fleet when the workload demands it, so we don’t have
to over-provision for each game. With Auto Scaling, we
were able to scale up our system to get acceptable laten-
cies in the face of our spiky workload even though our
system had a sub-optimal design with glaring inefficien-
cies.

Unfortunately, masking inefficiencies with Auto Scal-
ing does not come without a cost. We had to pay for up
to 15 additional instances per team during each game,
which adds up to a considerable increase in operation
costs over an entire season of games (for our hockey
apps, 82 regular-season games per team). At this point,
we wondered if we could lower our operations costs by
removing the inefficiencies in our architecture, thus low-
ering our CPU requirements and the number of instances
required to handle our workload during games. The sub-
sequent analysis of the inefficiencies in our system led us
to the optimized architecture we describe next.

5 Configuration 3: Optimized

Our optimized architecture is the result of studying
our baseline architecture, identifying inefficiencies, and
modifying the architecture to correct them. After study-
ing our system, we identified two major problems with
our architecture. The first problem was in our request
handling, where we realized that every request required
the server to generate a new XML document from data
stored in the database. Often, the system generated mul-
tiple identical XML documents within a short period of
time. The second was in our database layer, where we
noticed that certain queries were being executed multiple
times within a few seconds, each returning the same re-
sult. These observations led us to add two caching-layers
to our architecture, which we describe below.

In response to the observation that every request re-
quired XML generation, we added a caching layer in
front of the content-delivery tier. This layer receives re-
quests from clients and serves pre-generated XML con-
tent if the cache time on the content has not expired; oth-
erwise, it regenerates the XML content using the content-
delivery tier and stores the content to serve subsequent
requests. This dramatically reduces instance CPU uti-
lization, since new pages are only generated when cached
content expires (instead of on every request).

We implemented our caching layer using the output-
caching feature of the Microsoft IIS web server, which
required very little additional code or configuration on
top of our existing IIS-based content-delivery tier. We
assigned groups of XML documents a cache-expiration
time based on how much staleness the content could tol-
erate. For example, XML documents describing a news
article are unlikely to change after publication and so
have a cache-expiration time of a day or more, while

documents describing the latest game events change fre-
quently and have cache-expiration times on the order of
seconds.

Our second optimization was another caching-layer
between the content-delivery tier and the content-storage
tier, in response to the observation that the content-
delivery tier was executing multiple queries for the same
data in rapid succession. While our relational database
has an internal query cache, some of our queries generate
tens of megabytes of data. When several of these queries
are run in parallel, this volume of data can quickly sat-
urate the network link between our EC2 instances and
the database. To remedy this, we added a cache of query
results in the content-delivery tier.

This cache is implemented in a similar fashion to the
output cache. When a server in the content-delivery tier
needs to execute a database query, it first looks up the
query in a table of query results. If the query is found
in the table and the result has not expired, the result
from the table is used to generate the XML. Otherwise,
the generator runs the database query directly and up-
dates the table with the results. Like individual XML-
documents, each query is assigned a cache time based on
the staleness-tolerance of the data.

6 Evaluation

We evaluated our three system architectures using a
HTTP load generator and a trace of a production work-
load. We ran the three-hour trace and recorded the av-
erage latency seen over consecutive 60-second intervals.
We then compared the results of these tests to determine
the effectiveness of each approach in reducing the re-
sponse latency seen by our users.

We built our testbed entirely on EC2, utilizing EC2’s
internal network for communication between simulated
clients and the view generation service. Using the logs
collected during the April 18, we simulated clients by us-
ing a program that replays the log file exactly as it was
recorded using the timestamps associated with each re-
quest. The EC2 instance used to simulate clients was of
type ml.xlarge.

We ran our tests against a copy of our production sys-
tem. This copy was set up in an identical configuration as
our production system, except it was not serving produc-
tion traffic. To make this copy, we duplicated both the
load balancer configuration and the Auto Scaling config-
uration. We used the same operating system image as
the production service with the same EC2 instance type
(cl.medium). We also created an isolated read replica of
our database used only by the EC2 instances involved in
the test.

Our test trace was a three-hour log of traffic served
by our production system during a hockey game in April

USENIX Association

10th International Conference on Autonomic Computing (ICAC "13) 149



]
G

H -~ ~Baseline

Auto Scaling

v

Average Latency (s)
[
=3

—Optimized

>

Figure 4: The average latency of our three system config-
urations throughout a 3-hour production workload trace.
The workload was recorded during a hockey-game in
April 2012.

2012. This trace captures all of the spikes in our work-
load. For each configuration of our system, we replayed
this trace in real time using our client simulator. Each
test was run in isolation on our test infrastructure, and all
resources were rebooted between runs.

We tested three configurations of our system: Base-
line, Auto Scaling, and with Optimizations. The Base-
line configuration is the system described in section 3,
running on a single instance through the entire trace.
The Auto Scaling configuration is the Baseline config-
uration running with the Auto Scaling policies described
in section 4, configured with one initial instance but a
maximum of sixteen. Finally, the Optimized configura-
tion is the system described in section 5, which extends
the Baseline configuration with additional caching to im-
prove performance. Like the Baseline configuration, the
Optimized configuration is restricted to a single instance.

Figure 4 shows a comparison of average latency over
60-second windows throughout the entire 3-hour trace
across all three configurations. The baseline configu-
ration performs much worse than either the Auto Scal-
ing or Optimized, due to the restricted amount of CPU
time available on a single instance. Both Auto Scaling
and Optimized perform far better through their respective
mechanisms for coping with heavy load - Auto Scaling
simply adds more resources to the pool, while Optimized
makes more efficient use of CPU resources.

Figure 5 shows the same trace comparison as in figure
4, except zoomed-in to show the fine differences between
the Auto Scaling and Optimized cases. This compari-
son shows that Optimized has both lower average-latency
and lower jitter than the Auto Scaling case throughout
the entire trace. Through careful optimization, we were
able to outperform Auto Scaling using just a fraction of

~~~Auto Scaling

Average Latency (s)

—Optimized

Figure 5: The same results shown figure 4, zoomed in
to show the differences between the Auto Scaling and
Optimized configurations.

the eight instances that Auto Scaling required to achieve
comparable performance.

7 Related Work

A substantial amount of research has been done in the
area of using Auto Scaling to cope with workloads that
have a high peak-to-average ratio. A number of related
works use predictive models to forecast the workload and
then use Auto Scaling to dynamically adjust the resource
usage to match the predicted workload. The main differ-
ence between some of these proposals is the way predic-
tive models are built and used. For instance, [12], [1], [8]
use control-theoretic models to predict workloads while
[7], [13] use autoregressive moving average (ARMA) fil-
ters for prediction. Mao et. al. [9] use Auto Scaling to
scale up or down cloud infrastructure to ensure that all
job deadlines are met under a limited budget. There is
also a significant amount of research done in the area of
workload modeling and prediction, even though the pro-
posed systems do not explicitly mention using Auto Scal-
ing to cope with varying work load. Gmach et. al. [6]
use resource pools that are shared by multiple applica-
tions and propose a process for automating the efficient
use of such resource pools. Shivam et. al.[14] use an
active-learning approach to analyze the performance his-
tories of hosted applications to build predictive models
for future use of the applications and use the predicted
values for future resource assignment. Chandra et. al.
[4] propose to capture the transient behavior of web ap-
plications workload by modeling the server resource.
While we can certainly benefit from some of the
workload-prediction-related work, as we demonstrate in
Section 2, our workloads can be spiky and are often hard
to predict in advance (e.g. predicting whether a player
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will score a hat-trick). We believe that contextual pre-
diction e.g., prediction based on the analysis of statistics
feeds to determine what might be going on in the game
(a player close to scoring a hat-trick), or prediction based
on the analysis of news feeds to learn about important
events (like return of a favorite player), might be more
appropriate and useful in our context.

8 Conclusions and Reflections

Auto Scaling is often provided by IaaS providers as a
technique by which applications can scale up/down re-
sources to meet the current demand. Our results show
that Auto Scaling works well, in-fact so well that we
were able to take a system with obvious architectural
flaws and make it perform nearly as well as a fully-
optimized version. However, hiding these inefficiencies
comes with the price of additional infrastructure. In our
case, our inefficient Baseline-configuration required up
to eight times the resources of our efficient Optimized-
configuration to achieve comparable performance.

On the other hand, the optimizations that we made
were fairly simple and straightforward to identify and
implement. This may not be the case with all systems,
and optimizing effectively often requires considerable
skill and effort. However, if it can be done, the payoff
can be much greater than simply using Auto Scaling with
an inefficient system. In our case, our thoughtful opti-
mizations required greater insight and more development
time, but paid off through lower costs, lower latency, and
lower jitter than either of the other configurations.
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