
USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 159

ThroughputScheduler: Learning to Schedule on Heterogeneous Hadoop
Clusters

Shekhar Gupta, Christian Fritz, Bob Price, Roger Hoover, and Johan de Kleer
Palo Alto Research Center, Palo Alto, CA, USA

{sgupta, cfritz, bprice, rhoover, dekleer}@parc.com

Cees Witteveen
Delft University of Technology, The Netherlands

c.witteveen@tudelft.nl

Abstract

Hadoop is the de-facto standard for big data analytics applica-
tions. Presently available schedulers for Hadoop clusters assign
tasks to nodes without regard to the capability of the nodes.
We propose ThroughputScheduler, which reduces the overall
job completion time on a clusters of heterogeneous nodes by
actively scheduling tasks on nodes based on optimally match-
ing job requirements to node capabilities. Node capabilities
are learned by running probe jobs on the cluster. Through-
putScheduler uses a Bayesian, active learning scheme to learn
the resource requirements of jobs on-the-fly. An empirical eval-
uation on a set of sample problems demonstrates that Through-
putScheduler can reduce total job completion time by almost
20% compared to the Hadoop FairScheduler and 40% com-
pared to FIFOScheduler. ThroughputScheduler also reduces
average mapping time by 33% compared to either of these
schedulers.

1 Introduction

Map-Reduce frameworks, such as Hadoop, are the tech-
nology of choice for implementing mayn big data appli-
cations. However, Hadoop and other frameworks typ-
ically assume a homogeneous cluster of server nodes
and assign tasks to nodes regardless of their capabili-
ties, while in practice, data centers may contain a het-
erogeneous mix of servers. When the jobs executing
on the cluster also have heterogeneous resource require-
ments, which is typical, then it is possible to signifi-
cantly increase processing throughput by actively match-
ing jobs to server capabilities [2, 4, 6]. In this paper,
we present the ThroughputScheduler, which actively ex-
ploits the heterogeneity of a cluster to reduce the overall
execution time of a collection of concurrently executing
jobs with distinct resource requirements. This is accom-
plished without any additional input from the user or the
cluster administrator.

Optimal task allocation requires knowledge about both

the resource requirements of jobs and the resource capa-
bilities of servers, e.g., their relative CPU and disk I/O
speeds. The ThroughputScheduler derives server capa-
bilities by running “probe” jobs on the cluster nodes.
These capabilities drift very slowly in practice and can
be evaluated at infrequent intervals, e.g., at cluster set-up.
In contrast, each new job has a-priori unknown resource
requirements. We therefore present a learning scheme to
learn job resource requirements on-the-fly.

The practicality of our solution relies on the structure
of jobs in Hadoop. These jobs are subdivided into tasks,
often numbering in the thousands, which are executed in
parallel on different nodes. Mapping tasks belonging to
different jobs can have very different resource require-
ments, while mapping tasks belonging to the same job
are very similar. This is true for the large majority of
practical mapping tasks, as Hadoop divides the data to be
processed into evenly sized blocks. For a given job, we
can therefore use online learning to learn a model of its
resource requirements from a small number of mapping
tasks in an explore phase, and then exploit this model
to optimize the allocation of the remaining tasks. As
we will show, this can result in a significant increase
in throughput and never reduces throughput compared to
Hadoop’s baseline schedulers (FIFO and FairScheduler).
We focus on minimizing the overall time to completion
of mapping tasks, which is typically the primary driver
of overall job completion time.

The next section reviews scheduling in Hadoop, fol-
lowed by a discussion of related work. We then define a
model of task completion time based on server capabili-
ties and task requirements. We derive a Bayesian exper-
imental design for learning the parameters of this model
online, and present a real-time heuristic algorithm to op-
timally schedule tasks onto available cluster nodes using
this model. Finally, we show empirically that Through-
putScheduler can reduce overall job execution time by
up to 40% on a heterogeneous Hadoop cluster.

160 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

2 Hadoop Scheduler

In this section we briefly review the scheduler of Hadoop
YARN [1]. YARN has a central entity called the resource
manager. The resource manager has two primary mod-
ules: Scheduler and ApplicationManager. For every in-
coming job the ApplicationManager starts an Applica-
tionMaster on one of the slave nodes. The Application-
Master makes resource requests to the resource manager
and is also responsible for monitoring the status of the
job. Jobs are divided into tasks and for every task the
scheduler assigns a container upon the request from the
corresponding ApplicationMaster. A container specifies
the node to run the task on and a fixed amount of re-
sources (memory and CPU cores). YARN supports al-
locating containers based on the available resources (as
of now just based on memory) on the nodes, but it has
no mechanism to determine the actual resource require-
ments of a job.

To coordinate the allocation of resources for concur-
rent jobs, Hadoop provides three different schedulers:
FIFO-, Fair- and CapacityScheduler. FairScheduler is
the most popular scheduler among all because it enables
fairness among concurrently executing jobs by giving
them equal resources. All of Hadoop’s schedulers are
unaware of the actual resource profiles of jobs and the
capabilities of node in the cluster and therefore often al-
locate resources sub-optimally.

3 Related Work

Recently, researchers have realized that the assumption
of a homogeneous cluster is no longer true in many sce-
narios and have started to develop approaches that im-
prove Hadoop’s performance on heterogeneous clusters.

Speculative execution, a feature of Hadoop where a
task that takes longer to finish than expected gets re-
executed preemptively on a second node assuming the
first may fail, can lead to degraded performance on het-
erogeneous clusters. This is because the scheduler’s
model of how long a task should take does not take the
heterogeneous resources into account, leading to many
instances of unnecessary speculative executions for tasks
executing on slower nodes. The LATE Scheduler [9] im-
proves speculative executing for heterogeneous clusters,
to only speculatively execute tasks that will indeed finish
late using the concept of straggler tasks [3]. However,
the approach assumes that the hardware capabilities and
the task resource profiles are already known rather than
being discovered automatically.

The Context Aware Scheduler for Hadoop (CASH) [5]
assigns tasks to the nodes that are most capable to satisfy
the tasks’ resource requirements. Similar to our approach
CASH learns resource capabilities and resource require-

ments to enable efficient scheduling. However, unlike
our online learning, CASH learns capabilities and re-
quirements in offline mode. The performance of CASH
is evaluated on a Hadoop simulator rather than a real
cluster. Tian et al. propose a dynamic scheduler which
learns job resource profile on the fly [8]. Their sched-
uler only considers the heterogeneity in the workload
and assumes a homogeneous cluster to assign tasks to
nodes. An architecture of a resource-aware cloud-driver
for heterogeneous Hadoop clusters was proposed to im-
prove the performance and increase fairness [7]. The
cloud-driver tries to improve the performance by provid-
ing more efficient fairness among jobs in terms of re-
source allocation. Unlike our approach, the cloud-driver
assumes that cluster capabilities are already known and
it has abstract knowledge of job resource requirements.

4 Approach

In this section we describe the design for a scheduler
that optimizes the assignment of tasks to servers. To do
this, we need the task requirements and server capabil-
ities. Unfortunately, these requirements and capabilities
are not directly observable as there is no simple way of
translating server hardware specifications and task pro-
gram code into resource parameters. We take a learning
based approach which starts with an explore phase where
parameters are learned followed by an exploit phase in
which the parameters are used to allocate tasks to servers.
To learn these parameters by observation, we propose a
task execution model that links observed execution times
of map tasks to the unobservable parameters. We assume
that map tasks belonging to the same job have very sim-
ilar resource requirements. In the remainder of this sec-
tion, we introduce the task model and then describe the
explore and exploit phases.

4.1 Task Model

The task performance model predicts the execution time
of a task on a server given the task resource require-
ments and the capabilities of the server node. We model
a task as a set of resource specific operation types such
as reading data from HDFS, performing computation,
or transferring data over the network. The task re-
source requirements are represented by a vector θ =
[θ1,θ2, . . . ,θN] where each component represents the to-
tal requirement for an operation type (e.g., number of
instructions to process, bytes of I/O to read). The ca-
pabilities of the server are described by a corresponding
vector κ = [κ1,κ2, . . . ,κN] which represent rates for pro-
cessing the respective operation type (e.g., FLOPS or I/O
per second).

2

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 161

In theory, some of these operations could take place si-
multaneously. For instance, some computation can occur
while waiting for disk I/O. In practice this does not have
a large impact on Hadoop tasks we studied. We therefore
assume that the requirements for each operation type are
processed independently. The time required to process
a resource requirement is the total magnitude for the re-
quirement divided by the processing rate. The total time
T j to process all resource requirements on server j is the
sum of the times for each operation type

T j = ∑
k

θk

κ j
k

+Ω j (1)

where Ω j is the overhead to start the task on the server.
We assume that every job imposes the same amount of
overhead on a given machine. In this paper, we consider
a two dimensional model in which κ = [κc,κd] repre-
sents computation and disk I/O server capabilities and
θ = [θc,θd] represents the corresponding task require-
ments. Hence, the task duration model reduces to:

T j =
θc

κ j
c
+

θd

κ j
d

+Ω j. (2)

The parameters κc and κd abstractly capture many
complex low-level hardware dependencies. For example,
κc internally accounts for the kind of operations needed
to be performed (flops or integer ops or memory ops).
Similarly, κd is dependent on disk speed, seek time, etc.
In practice, it is very difficult to build a task model as
a function of these low level parameters. To keep the
model simple and easier to understand we use such ab-
stract parameters.

4.2 Explore
We learn server resource capabilities and task resource
requirements separately. First we learn server capabil-
ities offline. Then using these capabilities we actively
learn the resource requirements for jobs online.

4.2.1 Learning Node Capabilities

We assume server capabilities κ j’s and overhead Ω j do
not change frequently and can be estimated offline. The
server parameters are estimated by executing probe jobs.
Since the time we measure is the only dimension with
fixed units, the value of the parameters is underdeter-
mined. We resolve the unidentifiability of the system by
choosing a ‘unit’ map task to define a baseline. The unit
map task has an empty map function and it does not read
or write from/to HDFS.

The computation (θc) and disk task requirements (θd)
are both zero, therefore Equation 2 allows us to estimate
Ω. Multiple executions are averaged to create an accurate

point estimate. Note that Ω includes some computation
and disk I/O that occur during start up.

One could imagine attempting to isolate the remaining
parameters in the same fashion, however, it is difficult to
construct a job with zero computation or zero disk I/O.
Instead we construct jobs with two different levels of re-
source usage defined by a fixed ratio η .

Let’s assume we aim to determine κc. First we run a
job J1

c = 〈θc,εd〉 with fixed disk requirement εd (J1
c might

be a job which simply reads an input file and processes
the text in the file). We compute the average execution
time of this job on each server node. According to our
task model the average mapping time for every machine
i can be given as

T i
1 =

θc

κ i
c
+

εd

κ i
d
+Ωi (3)

Next we run a job Jη
c which reads the same input but the

processing is multiplied by η compared to J1
c . Therefore,

the resource requirements of Jη
c can be given as Jη

c =
〈ηθc,εd〉. The average mapping time for every node can
be given as

T i
n =

ηθc

κ i
c

+
εd

κ i
d
+Ωi (4)

We solve for εd
κd

in equations 3 and 4, set them equal and
solve for κ i

c to get:

κ i
c =

θc(η −1)
T i

n −T i
1

(5)

This equation gives us κ i
c in terms of a ratio. To make it

absolute, we arbitrarily choose one node as the reference
node. We set κ1

c = 1 and κ1
d = 1 and then solve equa-

tion 5 for θc. Once we have the task requirements θc in
terms of the base units for server one, we can use this job
requirement to solve for the server capabilities on all the
other nodes. Similarly we estimate κd .

Normally in Hadoop, the output of map tasks goes
to multiple reducers and may be replicated on several
servers. This would have the effect of introducing net-
work communication costs into the system. To avoid that
while learning node capabilities, we set the number of re-
ducers to zero and set the replication factor to one.

Table 1 gives an example of computed server capa-
bility parameters for a five node cluster of heterogenous
machines. The algorithm correctly discovers that there
are two classes of machines.

4.2.2 Learning Job Resource Profile

In this phase the resource requirements for tasks are
learned in an online manner without interrupting produc-
tion use of the cluster. To enable online learning we col-
lect task completion time samples from actual production

3

162 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

Node κc κd Ω
Node1 1 1 45
Node2 1 1 45
Node3 7.5 2.5 5.3
Node4 7.5 2.5 5.3
Node5 7.8 2.6 4.8

Table 1: Recorded Node Capabilities and Overhead

jobs. With every new time sample we update our belief
about the resource profile [θc, θd] of the job.

We assume that the observed execution time T j is nor-
mally distributed around the value predicted by the task
duration model given by Eq. 2. Given a distribution over
resource parameters [θc,θd], the remaining uncertainty
due to changing conditions on the server (i.e., the obser-
vation noise) is given by a standard deviation σ j.

T j ∼ N

(
θc

κ j
c
+

θd

κ j
d

+Ω j, σ j

)
(6)

Starting with prior beliefs about task requirements
p(θc,θd) and the execution model based likelihood func-
tion p(T j | θc,θd ,κ

j
c ,κ j

d ,σ
j), Bayes’ rule allows us to

compute a joint posterior belief over [θc,θd]:

p(θc,θd | T j,κ j
c ,κ

j
d ,σ

j) = α p(T j | θc,θd ,κ j,σ j)p(θc,θd)

For our two-dimensional CPU and disk usage exam-
ple, the likelihood has the form (Empirically we ob-
served an observed variance of approximately +/- 3 in-
dicates a standard deviation of 1, therefore, σ j = 1):

p(T j | θc,θd ; κc,κd) =
1√
2π

exp

(
T j − θc

κ j
c
− θd

κ j
d
−Ω j

)2

2

Note that the execution time is normally distributed
around a line defined by the server capabilities [κc,κd].
The joint distribution of the likelihood is not a bivari-
ate normal, but a univariate Gaussian tube around a line.
This makes sense, as a given execution time could be due
to a slow CPU and fast disk or a fast CPU and slow disk.

When a job is first submitted we assume that the
resource requirements for its tasks are completely un-
known. Assuming an uninformative prior, the posterior
distribution after the first observation is just proportional
to the likelihood.

p(θc,θd | T j) =
1√

2πσ j
exp

(
T j − θc

κc
− θd

κd
−Ω j

)2

2

For the second and subsequent updates we have a defi-
nite prior distribution and likelihood function. These two
are multiplied to obtain the density of the second poste-
rior update. Let the first experiment be on machine j

with capability κ j and let the observed time be T j. Let
the second experiment be on machine k with capability
κk and let the observed time be T k. The resulting poste-
rior distribution is

p(θc,θd | T j,T k) =

1√
2π

exp

(
T j− θc

κ j
c
− θd

κ j
d
−Ω j

)2

2 +

(
T k− θc

κk
c
− θd

κk
d
−Ω j

)2

2

 (7)

We omit the derivation for space, but we do give the
update rules here. With every time sample we can re-
cover the mean µθc,θd and covariance matrix Σθc,θd by
using the property of the bivariate Gaussian distribution.
Expanding the exponent of Equation 7 and collecting the
θc and θd term gives us a conic section in standard form:

a20θc
2 +a10θc +a11θcθd +a01θd +a02θd

2 +a00 = 0 (8)

There is a transformation to map between the coeffi-
cients of a conic in standard form and the parameters of
a Gaussian distribution. The mean and covariance of the
distribution with the same elliptical form is given by:
[

µθc

µθd

]
=

[
(a11a01 −2a02a10)/(4a20a02 −a2

11)

(a11a10 −2a20a01)/(4a20a02 −a2
11)

]
(9)

Σ−1
θcθd

=

[
a20

1
2 a11

1
2 a11 a02

]
(10)

For every new time sample we compute coefficients
anm for equation 8. These coefficients determine the up-
dated value of µθc , µθd , and Σθc,θc .

Because we recover both the mean and the covari-
ance of task requirements, we can quantify our degree
of uncertain about task requirements, and hence decide
whether to keep exploring or starting to exploit this
knowledge for optimized task scheduling. In this paper
we sample tasks until we get a determinant for the co-
variance matrix |Σθc,θd | < 0.007. Table 2 summarizes
resource requirements learned by the online inference
mechanism for some of the Hadoop example jobs. When
we compare the ’Pi’ job, which calculates digits of Pi,
to RandomWriter, which writes bulk data, we see that
the algorithm correctly recovers the fact that Pi is com-
pute intensive (large µθc) whereas RandomWrite is disk
intensive (large µθd). Other Hadoop jobs show interme-
diate resource profiles as expected. The JIO job will be
described further in the experimental section. The ’#
of Tasks’ column gives the number of tasks executed to
reach the desired confidence.

4.3 Exploit
Once the resource profile of a job is learned to sufficient
accuracy we switch from explore to exploit. The native
Hadoop scheduler sorts task/machine pairs according to

4

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 163

Job µθc µθd |Σθcθd | # of Tasks
Pi 24.00 6.30 0.0038 109
Random
Writer

27.26 234.62 0.0061 28

Grep 15.82 8.10 0.0038 90
WordCount
(1.5 GB)

43.50 22.50 0.00614 31

WordCount
(15 GB)

138.05 206.40 0.00615 32

JIO 5.60 96.46 0.0063 30

Table 2: Job resource profile measurements with vari-
ance and number of tasks executed

whether they are local (data for the task is available on
the machine), on the same rack, or remote. We intro-
duce our routine based on our task requirements estima-
tion called ”SelectBestJob” to break ties within each of
these tiers as shown in Algorithm 4.1: If we have two
local jobs, we would run the one most compatible with
the machine first.

Algorithm 4.1: THROUGHPUTSCHEDULER(Cluster,Request)

for each Node N ∈ Cluster

do

JobsWithLocalTasks ← N.GETJOBSLOCAL(Request)
JobsWithRackTasks ← N.GETJOBSRACK(Request)
JobsWithOffSwitchTasks ← N.GETJOBSOFFSWITCH(Request)
if LocalJobs �= NULL

then
{

J ← SELECTBESTJOB(LocalJobs,N)
ASSIGNTASKFORJOB(N,J)

else if RackJobs �= NULL

then
{

J ← SELECTBESTJOB(RackJobs,N)
ASSIGNTASKFORJOB(N,J)

else
{

J ← SELECTBESTJOB(OffSwitchJobs,N)
ASSIGNTASKFORJOB(N,J)

Algorithm 4.2: SELECTBESTJOB(NodeN,Listo f Jobs)

return (argminJ∈ListOfJobs
norm(θ J

c)
norm(κN

c)
+

norm(θ J
c)

norm(κN
c)
)

SelectBestJob, shown in Algorithm 4.2, selects job J
that minimizes a score for task completion on node N.
However, rather than using absolute values of θc, θd , κc
and κd , we use the normalized value of these parame-
ters to define the score. While absolute values repre-
sent expected time of completion, which can be mea-
sured in seconds, job selection based on these numbers
would always favor short tasks over longer once and fast
machines over slower ones. This would not achieve the
optimized matching of job requirements to server capa-
bilities. For example, consider Nodes 1 and 3 in Table
1. Node 3 is almost 7.5 times faster than Node 1 in
terms of CPU, but only 2.5 times faster in terms of disk.
Hence, intuitively, disk intense jobs are better scheduled
on Node 1, since the relativly higher CPU performance
of Node 3 is better used for CPU intense jobs (if there are
any). To account for this relativity of optimal resource

matching, we normalize both jobs and machines to make
their total requirements and capabilities sum to one for
each resource x (here x ∈ {c,d}):

norm(θ i
x) =

µθ i
x

∑k µθ i
k

norm(κ j
x) =

κ j
x

∑5
k=1 κk

x

5 Experimental Results

To evaluate the performance of ThroughputScheduler we
conducted experiments on a five node Hadoop cluster at
PARC (see Table 1).

5.1 Evaluation on Heterogeneous Jobs
We evaluate the performance of our scheduler on jobs
with different resource requirements. Since the Hadoop
benchmarks do not contain highly I/O intensive jobs (cf.
Table 2), we constructed our own I/O intensive Map-
Reduce job, JIO. JIO reads 1.5 GB from HDFS, and
writes files totaling 15 GB back to HDFS. This resembles
the resource requirements of many expand-translate-load
(ETL) applications used in big data applications to pre-
process data using Map-Reduce and writing into HBase,
MongoDB, or another disk-backed database. We learn
JIO’s resource profile using the job learner described in
the Explore section. The learned resource requirement of
JIO is listed in Table 2. To evaluate ThroughputSched-
uler on drastically heterogeneous job profiles, we run
JIO along with the Hadoop benchmark Pi, which is
CPU intense. We compare the performance of Through-
putScheduler with FIFO- and FairScheduler—for a sin-
gle user, CapacityScheduler is no different from FIFO.

5.1.1 Job Completion Time

We first compare the performance of the proposed sched-
uler in terms of overall job completion time. In case of
multiple jobs, the overall job completion time is defined
as the completion time of the job finishing last. In this
experiment we study the effect of heterogeneity between
job resource requirements, which we can quantify as the
ratio of disk I/O to CPU requirement of a job: h = θd

θc
. In

order to vary this quantity we vary the I/O load of JIO fur-
ther by varying the replication factor of the cluster: the
higher the replication factor, the higher the I/O load of a
job. This impacts disk I/O intense jobs more than others.

These results show that ThroughputScheduler per-
forms better than FIFO- and FairScheduler in all cases.
The relative performance increase of our scheduler in-
creases as the heterogeneity of the two jobs increase, as
simulated by an increased replication factor: up to 40%
compared to FIFO, and 20% compared to Fair. Note that
both the Fair- and the ThroughputScheduler benefit from

5

164 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

0:00	
2:24	
4:48	
7:12	
9:36	

12:00	
14:24	
16:48	
19:12	

h	 2h	 3h	 4h	 5h	

Fifo	 Fair	 Throughput	

Figure 1: Overall job completion time in minutes (Y
axis) on heterogeneous nodes at PARC for different rel-
ative values of h = θd

θc
. Disk load θd is increased by in-

creasing the replication number.

higher replication as they can better take advantage of
data locality. The improvements of ThroughputSched-
uler beyond Fair- are purely due to our improved match-
ing of jobs to computational resources.

Job FIFO Fair Throughput

Pi 9 sec 9 sec 6 sec
JIO 2 min 15 sec 2 min 2 min 10 sec

Table 3: Comparison of Average Mapping Time

To better understand the source of this speed-up,
we considered the average mapping time for each job
(throughput). Table 3 summarizes these results and pro-
vides the explanation for the speed-up: our scheduler im-
proves the throughput of Pi by 33%, while maintaining
the throughput of JIO compared to the other schedulers.
Since Pi has very many mapping tasks, these savings pay
off for the overall time to completion.

5.2 Performance on Benchmark Jobs
To estimate the performance of ThroughputScheduler on
realistic workloads, we also experimented with the exist-
ing Hadoop example jobs. We ran the job combinations
of concurrent jobs shown in Table 4.

Comb1 Grep (15 GB) + Pi (1500 samples)
Comb2 WordCount (15 GB) + Pi (1500 samples)
Comb3 WordCount (15 GB) + Grep (15 GB)

Table 4: Job Combination

The performance comparison in terms of job comple-
tion time is presented in Figure 2. For these workloads
ThroughputScheduler performs better than either of the
other two in all cases. For Comb2 the job completion
time is reduced by 30% compared to FIFO. For Comb3

0:00	

2:24	

4:48	

7:12	

9:36	

12:00	

14:24	

Comb1	 Comb2	 Comb3	

Fifo	 Fair	 Throughput	

Figure 2: Job Completion time in minutes (Y axis) of
combinations of Hadoop example jobs.

all three schedulers perform similarly because both jobs
are CPU intensive (cf. Table 2).

Job Combination FIFO Fair Throughput

Pi(1500sample), WC(15GB) 440s 319s 310s
Pi(1500sample), Grep(15GB) 210s 224s 214s

WC(15GB), Grep(15GB) 225s 262s 214s

Table 5: Completion time of job combinations on a ho-
mogeneous cluster.

5.3 Performance on Homogeneous Cluster

We ran additional experiments on a set of homogeneous
cluster nodes, to ensure such a setup would not cause
ThroughputScheduler to produce inferior performance.
These results are shown in Table 5.

6 Conclusion

ThroughputScheduler represents a unique method of
scheduling jobs on heterogeneous Hadoop clusters us-
ing active learning. The framework learns both server
capabilities and job task parameters autonomously. The
resulting model can be used to optimize allocation of
tasks to servers and thereby reduce overall execution
time (and power consumption). Initial results confirm
that ThroughputScheduler performs better than the de-
fault Hadoop schedulers for heterogenous clusters, and
does not negatively impact performance even on homo-
geneous clusters.

While our demonstration uses the Hadoop system, the
approach implemented by ThroughputScheduler is ap-
plicable to other framework of distributed computing as
well.

6

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 165

References

[1] Apache hadoop nextgen mapreduce (yarn).
http://hadoop.apache.org/docs/current/

hadoop-yarn/hadoop-yarn-site/YARN.html.

[2] BALAKRISHNAN, S., RAJWAR, R., UPTON, M.,
AND LAI, K. The impact of performance asymmetry
in emerging multicore architectures. In In Proceed-
ings of the 32nd Annual International Symposium on
Computer Architecture (2005), pp. 506–517.

[3] BORTNIKOV, E., FRANK, A., HILLEL, E., AND
RAO, S. Predicting execution bottlenecks in map-
reduce clusters. In Proceedings of the 4th USENIX
conference on Hot Topics in Cloud Ccomputing
(Berkeley, CA, USA, 2012), HotCloud’12, USENIX
Association, pp. 18–18.

[4] GHIASI, S., KELLER, T., AND RAWSON, F.
Scheduling for heterogeneous processors in server
systems. In Proceedings of the 2nd conference on
Computing frontiers (New York, NY, USA, 2005),
CF ’05, ACM, pp. 199–210.

[5] KUMAR, K. A., KONISHETTY, V. K., VORU-
GANTI, K., AND RAO, G. V. P. Cash: context aware
scheduler for hadoop. In Proceedings of the Interna-
tional Conference on Advances in Computing, Com-
munications and Informatics (New York, NY, USA,
2012), ICACCI ’12, ACM, pp. 52–61.

[6] KUMAR, R., TULLSEN, D. M., JOUPPI, N. P., AND
RANGANATHAN, P. Heterogeneous chip multipro-
cessors. Computer 38, 11 (Nov. 2005), 32–38.

[7] LEE, G., CHUN, B.-G., AND KATZ, H.
Heterogeneity-aware resource allocation and
scheduling in the cloud. In Proceedings of the 3rd
USENIX conference on Hot topics in cloud com-
puting (Berkeley, CA, USA, 2011), HotCloud’11,
USENIX Association, pp. 4–4.

[8] TIAN, C., ZHOU, H., HE, Y., AND ZHA, L.
A dynamic mapreduce scheduler for heterogeneous
workloads. In Grid and Cooperative Computing,
2009. GCC ’09. Eighth International Conference on
(2009), pp. 218–224.

[9] ZAHARIA, M., KONWINSKI, A., JOSEPH, A. D.,
KATZ, R., AND STOICA, I. Improving mapreduce
performance in heterogeneous environments. In Pro-
ceedings of the 8th USENIX conference on Operat-
ing systems design and implementation (Berkeley,
CA, USA, 2008), OSDI’08, USENIX Association,
pp. 29–42.

7

