
USENIX Association  10th International Conference on Autonomic Computing (ICAC ’13) 167

Real-Time User-Centric Management of Time-Intensive Analytics
Using Convergence of Local Functions

Invited position paper

Vinay Deolalikar
HP-Autonomy Research

vinay.deolalikar@hp.com

Abstract
The past decade has witnessed an astonishing growth

in unstructured information in enterprises. The com-
mercial value locked in enterprise unstructured informa-
tion is being increasingly recognized. Accordingly, a
range of textual document analytics—clustering, classi-
fication, taxonomy generation, provenance, etc.— have
taken center stage as a potential means to manage this
explosive growth in unstructured enterprise information,
and unlock its value.

Several analytics are time-intensive: the time taken to
complete processing the increasingly large volumes of
data is significantly more than real-time. However, users
are increasingly demanding real-time services that rely
on such time-intensive analytics. There is clearly a ten-
sion between the aforementioned two developments.

In light of the preceding, vendors increasingly realize
that while an analytic may take a longer time to con-
verge, they need to extract useful information from it
in real-time. Furthermore, this information has to be
application-driven. In other words, it is often not an op-
tion to simply “wait until the analytic has finished run-
ning:” they must start providing the user with informa-
tion while the analytic is still running. In summary, there
is an emerging stress in Enterprise Information Manage-
ment (EIM) on application-driven real-time information
being extracted from time-intensive analytics.

A priori, it is not clear what could be extracted from an
analytic that has yet to complete, and whether any such
information would be useful. As of the present, there is
little or no research literature on this problem: it is gener-
ally assumed that all of the information from an analytic
will be available upon its completion.

We present an approach to this problem that is based
on decomposing the objective function of the analytic,
which is a global function that determines the progress of
the analytic, into multiple local, user-centric functions.
How can we construct meaningful local functions? How
can such functions be measured? How do these functions
evolve with time? Do these functions encode useful in-

formation that can be obtained real-time? These are the
questions we will address in this paper.

We demonstrate our approach using local functions
on document clustering using the de facto standard
algorithm—k-means. In this case, the multiple local
user-centric functions transform k-means into a flow al-
gorithm, with each local function measuring a flow. Our
results show that these flows evolve very differently from
the global objective function, and in particular, may often
converge quickly at many local sites. Using this property,
we are able to extract useful information considerably
earlier than the time taken by k-means to converge to its
final state.

We believe that such pragmatic approaches will have
to be taken in order to manage systems performing ana-
lytics on large volumes of unstructured data.

1 Introduction

1.1 Enterprise Information Management

Enterprises spend billions of dollars annually to manage
unstructured information; namely information that exists
mostly as text in documents having multiple formats, but
no fixed schema (unlike, say, a database which is queried
using SQL). These documents reside on desktops, lap-
tops, email exchanges, web and file servers, wikis, and
sharepoint repositories. This segment of enterprise in-
formation is growing much faster than structured infor-
mation, and already it is estimated that 70% of all infor-
mation in an enterprise exists in unstructured formats.

Due to the lack of structure, managing unstructured
information poses unique challenges. Currently, major
drivers for these management efforts include applica-
tions such as eDiscovery, compliance requirements for
different categories of documents necessitated by new
laws such as HIPAA, IT management operations, docu-
ment searches made by employees in various capacities,
sales force support needs, and a host of other applica-

1



168 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

tions. Analytics1 of various types—clustering, classifi-
cation, taxonomy extraction, to name a few prominent
ones—are generally regarded as the primary techniques
that will help meet these challenges and enable such ap-
plications. Analytics for enterprise unstructured infor-
mation, viewed through the prism of end-user applica-
tions, form the broad context for our work.

1.2 Emerging Problem: Real-Time Extrac-
tion of Information

Analytics, generally speaking, uncover relationships in
unstructured information. The greater the volume of the
information, the more time it takes for an analytic to pro-
cess the information, and extract relationships. Work-
flows in enterprise information management are increas-
ingly complex, and require analytics inputs at various
stages. These stages are pipelined together. Users of
these applications demand the ability to perform work-
flows in near real-time: any application that requires the
user to “wait until the current stage completes” is a sig-
nificant dent on market acceptance.

Therefore, on the one hand, analytics are needed to
enable applications that require unstructured information
management at scale. On the other hand, the time taken
by a particular analytic to complete at scale prevents its
use in the application.

In light of the above catch-22 situation, there has been
a great deal of attention devoted to making analytics
run faster. We wish, instead, to highlight an emerging
paradigm: vendors are increasingly trying to obtain “just
enough” information from an analytic that can satisfy the
current need of the user, and enable them to move to the
next stage of their workflow. In other words, they want
to provide enough information to the user that hides the
actual run time of the analytic from them. The analytic
may well take significantly longer to complete, but how
can we extract useful application-enabling information
from it in near real-time? As of now, there is little or
no work on this question, and to our knowledge we are
the first to frame it explicitly. We believe that this ques-
tion will become increasingly important as the scales of
unstructured information grow.

1.3 Our Approach: Local User-Centric
Functions

Most analytics try to optimize (usually minimize or max-
imize) some global objective function. For example,
clustering tries to minimize the sum of distances of doc-
uments to cluster centroids. However, these objective
functions are mathematical objects: end-users do not

1An analytic is, broadly, a functionality that examines data, ana-
lyzes it, and draws inference based upon the results of the analysis.

usually think in terms of objective functions. Rather,
they have more application-centric concerns.

Our approach is to try to “partition” the global ob-
jective function into local functions that are user and
application-centric, and that capture what the user might
be interested in from the analytic. Then, we will try to
measure these local functions. The hope is that while
the global objective function captures the overall con-
vergence behavior of the analytic, these local functions
might already start yielding information to the user that
is precisely of the form that they are interested in. The
idea is that while the global state of the analytic is de-
termined by the global objective function, the evolution
of local states might be tracked using our local func-
tions. These local functions, if they are appropriately
constructed, might give users information that they can
start acting upon immediately. Furthermore, by view-
ing the analytic as a conglomeration of locally evolving
states, we can provide information to the user “piece-
meal” instead of all at once, especially since that more
accurately reflects how the user will digest the informa-
tion anyway.

1.4 Contributions
Our main contributions are sketched below:

1. We frame the question of real-time piece-by-piece
extraction of information from time-intensive analytics.
We believe that this question will be increasingly impor-
tant in the future, given the explosive growth of unstruc-
tured information.

2. We present a novel approach to the problem above,
based on inspecting analytics algorithms locally using
user-defined functions.

3. We work out our approach for an important
analytic—text clustering—that is key to several EIM ap-
plications.

2 Key Idea: Defining User-Centric Objec-
tives with Local Functions

As stated in the introduction, most analytics are defined
in terms of an objective function that is to be maxi-
mized/minimized over the course of the run-time of the
analytic. For example, k-means clustering is often de-
fined as follows. Given m data-points x = {x1, . . . ,xm},
each of which is a d-dimensional vector, find k “means”
µ = {µ1, . . . ,µk}, also d-dimensional, such that the fol-
lowing objective function is minimized.

E(x,µ) =
m

∑
i=1

L(xi,µ j), (1)

where µ j is the closest of the k means to xi in terms of
the norm L.

2



USENIX Association  10th International Conference on Autonomic Computing (ICAC ’13) 169

We may write the function above as a sum of sums:
each outer sum would pertain to a single µ j. Thus,

E(x,µ) =
m

∑
i=1

k

∑
j=1

L(xi,µ j), (2)

where the inner sum is over all data-points that are clos-
est to µ j. The general form of the objective function then
becomes “optimize some global function (the sum, in the
case above) of local pieces.” A “local piece” here is the
inner sum that pertains only to a single cluster, and there-
fore can be computed locally at each cluster.

Moreover, as noted earlier, objective functions such as
(1) are far from the mind of the end-user of an analytic.
The user is concerned with something that describes the
problem from their perspective. The enterprise user fre-
quently wants to associate some meaning to the informa-
tion that the analytic extracts as it runs.

Can we then, partition the objective function into local
pieces, with the additional desideratum of making each
local piece pertain to the user’s requirements? How do
these local functions converge? Do they all converge uni-
formly, at the same rate as the global function, or do they
display non-uniform convergence behavior? Do a ma-
jority of them converge quickly, well before the conver-
gence of the global objective function? These are some
of the questions our empirical work will try to uncover.

At this time, we will empirically analyze, in some de-
tail, our chosen example analytic—document clustering
with k-means. We choose document clustering with k-
means because it is arguably the first analytic that a user
might want to run in a large number of enterprise ap-
plications. Most EIM vendors today offer the ability to
cluster a user’s data, but several applications which could
potentially use this clustering do not do so since it takes
considerably longer than real-time to finish clustering a
large dataset. In summary, we are aware of several appli-
cations that need clustering, but currently rely on a static,
older clustering of the data instead of allowing the user
to dynamically cluster data as they proceed through their
workflow. We show how our approach can mitigate this
situation, and how we can instrument k-means with lo-
cal user-centric functions to extract near real-time infor-
mation that is useful to the user at their current stage of
workflow.

3 Example: Document Clustering with k-
means

The k-means algorithm is ubiquitous in data mining [10].
k-means can be used at various stages in EIM: to under-
stand high-level organization of data [2, 5, 6], to organize
search results [3], to extract semantic information such
as labels [4], and so on. k-means is also time-intensive,
and therefore a good candidate for us to demonstrate our
approach.

Local Function: 
Converged Flow

Semantic Flow Between 
Clusters

4

3

21

6

5

Local Function: 
Converging Flow

Figure 1: Schematic of the view of k-means through lo-
cal functions: k-means is a set of pairwise flows, most
of which abate early. Once flows to and from a cluster
have abated—as has happened to Cluster 5—, we may
extract semantic meaning from it. This can happen very
early during run-time, long before final convergence of
k-means.

3.1 Preliminaries
We briefly provide the framework of the document rep-
resentation we use. Since we are clustering text, we use
a tf-idf weighted bag-of-words vector representation for
the documents [7]. We use a standard stoplist, and re-
move all words that occur fewer than three times in the
corpus. As is standard, we normalize each vector to
unit length so that if two documents of different lengths
are still speaking of the same topics, they are regarded
equally [8]. Finally, we use the cosine of the angle
between the vectors as our similarity metric since it is
known to outperform metrics such as Euclidean distance
for text applications [9].

We use the random assignment version of k-means (as
opposed to Forgy), where each document is randomly
assigned a cluster at initialization. Cluster centroids are
then computed, and re-assignment of documents to the
closest (in terms of cosine similarity) cluster is done iter-
atively until there is no further movement of documents
between clusters.

3.2 User-Centric Objectives: Concept
Classes

A key component of our approach is to replace the focus
on the global objective function with local user-centric
functions. These functions should capture the domain-
specific requirements of the user. What would such re-
quirements be in the case of enterprise applications of
document clustering?

A large majority of EIM applications that (could) use
clustering want to understand the semantics, or “mean-
ing” of each cluster. In other words, clustering is seen as

3



170 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

a technique that groups the data into conceptually coher-
ent groups, each group speaking of a coherent class of
concepts. These concepts are then used in the next stage
of the EIM pipeline: for example, they may be used in
scatter-gather type workflows (for example, some eDis-
covery workflows), to create taxonomies (for records
management or classification), and so on. Therefore, the
first task in capturing the user’s requirements is to com-
pute, from each cluster, a set of coherent concepts that it
speaks about.

3.2.1 Cluster Digests: Concept Labels

Definition 1 Define Di as the Boolean indicator vari-
able for document inclusion into Ci. Define t j,D as the
Boolean indicator variable for term inclusion in a docu-
ment.

Di[D,Ci] =

{
1, if D ∈Ci,
0, else;

t j,D[t j,D] =

{
1, if t j ∈ D,
0, else.

(3)

Therefore, Di is a random variable whose arguments
are [D,Ci]. t j,D is a random variable with arguments
[t j,D]. Therefore, for a fixed i and j, both of these are
random variables over the set of documents. In this case,
their mutual information is well defined.

Definition 2 We define I[i, j] as the mutual information
between the random variables Di and t j,D.

Conceptually, this measures the increase in (condi-
tional) probability of a document being placed by the k-
means algorithm in cluster Ci given that it has the term
t j. In practice, we also perform thresholding: namely, we
only count those terms that occur at least five times in the
corpus in order to preclude terms that may occur only in
a few documents, all of whom land in one cluster.

Definition 3 For � > 0, the � concept labels associated
to cluster Ci are the top � terms {t j} in the corpus in
descending order of I[i, j]. We denote the set of concept
labels for Ci by Ti.

3.3 Local Functions: Concept Flows
In order to demonstrate our approach, we construct
certain functions that can be measured retroactively:
namely, measuring them requires the algorithm to have
converged. However, the empirical properties of these
functions will suggest that, indeed, these functions can
be approximated in real-time.

At each iteration of the k-means algorithm, documents
move between clusters. We wish to measure how much
information that is core to the cluster enters and leaves
each cluster as a result of this.

In order to measure this “concept flow” when a docu-
ment moves between cluster Ci1 and Ci2 , we measure the
presence of terms in the document that are concept labels
for Ci1 and Ci2 . By taking the difference of these two
quantities, we obtain a measure of the “concept flow” as-
sociated to the movement of the document.

We wish to measure the flow of concepts in both di-
rections between a pair of clusters, at any iteration.

Definition 4 Let � > 0 and m < n. Let document D move
from Ci1 and Ci2 at iteration m of k-means. Let n j,D be
the number of times term t j occurs in document D. The
forward concept flow associated with the document D at
iteration m is defined as

σ f [D,m] := ∑
t j∈Ti1

n j,D. (4)

The reverse concept flow associated with the document
D at iteration m is defined as

σr[D,m] := ∑
t j∈Ti2

n j,D. (5)

The total concept flow associated with the document D
at iteration m is defined as

σt [D,m] := σ f [D,m]−σr[D,m]. (6)

We also define the net quantities obtained by summing
the above over all documents that move from one cluster
to another.

Definition 5 The net forward concept flow from cluster
Ci1 to cluster Ci2 at iteration m is defined as

Σ f [i1, i2,m] := ∑
D∈Ci1

σ f [D,m]. (7)

The net reverse concept flow from cluster Ci1 to cluster
Ci2 at iteration m is defined as

Σr[i1, i2,m] := ∑
D∈Ci1

σr[D,m]. (8)

The net concept flow from cluster Ci1 to cluster Ci2 at
iteration m is defined as

Σt [i1, i2,m] := ∑
D∈Ci1

σt [D,m]. (9)

Finally, we define the average per-cluster-pair quanti-
ties.

Definition 6 The average forward concept flow between
and ordered cluster pair at iteration m is defined as

Σ f [m] =
1

k(k−1) ∑
i1,i2;i1 �=i2

Σ f [i1, i2,m]. (10)

4



USENIX Association  10th International Conference on Autonomic Computing (ICAC ’13) 171

The average reverse concept flow between an ordered
cluster pair at iteration m is defined as

Σr[m] =
1

k(k−1) ∑
i1,i2;i1 �=i2

Σr[i1, i2,m]. (11)

The average (net) concept flow between an ordered
cluster pair cluster at iteration m is defined as

Σt [m] =
1

k(k−1) ∑
i1,i2;i1 �=i2

Σt [i1, i2,m]. (12)

Notice that although we are measuring the semantic
flow, as described above, during pre-convergence itera-
tions of k-means, we obtain the labels only after con-
vergence. Let c denote the iteration at which k-means
converges. Then, measurement of semantic flows, with
respect to the final labels, at iteration m(< c) requires
us to wait until convergence at iteration c. However, let
us now inspect these flows carefully, and see if we may
approximate them in real-time.

4 Experimental Results

4.1 Datasets and Protocol
We used two standard benchmark datasets for document
clustering. The first is N20, the 20 Newsgroups dataset
that contains roughly 20,000 articles posted to 20 usenet
group. The articles are more or less evenly divided be-
tween the newsgroups; however some newsgroups are
highly related, while others are not. The second dataset is
REU, the Reuters-21758 dataset that has documents from
Reuters newswire having 82 primary topics. For both
datasets, we ran k-means with the “natural” number of
clusters k—namely, 20 for N20, and 82 for REU.

We ran each clustering experiment five times. Since
our results require us to examine concept flows between
specific pairs of clusters, and these pairs change from
experiment to experiment, we picked the experiment that
was most typical of the five (in terms of convergence be-
havior) to depict our results. The variance between ex-
periments was minor, and the form of the results did not
change from experiment to experiment.

For the most typical experiment (as described above),
the clustering of N20 took 35 iterations, while that for
REU took 52 iterations. For each experiment, we ordered
the k(k−1) ordered pairs of clusters by descending order
of semantic flows, summed over iterations [10,15]. Next,
we measured the changes in semantic flow for all these
pairs as the experiment progressed. Fig. 2 shows results
for REU.

4.2 Properties of Concept Flows
The inspection of the graphs in Fig. 2, and the similar
graphs for N20 (which we could not show due to lack

of space) immediately lead us to the following empirical
result:

1. Local functions, unlike objective functions, are
not monotone. The sequence Σt [i1, i2,1],Σt [i1, i2,2], . . .
shows a zig-zag behavior until it falls to zero.

2. The average flow first rises sharply, but then starts
to fall sharply after only a few (less than 5) iterations for
both datasets. Compare this to the convergence time for
each dataset (52 and 35 iterations, respectively).

3. The average reverse flow has also nearly abated by
this time (i.e., by 5 iterations).

4. In the few cases of cluster pairs where flows are
significant even after they have abated in other pairs; we
found that the clusters themselves are semantically re-
lated.

These empirical results, repeated over multiple exper-
iments, suggest that for a large majority of clusters, the
“documents that matter” have already been placed into
their correct clusters well before final convergence of k-
means. Thus, our flow measurements uncover an “almost
everywhere convergence” of k-means well before it con-
verges globally in terms of its objective function.

We have experimented with other values for k, and the
results are similar.

4.3 Near Real-Time Information
At this time, we can answer the question “what informa-
tion can be extracted in near real-time as a result of the
properties in §4.2?”

We have seen, empirically, that local flow functions for
a majority of cluster pairs abate very quickly—between
5 and 10 iterations. At this time, we can extract concept
classes for each cluster. For a majority of the clusters,
these concept classes will continue to be accurate at con-
vergence. The few clusters where these concept classes
change significantly can be detected by our local con-
cept flow function measurements, and updated accord-
ingly. In this manner, we can already provide the user
with a large proportion of the information that they de-
sired from the analytic, but well before the analytic actu-
ally converges. In cases where k-means takes of the order
of a few minutes to complete, the time taken to provide
this information will be of the order of (tens of) seconds,
which can enable a near real-time workflow.

The key idea behind our approach is to use the “almost
everywhere convergence” to start providing local infor-
mation to the user at places where such convergence has
already happened, and not wait for global convergence.

In general, in any workflow where each cluster has to
be further examined, we can supply the user with infor-
mation on all the clusters that have already converged,
so that they can begin examining those. This yields sev-
eral examples of enterprise workflows where local infor-
mation gathered as described above can enable real-time
workflows. One example is a large eDiscovery workflow.

5



172 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

10 20 30 40 50

500

1000

1500

2000
REU

Clusters 51�81

— � f
� � � �r
� �t

10 20 30 40 50

50

100

150

200

250

300 REU
Clusters 59�35

10 20 30 40 50

200

400

600

800

1000

1200

REU
Clusters 30�54

10 20 30 40 50

20

40

60

80

100

120

140

REU
Clusters 72�61

10 20 30 40 50

10

20

30

40

50

60

70

REU
Clusters 59�61

10 20 30 40 50

50

100

150

200

250

REU
Clusters 9�76

10 20 30 40 50

50

100

150

REU
Clusters 56�30

10 20 30 40 50

50

100

150

200

250

300

350

REU
Clusters 36�25

10 20 30 40 50

50

100

150

200

REU
Clusters 46�61

10 20 30 40 50

�10

10

20

30

40

REU
Clusters 5�59

10 20 30 40 50

5

10

15

20

REU

10 20 30 40 50
0

2000

4000

6000

8000

10 000

12 000

m
o
v
e
s

REU

Figure 2: The first ten graphs show the top ten semantic flows for a run of k-means on REU. The Y-axis measures
flows. A majority of the lower-ranked flows abate much quicker, and even the highest ranked flows tend to abate well
before convergence. Legends are shown only on the first graph. The next graph is the average flow, taken over all pairs
(not just the topmost). The final graph is the total number of documents that move at each iteration of k-means. In all
graphs, the X-axis is the iteration number. For lack of space, only the experiments on REU are shown; similar results
were observed on N20.

Mid-sized eDiscovery cases frequently have to examine
a few hundred thousands of documents in a limited time-
frame. For example, in early case assessment, this time
frame might be only a few weeks. If clustering is used
to organize the inspection of these documents, then the
inspection of clusters that have already converged can
begin as soon as their information is available, without
waiting for clustering to converge throughout the cor-
pus. The larger the corpus of documents, the more time
is saved using this real-time enabled workflow, over a
workflow where the user waits for corpus-wide conver-
gence.

In any scatter-gather workflow [2], the user examines
each cluster individually during the gather phase, and de-
cides whether it should be included in the subsequent
scatter phase. This represents another generic workflow

where providing clusters as soon as they have converged
can enable the use to make their decision on the available
clusters, without waiting for the remaining clusters.

A natural question that may be asked is: can a cluster
where convergence seems to have happened “change” its
convergent state? Can it start showing an increased flow
after having seemingly converged? First of all, we must
ensure that the flow has indeed abated for a period of a
few successive (say, 5) iterations. We did not observe
significant flows after a abatement of flows lasting five
iterations. Rarely, we do see a small additional flow in
such cases, for example, the flow 5→ 59 shown in Fig. 2,
but as is the case in the example, it is not very large.

What about pairs of clusters where flow has not abated
till a relatively late stage? We can simply flag such pairs
of clusters as being “semantically related,” to be consid-

6



USENIX Association  10th International Conference on Autonomic Computing (ICAC ’13) 173

ered together for scatter-gather. This accurately reflects,
for instance, eDiscovery workflows.

4.4 Time to Measure Local Functions
With the following pragmatic choices, we can instrument
k-means for real-time local flow functions at insignificant
additional cost.

1. In order to measure the local functions Σt [i1, i2,1],
we need k(k − 1) counters, one for each bidirectional
measurement of flow between each pair of clusters. The
time taken to updating each counter is dominated by the
time to compute the actual move to be made for each
document, and does not significantly increase their sum.

2. Moreover, this need not be done at every iteration,
since all we want is to detect abatement of flows. We
experimented with computing flow only at iteration 5,
10, 20, 30, and so on, yielding satisfactory results.

3. The time taken to compute labels can be signifi-
cant; however, in light of the quick abatement of flows,
we can compute these labels only once, soon after itera-
tion 5.

5 Related Work

We are not aware of any work that studies the behav-
ior of k-means with respect to local user-centric func-
tions. However, more generally, our work may be seen
as a study of the k-means algorithm during its con-
vergence. In this regard, the work that is closest to
ours is [1]. However, there are obvious and funda-
mental differences: besides the core difference of lo-
cal vs. global functions, [1] studied the convergence of
k-means on the IRIS dataset, which has only four di-
mensions. One of the primary properties of text docu-
ment corpora that distinguish it is the high-dimensional
and sparse nature of the feature vectors. As expected
given these important differences, the results of the ex-
periments (namely, the trajectories of the functions under
study) vary greatly. As but one example, the behavior of
the sequence Σt [i1, i2,1],Σt [i1, i2,2], . . . is very dissimilar
to that of objective function values.

6 Conclusion and Future Work

We have demonstrated that time-intensive analytics such
as clustering can be calibrated to yield information in
near real-time due to an empirically observed almost-
everywhere local convergence property. This real-time
information can enable users to conduct their workflows
without waiting for the analytic to converge everywhere.

This work was motivated by real-world applications
of clustering in EIM. In particular, we are intrigued by
the possible applications of the techniques of this paper
to cluster-based retrieval over large document corpora.

Abstractly, we have a ranking of clusters based on their
convergence. We also have a retrieval ranking of clusters
based on their relevance to some information need. Can
a meaningful merger of these two rankings be done to
provide the user with the most relevant information to
their need, as quickly as it is available?

Acknowledgement

Some of the data in this paper was gathered using scripts
written by Hernan Laffitte.

References
[1] BOTTOU, L., AND BENGIO, Y. Convergence properties of the k-

means algorithm. In Advances in Neural Information Processing
Systems: Proceedings of the 1994 Conference (Cambridge, Mas-
sachusetts, 1995), G. Tesauro, D. Touretzky, and T. Leen, Eds.,
MIT Press, pp. 585–592.

[2] CUTTING, D. R., PEDERSEN, J. O., KARGER, D., AND
TUKEY, J. W. Scatter/gather: A cluster-based approach to brows-
ing large document collections. In Proceedings of the Fifteenth
Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (1992), pp. 318–329.

[3] HEARST, M. A., AND PEDERSEN, J. O. Re-examining the clus-
ter hypothesis: Scatter/gather on retrieval results. In Proceedings
of SIGIR-96, 19th ACM International Conference on Research
and Development in Information Retrieval (New York, 1996),
ACM Press, pp. 76–84.

[4] KARYPIS, G., AND HAN, E.-H. S. Fast supervised dimensional-
ity reduction algorithm with applications to document categoriza-
tion & retrieval. In Proceedings of the ninth international con-
ference on Information and knowledge management (New York,
NY, USA, 2000), CIKM ’00, ACM, pp. 12–19.

[5] LAGUS, K., HONKELA, T., KASKI, S., AND KOHONEN, T.
Self-organizing maps of document collections: A new approach
to interactive exploration. In KDD (1996), pp. 238–243.

[6] PIROLLI, P., SCHANK, P., HEARST, M., AND DIEHL, C. Scat-
ter/gather browsing communicates the topic structure of a very
large text collection. In Proceedings of ACM CHI 96 Conference
on Human Factors in Computing Systems (1996), vol. 1 of PA-
PERS: Interactive Information Retrieval, pp. 213–220.

[7] SALTON, G., AND MCGILL, M. Introduction to modern infor-
mation retrieval. McGraw-Hill, 1983.

[8] SINGHAL, A., BUCKLEY, C., MITRA, M., AND SALTON, G.
Pivoted document length normalization. Technical Report TR95–
1560, Department of Computer Science, Cornell University, Nov.
1995.

[9] STREHL, A., GHOSH, J., AND MOONEY, R. J. Impact of sim-
ilarity measures on web-page clustering. In Proc. AAAI Work-
shop on AI for Web Search (AAAI 2000), Austin (July 2000),
AAAI/MIT Press, pp. 58–64.

[10] WU, X., KUMAR, V., ROSS QUINLAN, J., GHOSH, J., YANG,
Q., MOTODA, H., MCLACHLAN, G. J., NG, A., LIU, B.,
YU, P. S., ZHOU, Z.-H., STEINBACH, M., HAND, D. J., AND
STEINBERG, D. Top 10 algorithms in data mining. Knowl. Inf.
Syst. 14, 1 (Dec. 2007), 1–37.

7




