
USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 225

Autonomic Fail-over for a Software-Defined Container Computer Network

Chien-Yung Lee+, Yu-Wei Lee+, Cheng-Chun Tu*+, Pai-Wei Wang+, Yu-Cheng Wang+, Chih-Yu
Lin+, and Tzi-cker Chiueh*+

*Computer Science Department, Stony Brook University
+Cloud Computing Center for Mobile Applications, Industrial Technology Research Institute

Abstract

The ITRI container computer is a modular computer de-
signed to be a building block for constructing cloud-
scale data centers. Rather than using a traditional enter-
prise data center network architecture, which is typically
based on a combination of Layer 2 switches and Layer
3 routers, the ITRI container computer’s internal inter-
connection fabric, called Peregrine, is a software-defined
network specially architected to meet the scalability, fast
fail-over and multi-tenancy requirements of these data
centers. Peregrine uses as the underlying physical in-
terconnect a mesh of commodity off-the-shelf Ethernet
switches, and adopts a centralized network control archi-
tecture that operates these Ethernet switches as a coor-
dinated distributed data plane. Compared with vanilla
enterprise networks, Peregrine features a fast fail-over
capability not only for network switch/link failures, but
also for failures of its own control servers. This paper
describes the design and implementation of Peregrine’s
fault tolerance mechanisms, and shows their effective-
ness using empirical performance measurements taken
from a fully working Peregrine prototype under various
failure scenarios.

1 Introduction

The ITRI container computer is designed to be a mod-
ular building block for constructing a cloud data cen-
ter computer, which, in the most general form, is com-
posed of multiple container computers that are connected
by a data center network, is interfaced with the public
Internet through one or multiple IP routers, and is de-
signed as an integrated system whose hardware compo-
nents such as servers and switches are stripped off unnec-
essary functionalities, whose resources are centrally con-
figured, monitored and managed, and which encourages
system-wide optimizations to make the best end-to-end
tradeoffs. One key design decision of the ITRI container

computer is using only commodity hardware, including
compute servers, network switches, and storage servers,
and leaving high availability and performance optimiza-
tion to the system’s software. Another key decision is to
design a new data center network architecture from the
grounds up to meet the unique requirements imposed by
a cloud data center computer. We named this data center
network architecture Peregrine [5]. This paper focuses
on the design, implementation and evaluation of the fault
tolerance mechanisms in Peregrine.

Although Peregrine uses commodity off-the-shelf Eth-
ernet switches as basic building blocks, it follows a
software-defined network (SDN) [4, 8] design philoso-
phy by doing away with most of the control plane func-
tionalities in these switches and using a centralized net-
work control server to operate these switches, and even-
tually turning them into a coordinated distributed data
plane. Peregrine chooses this centralized control plane
architecture because it offers two important advantages.
First, it enables Peregrine to make more efficient use of
all physical links in the underlying network. Second, it
significantly reduces the fail-over latency associated with
any single network switch/link failure.

Despite various optimizations, standard Ethernet-
based networks take at least a few seconds to recover
from a network switch/link failure, especially for large
networks, because their normal operation assumes a
spanning tree overlaid on top of the physical network,
and re-building this spanning tree after a failure takes
time. A fail-over latency of several seconds is not ac-
ceptable in large-scale data centers that are built out of
commodity hardware components, because in these data
centers HW failures are not uncommon and they need to
be effectively masked so as to be completely hidden from
applications and their users.

The fail-over latency goal of the ITRI container com-
puter is set to 100 ms, which is set so as to mask each net-
work failure event as a transient congestion. To achieve
this goal, Peregrine does away with the concept of span-

1

226 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

ning tree completely, and therefore does not need to re-
build anything after a failure; moreover, it pre-computes
and pre-installs a contingent plan for all nodes that are
affected by every possible network switch/link failure to
route around the failure, thus greatly reduces the fail-over
latency to the minimum. This fast fail-over strategy is
made possible by the centralized control plane architec-
ture, because it is equipped with a global knowledge of
the physical network topology, its up-to-date health sta-
tus, and the network flows provisioned on them.

However, a centralized control plane is in theory more
brittle because it is a single point of failure, that is, any
control plane failure could potentially bring down the en-
tire network. To overcome this issue, Peregrine’s con-
trol servers are designed to be fully redundant and thus
highly available. The interaction of the high availabil-
ity (HA) mechanism of Peregrine’s control servers with
Peregrine’s fail-over mechanism is complex and subtle,
and requires careful considerations to every low-level de-
tail.

Finally, because the servers used in the ITRI container
computer are also of commodity grade, the failure rate of
these servers is not negligibly low. To enable seamless
fail-over of application VMs running on these servers,
Peregrine informs clients that interact with failed VMs
and redirects them to their backup VMs that take over.

2 Related Work

There has been extensive studies on the resiliency of con-
ventional Internet [10,13]. These works compute a num-
ber of node or link disjoint paths between pairs of end
points and switch over to its corresponding backup path
upon link or switch failures. Provider Backbone Bridge
Traffic Engineering (PBB-TE) swaps the B-VID value to
redirect the traffic onto the pre-configured path within 50
ms under a path failure [3] . MPLS-TE [11,17] offers fast
reroute functionality by redirecting encapsulated traffic
to a backup path when the primary one fails. Mech-
anisms for monitoring and discriminating against inter-
mittent link failures to achieve network stability are also
addressed in [1, 16].

Numerous data center network architectures propose
the fault tolerant data plane by introducing a centralized
controller. PortLand [15] employs a centralized fabric
manager and relies on switches to detect and inform its
centralized fabric manager when a link or switch fails.
The fabric manager maintains a fault matrix with per-
link connectivity and informs affected switches to re-
route packets. VL2 [9] depends on OSPF to re-converge
quickly and allows applications to fully use a link sev-
eral seconds after it is restored, due to the conservative
defaults for OSPF timers. VL2’s directory server also in-
corporates the asynchronous replicated state machine to

offer a strongly consistence based on the Paxos consen-
sus algorithm.

SDN proposes separation and centralization of the
control plane from the data plane. Most of the existing
OpenFlow-based SDN proposals address resiliency at ei-
ther the controller [12, 20] or the data plane. Onix [12],
a distributed control platform, provides coordination fa-
cilities for detecting and reacting to Onix instance fail-
ures. FlowVisor [18] partitions the underlying network
and allows multiple controllers to manage their own
slice of network. The data plane reliability relies on
either the controller proactively pre-computes and pre-
installs the backup paths on an OpenFlow switch [14]
or reactively takes action upon receiving failure notifica-
tions [19]. For example, NOX [20] depends on exist-
ing switch mechanisms to determine link failures, no-
tify NOX, and flushes the flow entries at that switch
which use the failed link. However, the proactive mech-
anism requires installing additional flow entries into the
OpenFlow switches, which has very limited TCAM en-
tries, whereas the reactive mechanism incurs high la-
tency. Moreover, one of the major concerns about SDN’s
split architecture design is the resiliency between the
centralized controller and switches [19]. That is, any
failure that disconnects the data plane form the control
plane may bring down the entire network [2, 21]. Ex-
isting SDN proposals depends on an out-of-band control
network to guarantee reachability between switches and
the controller. However, the fail-over latency between
controller and switches is usually at the timescale of sec-
onds, due to the fact that the control network is running
conventional distributed protocols such as spanning tree
protocol (STP), IS-IS, or OSPF.

We argue that a well-architected SDN should have its
fast fail-over mechanism among the data plane, the con-
troller, and the control plane. Peregrine takes the first
step in addressing all these three aspects using standard
Ethernet switches and in-band control design.

3 Fault Tolerance Support in Peregrine

3.1 ITRI Container Computer
The ITRI container computer is physically housed in an
ISO-standard 20-foot (6.096 meter) shipping container,
and consists of 12 server racks lined up on both sides of
the container with an access aisle in the middle, where
each server rack holds up to 96 current-generation X86
CPUs and 3TB of DRAM. Twelve JBOD (Just a Bunch
Of Disks) storage servers, each packed with 40 disks, are
installed in the container computer. Together with the
local disks directly attached to compute server nodes, the
container boasts of more than 1 petabyte worth of usable
disk space.

2

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 227

The ITRI container computer’s network is a modified
Clos network. Every rack contains 48 server nodes, each
having 4 1GE NICs, and includes 4 top-of-rack (TOR)
switches, each having 48 1GE ports and 4 10GE ports.
There is a virtual switch inside every server node that
is connected to the server node’s four NICs, which in
turn are connected to the four TOR switches in the same
rack. The four 10GE unlinks on each TOR switch are
connected to four different regional switches, each of
which has 48 10GE ports. To improve the performance
of storage accesses, each storage server has four 10GE
NICs and is directly connected to four different regional
switches. In total, five regional switches per rack are
used in the ITRI container computer.

Peregrine [5] is the internal network for the ITRI con-
tainer computer, and is built on commercially off-the-
shelf Ethernet switches with most of their built-in con-
trol plane functionalities such as spanning tree protocol,
source learning, flooding if unknown destinations, etc.,
turned off. Instead, Peregrine uses a centralized control
plan that manages the forwarding tables of the underly-
ing Ethernet switches. The software architecture of Pere-
grine is shown in Figure 1, and consists of a kernel agent
that performs ARP query packet interception and trans-
formation and is installed in the Dom0 VM of every Xen-
based physical server, a centralized directory server (DS)
that performs generalized IP to MAC address look-up,
and a centralized route algorithm server (RAS) that con-
stantly collects the network’s traffic matrix, runs a load-
based routing algorithm based on the traffic matrix, and
populates the switches’ forwarding tables with the com-
puted routes. After the RAS computes routes for physical
server pairs, it builds up an inverse map that associates
every network link with all the computed routes that go
through the link.

All packets from a DomU VM pass through the Pere-
grine agent in Dom0 of the corresponding physical ma-
chine. For each packet going by, the Peregrine agent con-
sults with its local ARP cache with the packet’s destina-
tion IP address, submits a lookup request to the DS if the
cache lookup is a miss, and rewrites the packet’s destina-
tion MAC address field based on the ARP look-up result
from the local cache or the DS.

3.2 Centralized IP Address Resolution

Because Peregrine is designed to scale to a large num-
ber of physical servers using only L2 connectivity, it dis-
courages broadcast-based protocols such as ARP (Ad-
dress Resolution Protocol) and DHCP (Dynamic Host
Configuration Protocol). Instead, it replaces them with
a client-server architecture, where queries are directed to
a dedicated server, which answers these queries by look-
ing up its internal data structures. This design change

 Layer-2-Only

Clos Network
Physical Server

Kernel agent

VM0 VM1 VMn

Directory
Server

Route
Algorithm
Server

Figure 1: The software architecture of the current Pere-
grine prototype, which consists of a kernel agent in-
stalled in the Dom0 VM of every physical machine, a
centralized directory server (DS) for IP to MAC address
look-up, and a centralized route algorithm server (RAS)
for route computation and forwarding table population.

is similar in spirit to how cache coherence protocols
in shared-memory multiprocessor systems progressed
from broadcast-based to directory-based as their scale in-
creases.

When a user VM sends out a broadcast-based ARP
query, a Peregrine agent running at the same physical
server intercepts it, converts the query into a unicast
packet and sends it to a central directory server, which
maintains an address resolution map between VMs’ IP
addresses and their MAC addresses, and answers these
transformed ARP queries. After receiving answers from
the directory server, the Peregrine agent converts it into
a legitimate ARP response packet, sends it to the orig-
inal querying user VM, and caches the answers for fu-
ture reuse. Therefore, not every ARP query needs to be
sent to the directory server; in fact, most ARP queries
are expected to be answered by the caches maintained by
Peregrine agents.

To ensure the consistency of ARP caches, Peregrine’s
directory server adopts a lease-based stateful cache co-
herence protocol. That is, every cached ARP query re-
sponse is given a fixed lifetime, say 2 minutes, and the
directory server keeps a record of which physical server
caches which ARP query responses, each of which con-
sists of an IP address and its corresponding MAC ad-
dresses (it would become clear later why multiple MAC
addresses are associated with an IP address). When an
ARP query response resides in a physical server longer
than the fixed lifetime, it becomes invalid and cannot be
used to answer ARP queries. The key design challenge in
this stateful cache consistency maintenance mechanism
is how to reduce the amount of state required. Suppose
the maximum number of VMs in a cloud data center is
100,000 VMs, and every VM could communicate with at
most N VMs, then the address resolution map in the di-
rectory server has 100,000 entries, each of which in turn
contains up to N VM IDs and N timestamps of when the
entry is cached in each of the N VMs. Whenever the di-
rectory server modifies an entry in its address resolution

3

228 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

X
X X

Primary Tree Secondary Tree

X X X

Disjoint Tree Design

Disjoint Path Design

Physical Topology

s1 s2
s1 s2 s1 s2

s1 s2 s1 s2 s1 s2

Y Z W
Y Z W Y Z W

Y Z W Y Z W Y Z W

Primary
Secondary

Figure 2: An example network to illustrate the difference
between a disjoint tree design (above) and a disjoint path
design (below). In the disjoint path design, the primary
path of one server pair (X-Z) could overlap with the sec-
ondary path of another server pair (X-Y) as long as it
does not overlap with the first server pair’s correspond-
ing secondary path.

map, it goes through the physical servers recorded in the
entry, checks their timestamps to see if they expire, and
sends a unicast-based invalidation notification to each of
those that still hold a valid cached copy. If the number of
physical servers caching an address resolution map entry
exceeds N, the entry is flagged, and the directory server
sends a broadcast-based invalidation notification instead
when the entry is modified.

The additional level of indirection introduced by the
address resolution map and the directory server’s ability
to invalidate cached ARP query responses plays a criti-
cal role in Peregrine, and serves multiple purposes, in-
cluding scaling up the network size, redirection in VM
migration, and fail-over in network switch/link failure,
which we will describe in the next subsection.

3.3 Proactive Primary/Secondary Routing
When a network switch/link fails, the design goal of
Peregrine is to route all affected network flows around
the failure so that the end-to-end disruption to the com-
municating parties of these network flows is no more
than 100 ms. To achieve this aggressive goal, for a given
physical server X, Peregrine proactively pre-computes a
primary and a secondary route from every other physi-
cal server to X, where the primary route and secondary
route are node-disjoint and link-disjoint excluding the
two end points, assuming the underlying physical net-
work connectivity offers enough redundancy for such
disjoint paths. Whenever a network link or switch fails,
the primary routes provisioned on the failed device or
link are identified, and the physical servers that are using
these primary routes are notified to switch to their corre-
sponding secondary routes. In this design, the fail-over

delay of a network device/link failure thus consists of (a)
the time to detect the device/link failure, (b) the time to
identify affected primary routes and their source physical
servers, and (c) the time to inform these affected source
servers to switch from primary to secondary routes.

The first design issue is how to switch from primary
to secondary routes when failures occur. Because Pere-
grine uses conventional Ethernet switches and Ethernet
switches forward packets based on their destination ad-
dress, the only way to send packets to a given physical
server X using multiple routes is to assign multiple MAC
addresses to X, each representing a distinct route to reach
X. At start-up time, Peregrine installs pre-computed pri-
mary/secondary routes to every physical server in the
switches’ forwarding tables. At run time, switching from
the primary to the secondary route of a given server is
a matter of using the server’s secondary MAC address
rather than primary MAC address. Modern operating
systems, including both Linux and Windows, allow mul-
tiple NICs to be bound to the same IP address, through
DHCP or through user-entered commands.

Given a physical server X, all other servers that send
packets to it form a spanning tree. When computing pri-
mary and secondary routes for X, there are two possi-
ble designs: disjoint tree and disjoint path. In the dis-
joint tree design, the system computes a primary span-
ning tree and a secondary spanning tree that are node-
disjoint and link-disjoint from each other. In the disjoint
path design, the system computes a primary route and a
secondary route between X and every other server, and
they are node-disjoint and link-disjoint. In the first de-
sign, all other servers that send packets to X either use
the first or second spanning trees, but not both simulta-
neously. However, in the second design, some servers
that send packets to X may use the first spanning tree,
while the others may use the second spanning tree at the
same time. Figure 2 shows an example that illustrates the
difference between these two designs. In the disjoint tree
design, the primary spanning tree rooted at node X is dis-
joint from X’s secondary spanning tree. However, in the
disjoint path design, the primary path for X-Z could over-
lap with the secondary path for X-Y , and the secondary
path for X-W could overlap with the primary path for
X-Y. Obviously the disjoint path design is more flexible
than the disjoint tree design, but also requires more state
to be maintained on the directory server.

The trade-off between these two designs is the amount
of directory server state required and the routing flexi-
bility. In general, the larger-granularity the unit of dis-
jointness, the more difficult it is to successfully overlay
two such units on a given physical network. Because the
granularity of disjointness in the disjoint tree design is
larger than that in the disjoint path design, it is more dif-
ficult to successfully compute routes for the disjoint tree

4

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 229

design than for the disjoint path design on the same phys-
ical network. That is, for a given physical server X, it is
less likely to find two disjoining spanning trees rooted
at X, than to find two disjoint paths between X and any
other server. In addition to routing flexibility, the disjoint
tree design also incurs higher collateral damage when a
network switch/link failure. In other words, any failure
that affects (even a slight portion of) a given server’s pri-
mary spanning tree renders the entire spanning tree un-
usable.

Given a lookup request for a physical server X, the
directory server’s response to it is independent of the
source issuing the lookup request in the disjoint tree de-
sign, but is dependent on the source in the disjoint path
design. The additional flexibility enables the disjoint
path design to use both spanning trees associated with
a physical server simultaneously, but also requires more
state to be maintained on the directory server in the sec-
ond design. For the disjoint tree design, the directory
server only needs to maintain two bits for each physi-
cal server to indicate the health status of its two disjoint
spanning trees. For the disjoint path design, the direc-
tory server needs to maintain two bits for every other
server that sends packets to every given server to indicate
the health status of the two disjoint paths between them.
Therefore, the amount of availability-related state on the
directory server is O(M) for the disjoint tree design and
O(M2) for the disjoint path design, where M is the num-
ber of physical servers on the network. As shown in
Figure 2, in the disjoint tree design, the directory server
maintains two bits for X’s primary tree and backup tree
and a failure of any link in the primary tree triggers all
other servers to switch to the backup tree, whereas in the
disjoint path design, the directory server maintains two-
bit health status for paths between Y to X, Z to X, and W
to X. If a link between X and s1 fails, only the primary
path between X and Y and the secondary paths between
X and Z and between X and W are affected.

The current Peregrine prototype adopts the disjoint
path design to successfully fail over as many communi-
cating node pairs affected by a given network switch/link
failure as possible. To reduce the amount of availability-
related state on the directory server, Peregrine uses a list
structure that can dynamically grow and shrink its size
to record the set of physical servers with which a given
physical server is currently communicating. From the
analysis of several data center traffic traces [9], we as-
sume the majority of physical servers communicate with
at most N other servers, and the total amount of avail-
ability state that needs to be maintained is proportional
to MN rather than M2.

The availability bits associated with a physical server
are stored in the server’s address resolution map entry
in the directory server, together with its timestamps as-

sociated with stateful caching. In summary, a physical
server’s address resolution map entry consists of the fol-
lowing:

• An IP address,
• Two MAC addresses, and
• A communication list of entries, each of which con-

tains a caching timestamp, two availability bits and
a primary/secondary flag for each physical server
that it currently communicates with.

Every physical server, say S1, is assigned an address
resolution map entry, and every other physical server that
communicated with S1, say S2, is assigned an entry in
S1’s communication list, which indicates which of S1’s
two MAC addresses is the primary MAC address and
whether the two paths between S1 and S2 are available
or not. When another server, say S3, just starts to com-
municate with S1, Peregrine inserts an entry <011> 1

to S1’s communication list, meaning that the currently
used MAC address is primary and both routes from S3 to
S1 are available. As soon as a link on the primary route
from S3 to S1 fails, S3’s entry becomes <101>, indicat-
ing that S3 should use S1’s second MAC address to reach
S1, and the old primary route is now unavailable.

Conventional Ethernet switches use a source learning
mechanism to populate their forwarding table, and thus
do not support dynamic routing that could accommodate
fluctuating traffic workloads. Only Layer-3 routers pro-
vide such support. Most commodity Ethernet switches
provide the flexibility to statically and programmatically
populate their forwarding table. Peregrine leverages this
capability to support a centralized routing architecture,
in which a route server computes the routes according to
a number of optimization criteria, and populates the re-
sulting routes on the switches’ forwarding tables. Pere-
grine uses a load-based routing algorithm [7] that dy-
namically computes routes based on link loads. To sup-
port fast fail-over, Peregrine extends this algorithm to
pre-compute two disjoint routes for each pair of phys-
ical servers. To support network QoS, Peregrine gives
different weights to physical server pairs so that routes
computed for higher-priority physical server pairs should
travel on less congested network links than lower-priority
physical server pairs.

3.4 Fast Fail-Over for Network Failure
The RAS detects a link failure by receiving an SNMP
trap about it. Because a switch failure is effectively the
same as multiple link failures, when a switch fails, the
RAS receives one or multiple SNMP traps indicating

1Bit [1:0] indicates the health status of the primary and secondary
path. Bit [2] indicates the selected path (0: Primary, 1: Secondary).

5

230 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

failures of links associated with the switch. To ascer-
tain whether such a switch indeed fails, the RAS contin-
uously pings the switch for a period of time (currently
set to 1 second) before arriving at a verdict. Therefore,
the switch failure detection time is longer than the link
failure detection time.

When the RAS detects a link or switch failure, it in-
vokes Peregrine’s failure recovery processing algorithm
as follows:

1. Given a failed link/switch, RAS consults with the
inverse map to identify all physical server pairs
whose primary or secondary route traverses through
the failed link/switch, and passes these physical
server pairs to the DS.

2. For each physical server pair whose primary route is
affected, the DS looks up the pair’s destination in its
address resolution map, turns off the primary route
between them in the corresponding address resolu-
tion map entry, and notifies the pair’s source server
to this effect if the pair of servers are actively com-
municating.

3. For each affected physical server pair, the RAS re-
moves the forwarding table entries associated with
its affected primary or secondary route, and com-
putes a new route for it.

Suppose a physical server S1 is affected by a link fail-
ure, and there are N1 other servers that could send pack-
ets to S1 over the failed link, but only N2 of them are
actively communicating with S1 at the time of the link
failure. So S1’s address resolution map entry originally
contained a list of N2 entries to indicate S1’s availability
status to the N2 servers before the link failure, but the list
will grow to N1 entries after the link failure. It is neces-
sary to expand an affected physical server’s communica-
tion list in its address resolution map entry to correctly
instruct those physical servers that are not communicat-
ing with the affected server which MAC address to use
when they start communicating with the affected server
in the future.

Figure 3 illustrates how Peregrine’s fast fail-over
mechanism works. Initially, VM6’s primary and sec-
ondary MAC addresses, mac1 and mac2, are pre-
populated on the switches along the two disjoint routes
by the RAS (step 1). The primary route to VM6 goes
through SW2 and SW3 while the secondary route goes
through SW1 and SW4. Whenever a link along the pri-
mary path from VM3 to VM6 is down, an SNMP trap
is sent from the link’s adjacent switch to the RAS (step
2), which determines the physical server pairs that are af-
fected by the link failure and passes these affected server
pair information to the DS (step 3), which then informs
the source of each physical server pair that its associ-
ated destination server is reachable only via its secondary

4. Cache Update e Update 4. Cac

1.  Route
 Population

2. Link down trap

3. Update

Control Plane of Peregrine

PM1 PM2

5. Secondary route,
forwarded by using mac2

Primary

mac1: Primary
mac2: Secondary

Figure 3: When a link (e.g. PM1-SW2) fails, Peregrine
switches every affected server pair (e.g. PM1-PM2) from
its primary path (PM1-SW2-SW3-PM2) to its secondary
path (PM1-SW1-SW4-PM2).

MAC address, in this case, sending an ARP entry update
to PM1 (step 4) indicating that to send packets from VM3
to VM6 should use mac2 as the destination MAC ad-
dress, the secondary MAC address for VM6. After that,
all packets destined to VM6 from VM3 will go through
VM6’s secondary route from this point on (step 5).

3.5 Fast Fail-over for DS/RAS Failure

Because the DS and RAS play a critical role in Pere-
grine’s architecture, it is essential that both of them in-
clude a high availability (HA) mechanism to ensure their
continued operation despite any single failure of their un-
derlying hardware. First of all, all data structures in the
DS and RAS that are required to restart must be kept on
disk, and make up their persistent state. We adopt an ac-
tive master and passive slave architecture, in which the
master and slave each have their own local disk. Every
update to the master’s persistent state is first logged to a
memory-resident log, which is synchronously replicated
to the slave, and then asynchronously written to the on-
disk data structure, which is synchronously replicated to
the slave.

The data structures in the RAS that need to be persis-
tent are an in-memory log of pending SNMP traps and
the computed routes for every physical server pair and
the inverse map that associates network links/switches
with routes that traverse them. The route-related infor-
mation is largely static. The data structure in the DS
that needs to be persistent is the address resolution map.
Peregrine puts RAS’s and DS’s persistent state in a sep-
arate disk volume, and uses DRBD (Distributed Repli-
cated Block Device) [6] to synchronously replicate every
write to the master’s on-disk persistent state to the slave,
and re-synchronize a new slave candidate’s on-disk per-
sistent state to the current master’s. In addition, Pere-
grine uses Pacemaker to monitor the health of the RAS
and DS processes and the servers they run on.

The slave takes over as the new master when it detects

6

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 231

SNMP Trap

(Master) (Master) (Master)

(b) (c) (a)

 Failure Detection

Figure 4: Because Peregrine does not have an out-of-
band control network, Peregrine must guarantee that
SNMP traps be delivered to the RAS despite the failure
that triggers the SNMP traps.

the master dies. When the slave takes over, it recovers the
persistent state, performs necessary undoing and redo-
ing, and announces to the world that it is the new master.
Specifically, when the slave RAS takes over, it aborts the
on-going recovery processing transaction triggered by an
SNMP trap if there is one pending, and redoes it from
scratch. When the slave DS takes over, it rebuilds the
address resolution map from the in-memory log and on-
disk copy.

3.6 Resilient Messaging During Fail-over
Because Peregrine’s fail-over processing involves
failure-detecting switches, the RAS, the DS and the
affected physical servers, it is possible that a network
failure prevents the communications in its associated
fail-over processing and thus inhibits its own recov-
ery. A standard solution to this problem is to install
a separate control network for out-of-band fail-over
processing. However, such a design is still problematic
because there is no guarantee that the out-of-band
control network itself won’t fail. Instead, Peregrine uses
in-band signaling to simplify the network infrastructure,
but ensures the resiliency of message delivery during
fail-over processing by transferring fail-over messages
over paths unaffected by the triggering link/switch fail-
ures. Fail-over messages include SNMP traps, affected
physical server pairs, and notifications to invalidate ARP
cache entries.

The HA version of RAS consists of a master node and
a slave node, and the HA version of DS also consists of a
master node and a slave node. Each RAS/DS node is as-
signed two MAC addresses and one IP address. Because
each RAS/DS node has two MAC addresses, Peregrine
sets up two disjoint paths between it and every other node
that communicates with it, and the DS decides which
path should be used between each pair of communicating
nodes, including the communications between the two

RAS nodes and those between two DS nodes.
Every network switch is configured to send each of its

SNMP traps twice, once to the master RAS and the sec-
ond time to the slave RAS. Figure 4 (a) shows that if the
link that fails is between two switches, both switches de-
tect it, and at least one of them is able to send its SNMP
traps to the RAS nodes in spite of the failure. If the link
that fails is between a switch and a physical server, as in
the case of Figure 4 (b), there is only one switch detect-
ing the failure, and this switch definitely is able to send
out the SNMP traps associated with this link failure to
the RAS. If the link that fails is between a switch and a
RAS node, as in Figure 4 (c), this RAS node detects this
link failure itself without relying on SNMP traps. Upon
receiving an SNMP trap, the master (slave) RAS syn-
chronously replicates it to the slave (master) RAS. This
replication serves two purposes: enhancing the reliabil-
ity of SNMP trap delivery even when the network drops
SNMP packets from time to time, and duplicating the in-
memory log for RAS fail-over.

The kernel agent on every physical server constantly
keeps track of the IP address and the two MAC addresses
of the current master DS so that it could submit its ARP
queries to the right DS node over a healthy path. In case
an ARP query times out, the kernel agent retries the same
query with an alternative MAC address. When a new
master DS comes along, it broadcasts multiple times to
announce to all physical servers its IP address and MAC
addresses.

When the master RAS starts up, it establishes a UDP
connection with each of the two DS nodes. Through
these two UDP connections, the master RAS is able to
tell which DS node is the current master DS. When a
link/switch failure occurs, the DS is the one that tells ev-
ery other node whether to switch paths when commu-
nicating with specific nodes, except the communication
between the RAS and the DS, because this communica-
tion takes place before the DS is notified of the failure.
Therefore, when the master RAS receives an SNMP trap
associated with a link/switch failure, it first determines
whether it should reach the master DS via its secondary
MAC address, and informs the master DS of this fail-
ure using the pre-built UDP connection over a path unaf-
fected by the failure. It is crucial that a UDP connection
rather than a TCP connection be used here, because the
return traffic (e.g. ACK packets) of a TCP connection
from the master DS may be blocked by the failure. Once
the master DS is informed of a failure, it adjusts its path
to the master RAS to bypass the failure if necessary, and
then establishes a TCP connection with the master RAS
to retrieve the affected physical server pairs.

The master RAS sends the physical server pairs af-
fected by a failure in two batches, the first batch con-
taining those physical server pairs in which the master

7

232 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

DS is the source, and the second batch everything else.
The master DS uses the first batch to adjust its paths to
physical servers in this batch, and then sends out notifi-
cations in the second batch using the adjusted paths. To
reduce the messaging overhead of notifications, the mas-
ter DS further sorts the notifications according to desti-
nation nodes, and batches all notifications destined to the
same node into as few packets as possible. When the
per-server kernel agent receives notifications, it updates
its ARP cache and its DS data structure accordingly.

3.7 Broadcast Support
Although Peregrine is designed to minimize broadcast
traffic, it cannot completely does away with broadcast
traffic. For example, ARP requests from network de-
vices on which no Peregrine agent is installed, e.g. com-
mercial routers and switches, are broadcast packets. As
another example, some applications, e.g. Microsoft Ex-
change cluster, may use application-level broadcast mes-
sages to maintain cluster membership. To accommodate
broadcast traffic and prevent Ethernet storms, the RAS
sets up a tree that spans all nodes in the entire physical
network without using the spanning tree protocol, and
allows broadcast packets to flow only on this tree by dis-
abling the broadcast option on all ports that are not on
this tree. When a link/switch failure occurs, the RAS
amends this tree accordingly to ensure the resulting tree
continues to span the entire network.

4 Performance Evaluation

4.1 Evaluation Methodology
We used two racks in the ITRI container computer as
the evaluation testbed for the Peregrine prototype. The
testbed consists of eight 48-port TOR switches each with
two 10GE uplink, two 48-port 10GE regional switches,
and 88 physical machines. Each physical machine is
equipped with eight 2.53GHz Intel Xeon CPU cores,
40GB DRAM, and 4 GE NICs, and is installed with Cen-
tOS 5.5, which is equipped with the Linux kernel 2.6.18.
Four physical machines are used to deploy the RAS, DS,
and their master and slave. The Peregrine kernel agent is
installed on all other physical machines. Each physical
machine is connected to four TOR switches via a sepa-
rate 1GE NIC, and each TOR switch in turn is connected
to four regional switches via a separate 10GE link. No
firmware modifications are required on these regional or
TOR switches.

To quantify the fail-over latency, we measured the ser-
vice disruption time for an UDP connection running on
two physical machines of the evaluation testbed under
various single-failure scenarios. More concretely, the

sender of this UDP connection sent one packet every mil-
lisecond to the receiver; we then counted the number of
lost packets when a failure occurs and Peregrine’s fail-
over mechanism kicks in, and the resulting number cor-
responds to the service disruption time.

To assess the efficiency of different fail-over steps, we
broke the service disruption time into the following four
components:

1. Failure detection time: the time between when a
failure occurs and when the RAS detects the failure,

2. Damage assessment time: the time for the RAS to
identify the set of primary and secondary routes af-
fected by a given failure and pass the associated in-
formation to the DS,

3. ARP Update time: the time for the DS to update
its own ARP database entries corresponding to the
source nodes of affected physical server pairs and
to send out ARP cache updates to the destination
nodes of these pairs, and

4. Switch-over time: The kernel agent on a physical
server updates its ARP cache upon receiving such
an ARP cache update message.

To accurately measure the failure detection without in-
stalling an agent on the switches, we set up another UDP
connection from a source server through the failed link
or switch to the RAS, in which the source server also
sends a UDP packet to the RAS every millisecond. The
RAS measures the time between when it stops receiving
packets through this UDP connection (a failure occurs)
and when it receives the SNMP associated trap (a failure
is detected). Because the switch-over time is negligible,
we focus on the first three components in the following
subsections. Each reported time measurement below is
an average of 5 runs.

4.2 Link Failure

Table 1 shows the average service disruption time and its
detailed breakdown for four different types of link fail-
ures: failure of a link between a server and a 1-GE switch
(Server-Switch), failure of a link between a 1-GE switch
and a 10-GE switch (Switch-Switch), failure of the link
between the DS and a 1-GE switch (DS-Switch), and
failure of the link between the RAS and a 1-GE switch
(RAS-Switch). The time taken to detect a link failure
and send out its associated SNMP trap is much smaller
for the 10-GE switches in our testbed, between 60 ms
to 80 ms, than for the 1-GE switches, between 200 ms
and 1000 ms. We suspect that 10-GE switches detect
the link status using event triggering scheme whereas 1-
GE switches employ polling-based scheme. In the case
of Switch-Switch link failures, it is a 10-GE switch that

8

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 233

Failed Link No . of Affected Pairs No. of Notifications Failure Detection Damage Assessment ARP Update Service Disruption
Server-Switch 158 8 787 13 6 810
Switch-Switch 1383 101 59 88 39 190

DS-Switch 153 73 242 34 30 300
RAS-Switch 156 134 359 29 25 420

Table 1: The average service disruption times of four different types of link failure and their detailed breakdowns. All
time measurements are in terms of ms.

Failed Switch No. of Affected Pairs No. of Notifications Failure Detection Damage Assessment ARP Update Service Disruption
Regional Switch 6684 203 1881 326 234 1180
Server-Switch 3786 95 1129 156 88 1280

DS/RAS-Switch 6496 343 1407 316 223 1480

Table 2: The average service disruption times of three different types of switch failures and their detailed breakdowns.
All time measurements are in terms of ms.

sends out the associated SNMP traps, whereas Server-
Switch and DS-Switch link failures are detected by 1-GE
switches. As for RAS-switch link failures, it is a kernel
module in the RAS that detects them directly. As a result,
in all cases except Switch-Switch, the failure detection
time dominates and accounts for more than 80% of the
service disruption time. Unfortunately, the failure detec-
tion time is completely determined by the switches and
beyond the control of Peregrine.

If the failure detection time is excluded, the combined
DS and RAS fail-over processing time, which is dictated
by Peregrine, is below 120 ms for all link failures and be-
low 70 ms if Switch-Switch link failures are ignored. The
Switch-Switch link failure entails a much larger number
of affected server pairs and notifications than other types
of link failures. The damage assessment time is gener-
ally proportional to the number of affected server pairs
(second column), and the ARP update time is generally
proportional to the number of notifications that the DS
sends to affected servers (third column). When the RAS
sends out the list of server pairs affected by a link fail-
ure to the DS, the DS only needs to send ARP updates
to destination nodes of a subset of those server pairs that
are actively communicating with each other at that in-
stant. That is why the number of notifications is smaller
than the number of affected server pairs.

4.3 Switch Failure

Table 2 shows the average service disruption time and
its detailed breakdown of three different types of switch
failures: failure of a 10-GE regional switch (Regional
Switch), failure of a 1-GE switch connected to a physi-
cal server (Server-Switch), and failure of the switch con-
nected to both RAS and DS (DS/RAS-Switch). The
switch failure detection time is generally higher than the
link failure detection time because the RAS needs to re-
ceive multiple SNMP traps associated with link failures
of a suspect switch and ping the suspect switch for 1 sec-
ond without getting any response before concluding that

the switch fails. The failure detection time for Regional
Switch is higher than that for Server-Switch because the
former is detected by 1-GE switches whereas the latter is
detected by 10-GE switches. The switch failure detection
time for the DS/RAS-Switch failure is about 1-second
ping delay plus the link failure detection time for the RS-
Switch failure, because both are detected by RAS.

For the Server-Switch and DS/RAS-Switch failure, the
service disruption time for a switch failure is smaller than
the sum of failure detection time, damage assessment
time and ARP update time because a portion of fail-over
processing is triggered by link failure SNMP traps and is
thus overlapped with the switch failure detection time.
The fail-over processing for those link failures whose
SNMP traps cannot be successfully delivered to the RAS
is triggered only after the RAS concludes that a switch
failure occurs. The extent of overlap for the DS/RAS-
Switch failure is higher than that for the Server-Switch
failure because a significant portion of a DS/RAS-Switch
failure’s fail-over processing is due to the fail-over pro-
cessing of the DS-Switch and RAS-Switch link failures
and they are completed before the DS/RAS-Switch fail-
ure is detected. In the case of the Regional Switch fail-
ure, the service disruption time is actually smaller than
the failure detection time because the fail-over process-
ing for all the constituent link failures of a switch failure
is completed before the RAS concludes that the switch
failure indeed takes place.

4.4 RAS and DS Failure

When the master RAS fails, it takes on average 1038
ms for the RAS slave to notice because the RAS slave
probes the RAS master for 1000 ms before declaring
a take-over, and another 0.45 ms to restart itself. The
restart processing of the RAS slave is fast because the
only RAS persistent state is the pending SNMP trap log,
which is mostly empty in this test. Because the RAS per-
forms fail-over processing for link/switch failures, fail-
ure of the RAS master potentially increases the fail-over

9

234 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

Address Resolution Map Size Service Disruption Time Failure Detection Time DRBD Switch Time DS Recovery Time
6556 Entries 2811 1871 704 269
32469 Entries 3282 1882 706 736

Table 3: The service disruption time of the DS because of a DS failure and its breakdown under two testbed sizes. All
time measurements are in terms of ms.

latency of link/switch failures. To test this, we turned off
the RAS master, then immediately turned off the switch
to which the RAS is connected, and measured the service
disruption time of a UDP connection going through the
switch. The service disruption time is increased to 1580
ms, which, as expected, is about 1000 ms higher than the
average fail-over latency for link failures shown in the
last subsection.

Table 3 shows the service disruption time of the DS;
a DS failure is about 2811 ms and 3282 ms when the
address resolution map contains 6556 entries and 32469
entries. We used a special test program that continu-
ously submits ARP queries every 50 ms to the master
DS and slave DS, and the service disruption time corre-
sponds to the time interval between when the master DS
stops responding and when the slave DS starts respond-
ing. The DRBD switch time corresponds to the time the
slave DRBD needs to mount the replicated disk parti-
tion before becoming the new master DRBD. The failure
detection time is bound by the Pacemaker library used
in the current Peregrine prototype. Both the DS failure
detection time and the DRBD switch time remain un-
changed as the testbed size is increased. In contrast, the
DS recovery time is proportional to the size of the ad-
dress resolution map, because larger address resolution
maps require longer reload time during recovery.

5 Conclusion

Peregrine is a software-defined network that uses com-
mercial off-the-shelf Ethernet switches as basic building
blocks and was originally designed for the ITRI con-
tainer computer. It uses a centralized control plane to
program the forwarding tables and configure the options
of the switches in the network. Compared with con-
ventional Ethernet architecture, Peregrine is more scal-
able because it supports dynamic load-based routing, and
is more available because it provides self-adaptive fault
tolerance against any single failure. More concretely,
through proactive primary/secondary routing, Peregrine
is able to significantly cut down the service disruption
time due to link failures, switch failures and control plane
failures. The specific research contributions of this work
include

• A proactive disjoint path-based primary/secondary
routing scheme that is able to quickly switch com-
munications between server pairs affected by a

link/switch failure to their pre-arranged alternative
routes,

• A highly available control plane that is capable
of continued operation despite any single control
server failure,

• A resilient communication design that achieves re-
liable message transfer in fail-over processing of a
link/switch failure without using any out-of-band
control network, and

• A fully operational prototype that is able to cut
down the service disruption time associated with
any single link failure to under 120 ms, if the failure
detection time is excluded.

References
[1] AWERBUCH, B., ET AL. Distributed control for paris. In Proc.

ACM PODC 2012.
[2] BEHESHTI, N., AND ZHANG, Y. Fast failover for control traffic

in software-defined networks.
[3] BOTTORFF, P., AND HADDOCK, S. Ieee 802.1 ah-provider back-

bone bridges, 2007.
[4] CASADO, M., ET AL. Ethane: Taking control of the enterprise.

Proc. ACM SIGCOMM 2007.
[5] CHIUEH, T., ET AL. Peregrine: An all-layer-2 container com-

puter network. In Proc. IEEE Cloud, 2012.
[6] ELLENBERG, L. Drbd 9 and device-mapper: Linux block level

storage replication. In Proc. of the 15th International Linux Sys-
tem Technology Conference, 2008.

[7] GOPALAN, K., ET AL. Load balancing routing with bandwidth-
delay guarantees. Communications Magazine, IEEE, 2004.

[8] GREENBERG, A., ET AL. A clean slate 4d approach to network
control and management. Proc. ACM SIGCOM, 2005.

[9] GREENBERG, A., ET AL. Vl2: A scalable and flexible data center
network. Proc. ACM SIGCOMM 2009.

[10] IANNACCONE, G., ET AL. Analysis of link failures in an ip back-
bone. In Proc. ACM SIGCOMM 2002.

[11] KOMPELLA, K., ET AL. Link bundling in mpls traffic engineer-
ing (te).

[12] KOPONEN, T., ET AL. Onix: A distributed control platform for
large-scale production networks. Proc. USENIX OSDI 2010.

[13] MARKOPOULOU, A., ET AL. Characterization of failures in an
ip backbone. In Proc. IEEE INFOCOM 2004.

[14] MCKEOWN, N., ET AL. Openflow: enabling innovation in cam-
pus networks. ACM SIGCOMM 2008.

[15] NIRANJAN MYSORE, R., ET AL. Portland: a scalable fault-
tolerant layer 2 data center network fabric. Proc. ACM SIG-
COMM, 2009.

[16] RODEHEFFER, T. L., AND SCHROEDER, M. D. Automatic re-
configuration in Autonet. ACM, 1991.

[17] SHARAFAT, A. R., ET AL. Mpls-te and mpls vpns with openflow.
In Proc. ACM SIGCOMM 2011.

[18] SHERWOOD, R., ET AL. Flowvisor: A network virtualization
layer. OpenFlow Switch Consortium, Tech. Rep (2009).

[19] STAESSENS, D., ET AL. Software defined networking: Meeting
carrier grade requirements. In Proc. IEEE LANMAN, 2011.

[20] TAVAKOLI, A., CASADO, M., KOPONEN, T., AND SHENKER,
S. Applying nox to the datacenter. Proc. HotNets 2009.

[21] ZHANG, Y., ET AL. On resilience of split-architecture networks.
In IEEE GLOBECOM 2011.

10

