
USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 235

Fault Management in Map-Reduce through Early
Detection of Anomalous Nodes

Selvi Kadirvel, Jeffrey Ho and José A. B. Fortes
University of Florida

Email: selvik@ufl.edu, jho@cise.ufl.edu, fortes@ufl.edu

Abstract—Map-Reduce frameworks such as Hadoop have
built-in fault-tolerance mechanisms that allow jobs to run to
completion even in the presence of certain faults. However, these
jobs can experience severe performance penalties under faulty
conditions. In this paper, we present Fault-Managed Map-Reduce
(FMR) which augments Hadoop with the functionality to mitigate
job execution time penalties. FMR uses an anomaly detection
algorithm based on sparse coding to anticipate a faulty slave
node. This proposed technique has the following key advantages:
(1) model training uses only normal-class data, (2) time taken for
prediction is less than a second, and (3) confidence estimates are
produced along with the anomaly prediction. FMR uses the result
of anomaly detection to invoke a closed-loop recovery action,
namely dynamic resource scaling. A scaling heuristic is proposed
to determine the extent of scaling necessary to reduce impending
performance penalty. FMR facilitates practical adoption by being
implemented as a set of libraries and scripts that require no
changes to the underlying source code of Hadoop. A set of
realistic Map-Reduce applications were studied through a few
thousand job executions on a 72-node Hadoop testbed. Detailed
empirical evaluation shows that FMR successfully mitigates
performance penalties from 119% down to 14%, averaged across
experiments.

I. INTRODUCTION

Innovations in infrastructure, middleware and applications
have made “big data” analytics possible and economically
viable in a wide range of fields such as bioinformatics, data
mining, web indexing, document classification, recommen-
dation systems, etc. The Map-Reduce (MR) programming
paradigm [17] along with the free and widely supported open-
source implementation, Hadoop [1], has become a popular
choice for incorporating data analytics in industry, government
as well as academic domains. One of the important benefits
of this choice is that job parallelization, data distribution and
fault-tolerance are facilitated and provided by the framework
itself.

Enterprise data centers, in-house clusters and cloud com-
puting environments (that host Map-Reduce platforms) expe-
rience many faults and failures as shown in recent studies by
[31], [33], [32] and [3]. The causes for these faults include
scale, heterogeneity, geographical distribution, configuration
management over a large set of inter-dependent services and
human error as illustrated in [9]. These faults adversely affect
applications running in these environments resulting in job
performance degradations, failed jobs, increased costs for users
and loss of revenue for the provider when Service Level
Objectives are violated. Wang et al. in [38], show through
simulation studies that a single node fault can result in up to

139% performance slowdown in Map-Reduce. Dinu et al. in
[18] record penalties of up to 350% in job run time due to
TaskTracker failures. Ananthanarayanan et al. in [7], show that
job completion times in Dryad (an implementation of the Map-
Reduce paradigm) can be inflated by 34% because of outliers
and that faster completion times (by reducing the effect of
outliers) provide a competitive advantage to service providers.

These performance variabilities and penalties make it chal-
lenging to use Map-Reduce where response time is impor-
tant, such as in user-facing social networking applications at
Facebook [10], user-customization applications at LinkedIn [6]
and user click-stream processing, web-index generation and
advertisement selection applications at Microsoft [22].

Fault-managed Map-Reduce (FMR), presented in this paper,
aims at mitigating these performance penalties experienced by
Map-Reduce jobs. FMR uses a Monitor-Analyse-Plan-Execute
(MAPE) control loop to provide an online, on-demand and
closed-loop solution to fault management. In FMR, faults are
anticipated through the detection of anomalous conditions that
are indicative of an impending fault [31] [23].

For anomaly detection in this context, we propose the use of
a simple machine-learning technique based on sparse coding.
This technique satisfies the following two requirements: (1)
model training using only normal-class data (as opposed to the
use of both normal-class and anomaly-class data) and (2) fast
prediction time. Normal class data captures run time behavior
of a job that has not experienced a performance fault. The need
for training using only normal-class data is necessary because
anomaly-class data that is representative of all (or most)
possible types of faults, is difficult to obtain in a production
environment. Prediction computation time using the proposed
sparse-coding technique is less than a second. This allows the
anomaly detection module to be incorporated in an online
fashion within the MAPE loop for handling faults during
job execution. In addition to these essential requirements,
sparse coding based anomaly detection has two other benefits.
The sparse coding model is deployed locally on each slave
node and does not need to communicate or synchronize with
models on other nodes to make a prediction. This makes
FMR applicable to both homogeneous and heterogeneous
Map-Reduce environments. The time taken to train a sparse
coding model is in the order of a few seconds. This makes
it possible to quickly create models for a new Map-Reduce
application and also to quickly re-train models when system
characteristics change. Map-Reduce applications need to be

236 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

instrumented to emit heart beats, which are further processed
to construct feature vectors that then serve as input to the
anomaly detection module.

After an anomaly is detected, FMR uses dynamic resource
scaling to reduce the performance penalty due to an impending
fault. A scaling heuristic is used to determine the extent of
scaling necessary. This heuristic uses performance prediction
models derived from our previous work [27] to estimate
Map-Reduce job execution times both in fault-free and fault-
present conditions. The cost due to increased execution time
is compared with the cost for additional resources and then a
suitable scaling decision is taken.

FMR leverages built-in features of Hadoop in order to
implement its control loop. This includes features such as (1)
the provision for seamless dynamic addition of slave nodes
to an executing job, (2) blacklisting of slave nodes to stop
assignment of new tasks to a slave node, and (3) the node
health script feature to periodically monitor a user-defined set
of conditions on the slave. FMR has been designed to require
no changes to the underlying Hadoop code base, thereby
facilitating practical adoption.

The increasing prevalence of Map-Reduce applications
along with increasingly fault-prone, large-scale computing
environments, makes FMR a timely and critical component to
improve Map-Reduce performance in the presence of faults.
The main contributions of this paper in the context of the
proposed FMR are as follows:

(1) Fault anticipation and early detection through a sparse-
coding based anomaly detection method. The proposed tech-
nique has a high true positive rate of 0.95 and a high true
negative rate of 0.93 averaged across experiments. Addition-
ally, it provides the benefits of short training and testing times,
requiring only normal-class data for training.

(2) A closed-loop, online dynamic resource scaling ap-
proach to reduce fault-induced performance penalties. Ob-
served performance penalties (without FMR) range between
18% up to 210%. Using FMR, penalties were brought down to
values ranging between 5% to 46%. FMR has been thoroughly
evaluated using a few thousand experiments on a 72-node in-
house cluster. Injected faults include CPU, memory and disk
hog processes as well as node crashes. Benchmark applications
from the domains of text mining and machine-learning were
used for the evaluation of FMR.

Other building blocks that enable FMR were proposed in
our prior works: (1) a comparative evaluation of regression
based machine-learning techniques for predicting the perfor-
mance of Map-Reduce jobs [27] and (2) a study of the effect
of various types of faults on a MapReduce job (motivating
the need for FMR) and the feasibility of resource scaling to
improve performance of an executing Map-Reduce job [26].

In Section II, background to the problem and related work
are discussed. In Section III, the Fault-managed Map-Reduce
approach is introduced. In Section IV, implementation details
of FMR are described. Section V consists of experimental
validation of FMR and a discussion of the results. Conclusions
are presented in Section VI.

II. BACKGROUND AND RELATED WORK

In this section, we summarize Map-Reduce research related
to fault management and bring out the need for FMR.

Effect of faults in Hadoop: Dinu et. al [18] evaluate the
behavior of Hadoop in the presence of fail-stop faults of an
entire compute node as well as Hadoop components such as
the TaskTracker and DataNode daemons. The authors show
that TaskTracker failures can result in up to 350% penalty
while DataNode failures can lead to 218% penalty. Wang et.
al [38] present a Map-Reduce simulator, MRPerf and show that
it can capture fault effects. Their simulation experiments show
penalties up to 186% for various injected faults. Our work [26]
illustrates the effect of various factors on performance penalty
such as number of slave nodes, time of fault injection and
fault-detection timeout interval.These research results along
with the increasing importance of Map-Reduce motivates our
goal for improving fault management in Hadoop.

Fault diagnosis: The Fingerpointing project, that includes
works such as [30], [34], and [8] focuses on fault diagnosis
in Map-Reduce environments. Our approach focuses on fault
detection and fault recovery through an online, closed-loop
approach. However, diagnosis is important and our choice of
sparse coding for anomaly detection is motivated by the need
to extend detection to diagnosis in order to facilitate more
targeted recovery actions.

Fault handling: In Mantri [7], outliers in an executing
Dryad Map-Reduce job are identified through the use of
static thresholds determined from application history. The
determination of the correct threshold to use is challenging
and a pre-set threshold can often drift to become incorrect
in dynamic environments. Hadoop provides a built-in feature
called speculative execution in which slow tasks are chosen to
be executed through duplicate task instances. The deficiency
of speculative execution in heterogeneous environments has
been addressed by the LATE algorithm proposed by Zaharia
et. al [39]. FMR applies to both performance faults as well
as performance faults that lead to crash faults. However, the
latter condition cannot be handled by speculative execution
and LATE and this is empirically illustrated in Section V.
Speculative execution also uses resources inefficiently through
the execution of many duplicate tasks (for e.g. in [39] it was
observed that as many as 80% of tasks were speculatively
executed). In contrast to speculative execution and LATE,
which use progress-based analytical models for detecting a
slow task, FMR uses decentralized and local machine-learning
models on each node for detecting anomalies.

Performance prediction: Predicting the completion time of
a MapReduce job is done through analytical models in [37]
and through simulation models in [24]. In [11], the authors
predict map and reduce task slowdown using the gradient
boosted decision tree model. However, prediction is based on
offline analysis. The anomaly detection method proposed in
this paper can be used in an online fashion and hence enables
incorporation into the MAPE control loop.

Anomaly detection: Tan et. al [35] propose anomaly pre-

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 237

MASTER

SCHEDULING
COMMANDS

JOB
TRACKER

NAME
NODE

META DATA
REQUEST

ALIVE MSGS

META DATA
RESPONSE

SLAVE
TASK

TRACKER
& DATA
NODE

DAEMONS

LOCAL
STORAGE

SLAVE
TASK

TRACKER
& DATA
NODE

DAEMONS

LOCAL
STORAGE

SLAVE
TASK

TRACKER
& DATA
NODE

DAEMONS

LOCAL
STORAGE

SLAVE
TASK

TRACKER
& DATA
NODE

DAEMONS

LOCAL
STORAGE

SLAVE
TASK

TRACKER
& DATA
NODE

DAEMONS

LOCAL
STORAGE

SLAVE
TASK

TRACKER
& DATA
NODE

DAEMONS

LOCAL
STORAGE

Fig. 1. Overview of Hadoop showing interactions between the JobTracker,
NameNode, TaskTracker, DataNode hosted on the master and slave nodes.

vention schemes through the use of Markov chain models for
general virtualized cloud computing. systems. However, it is a
supervised learning technique which means that representative
normal and anomaly class data is needed. [16] and [23] pro-
pose unsupervised techniques for anomaly detection. FMR’s
anomaly detection technique is similar in goal to these works.

Performance management: Starfish [24] and ARIA [37]
propose the use of dynamic resource scaling for performance
management of Hadoop jobs. The Starfish project does not
handle faults and the ARIA project handles fail-stop faults.
FMR’s focus is on performance faults that result in de-
graded job execution times. AROMA [29] uses machine-
learning techniques for resource allocation and configuration
in Hadoop, however it does not handle performance deviations
introduced by faults.

Our work is most similar to Jockey [22], in which resource
allocation is used to guarantee job latencies for data parallel
jobs. Jockey depends on an offline job profile simulator
for completion time prediction; while FMR uses an online,
machine-learning based model for prediction.

III. DESIGN OF FAULT-MANAGED MAP-REDUCE

This paper focuses on the open-source Map-Reduce im-
plementation, Hadoop [1]. Hadoop consists of the following
main components: (1) JobTracker and TaskTracker daemons
that manage scheduling and coordination of map and reduce
tasks, and (2) NameNode and DataNode daemons that manage
the Hadoop Distributed File Systems (HDFS). The JobTracker
and NameNode daemons run on the Hadoop master node,
while the TaskTracker and DataNode daemons run on the slave
nodes. Figure 1 shows a simplified overview of Hadoop.

In a Map-Reduce job, when a node fails, all map tasks that
were executed on this node (for this job) have to be re-executed
on other healthy nodes. This is because map outputs are stored
locally at each slave node (rather than being stored on the
replicated HDFS). Map tasks whose outputs have already been
read by corresponding reduce tasks need not be re-executed.
The master node detects a slave node fault after a static
timeout interval (as shown in Figure 2(a)) and then initiates
re-execution. The performance penalty due to a single node
fault is illustrated for Hadoop clusters of different sizes in
Figure 3(a) and for the case when node faults occur at different

(a) Fault detection in Hadoop

(b) Improved fault detection in Hadoop with FMR

Fig. 2. The shaded (blue) region represents map and reduce tasks running
on a slave. After the fault shown by a cross tasks stop running on this slave.
Hadoop master detects the fault after a static timeout value. The lightly shaded
(green) region introduced into the node timeline in (b) corresponds to the
period leveraged by FMR for early fault detection

8 12 16 20 24
0

500

1000

1500

CLUSTER SIZE (Number of Nodes)
E

X
E

C
U

T
IO

N
 T

IM
E

(i
n

 s
e

c
o

n
d

s
)

NO FAULT
SINGLE FAULT

(a)

10% 30% 50% 70% 90%
0

500

1000

1500

FAULT OCCURRENCE POINT

E
X

E
C

U
T

IO
N

 T
IM

E
(i
n

 s
e

c
o

n
d

s
)

NO FAULT
SINGLE FAULT

(b)

Fig. 3. Execution time increase for Hadoop wordcount jobs of (a) different
cluster sizes and (2) for node crash faults injected at different points in job
progress.

points during a job’s runtime in Figure 3(b). These penalties
(ranging up to 155%) motivate the need for FMR.

One of the main contributors to the performance penalty
experienced in the presence of faults is the timeout interval
between fault occurrence and detection by the master. And
therefore, in order to detect faults sooner, the key idea in
FMR is the anticipation of a fault through anomaly detection.
Figure 2(b) shows the period during which FMR attempts to
detect faults. An anomaly refers to a condition that is indicative
of an impending performance fault. In the context of this paper,
a performance fault refers a Map-Reduce job’s execution time
exceeding a pre-specified Service Level Objective (SLO). By
default, this SLO is the fault-free execution time. Several
studies have shown that node crash faults are preceded by
anomalous conditions [23] [31].

We use a machine-learning technique to identify whether
a node is behaving in a manner that is unusual based on
its own history for a specific type of application. After the
detection of a node anomaly, recovery is initiated through
dynamic resource scaling. Anomaly detection and dynamic
resource scaling are described in the following subsections.

A. Anomaly Detection

Current anomaly detection techniques used in systems man-
agement depend on identifying various static thresholds as
part of the control policy. When system metrics exceed these
pre-determined thresholds, either alarms or suitable recovery
actions are invoked. Although this simplifies the process of

238 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

anomaly detection, these thresholds are difficult to determine
and need to be customized as system conditions change.

In the context of machine-learning, anomaly detection can
be viewed as a classification problem. Given a feature vector
describing recent conditions on a compute node, we want
to be able to predict whether or not this corresponds to an
anomalous condition. In our work, an anomalous condition
on a node could lead to a performance fault of the executing
Map-Reduce job. Training data from compute nodes that are
operating normally will be referred to as normal-class data;
while those from a potentially faulty node will be referred to
as anomaly-class data.

Application heart beats: The Map-Reduce application is
instrumented to emit heart beats to indicate the rate of progress
in processing input data. Heart beat timestamps are recorded
locally on each slave node in a heart beat file. A sliding
window of timestamps are processed to determine the heart
beat rate. A sequence of heart beat rate values (referred to
as a heart beat wave) captures application behavior and is
used as the input feature vector to the anomaly detection
module. Application heart beats have been used for autonomic
management goals in [12] and [25].

An implicit requirement for the binary or multi-class formu-
lation is the need for balanced and representative training data
from each of the classes. In a production computational in-
frastructure, it is easy to obtain representative normal training
data. However, requiring a system designer or administrator to
provide sufficient and representative examples of anomalous
data (such as from all possible performance anomalies) would
strongly restrict the applicability of our approach. In order to
overcome this limitation, we propose an anomaly detection
method that can be trained using only normal-class data.

Sparse representation has received a great amount of atten-
tion in the signal processing community recently e.g., [20],
[13], [21], and it readily provides a principled and flexible
framework for feature-based anomaly detection needed in
FMR. We note that there are several recent works in image
processing and computer vision applying similar ideas to
anomalous event detection (e.g., [15] [40]). Although origi-
nating from different application domains, these problems can
all be considered as anomaly detection given only normal
features. That is, anomalies are not explicitly defined based on
input features but only relative to the training normal features,
and this apparent asymmetry in training features is the main
source of difficulty. Therefore, an algorithmic solution would
require a suitable generative model for the normal features
that can be used for identifying anomalies, and the sparse
representation [20] offers such a model that is known for
its simplicity, generalizability, and computational efficiency.
Formally, in sparse representation, a feature (considered as a
vector) x is represented as a linear combination of a small
number of basis features chosen from a dictionary D (of basis
features). In the following discussion, we will assume that x is
a column vector of dimension d and the dictionary D is given
as a d × l matrix such that l > d (D has more columns than
rows). The columns of the dictionary D are the basis features,

NORMAL TRAINING
INSTANCES

NORMAL TEST
INSTANCE

ANOMALY TEST
INSTANCE

Fig. 4. A simplified diagram to illustrate the anomaly detection approach.
Normal training instances (or feature vectors) are similar because they are
produced by the same underlying process and hence with a high probability,
lie within a confined subspace. A normal test instance is also produced by the
same process and hence can be reconstructed well by other normal training
instances (i.e. dictionary atoms) and as a result its sparse representation has
low error values. On the other hand, an anomaly test instance is generated by
a different underlying process and lies in a different subspace. Hence, when
reconstructed using normal training instances, the sparse representation has
larger errors.

and the main assumption in sparse signal representation is that
a relevant feature x can be reconstructed by a small number
k of columns. Mathematically, this can be written as

fx = D cx,

where cx is the sparse coefficient for x with respect to the
dictionary D, and all but k components of cx are zero. The
integer k is the sparsity level of the feature x and it tells
us that the feature x can be reconstructed by taking a linear
combination of k columns of D. In other words, x is in
the linear span of these k columns. Given the dictionary
D, the sparsity level k is the parameter that controls the
generalizability (or expressiveness) of the model. For example,
when the sparsity level is set to k = 1, each feature vector
x is just a column of D with a scaling since we are working
with x such that cx only has one nonzero component in the
equation above. For other values of k, the features are assumed
to be those in the subspaces spanned by no more than k

columns of D. For this generative model, which is linear in
nature, the dictionary and the sparsity level are the only two
parameters used for specifying the normal features, and in
particular, training of the model is exceptionally easy: simply
take the normal training features as the dictionary columns. For
anomaly detection, the main assumption we make in regard
to the essential difference between feature vectors originating
from normal operating states and anomalous states is that
normal features can be sparsely approximated well using only
a small number of normal features while anomaly features
are expected to not enjoy this property. Therefore, given a
dictionary D and a sparsity level k, we will consider any
feature vector as a normal feature if it belongs to a subspace
spanned by k columns of D; otherwise, it will be considered
as an anomaly. Figure 4 illustrates this through a simplified
diagram.

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 239

More precisely, given a dictionary D of normal features and
a sparsity level k, we expect that for a normal feature vector
x, its sparse-coding error, e

e = x− D cx,

should be a vector with small components and its magnitude
follows some multivariate normal distribution (and the squared
error norm e = �e�22 can be modeled by a χ-distribution
φ

χ

(e)). On the other hand, for an anomaly feature vector, its
sparse-coding error e is expected to be large and its squared
error norm does not follow the distribution φ

χ

. Therefore, by
estimating the background distribution φ

χ

(e) during training,
the squared error norm e for an unknown feature vector x can
be compared against φ

χ

to determine its classification and
the associated confidence level. We remark that the validity
of using a sparse model for anomaly detection can only be
supported empirically, and Figure 4 displays the results of sev-
eral experiments that confirm our expectation that anomalous
features incur large errors when sparsely coded with respect to
the dictionary whose columns are normal features, providing
a strong support for the sparse model. Furthermore, these
results also suggest that the error e can be a useful feature
for identifying the anomalies.
More specifically, the training component of our method
consists of two steps: forming the dictionary D and estimating
the distribution φ

χ

. We randomly divide the training (normal)
feature vectors into two groups. Feature vectors in the first
group form the dictionary D and those in the second group are
used to empirically estimate φ

χ

and its cumulative distribu-
tion function CDF

φχ
(e). The user specifies two parameters,

0 < β < fnr < α < 1, which are used to bound the false
negative rate fnr as follows: Let e

n

= CDF−1
φχ

(1 − α) and
e

a

= CDF−1
φχ

(1− β). For any feature vector x with squared
sparse-coding error norm e, it would be classified as normal
if e ≤ e

n

or as an anomaly if e ≥ e

a

. For the “gray area”
between e

n

and e

a

, we define the confidence level ρ(e) of
declaring x as an anomaly according to the formula,

ρ(e) =
CDF

φχ(e)− (1− α)

α− β

.

Note that 0 ≤ ρ(e) ≤ 1 and for ρ(e) to provide the confidence
level, ρ(e) simply scales the probability mass of φ

χ

between
e

n

and e

a

linearly to zero and one so that ρ(e
n

) = 0, ρ(e
a

) =
1. We also note that because we are declaring any feature
vector x with error e > e

a

to be an anomaly, this gives β as
a lower bound on fnr, the false negative rate (the proportion
of (training) normal feature vectors classified as anomalies).
Similarly, we also have α as an upper bound for fnr.

We remark that the key point in our method described above
is the sparsity requirement, since without it, any anomaly
feature vector can be approximated well using sufficiently
many normal feature vectors in the dictionary D. Only by
imposing sparsity, it is then possible to use the error e

as a meaningful value for classifying the feature vector x.
The sparsity requirement can further be justified using our
qualitative understanding of the normal states and anomalies.

In most applications, the normal features are comparatively
more homogeneous than the anomalies, which due to their
diverse origin and sporadic nature, are difficult to model con-
sistently. Computationally, this homogeneity can be modeled
by a dictionary D that captures (most of) the variability of
the normal features such that each normal feature can be
represented as a linear combination of only a small number (k)
of basis features in D. Therefore, this expected regularity of
normal features provides the motivation and rationale for using
sparse representation for their modeling. On the other hand,
the heterogeneity of the anomalies precludes such modeling,
and in general, an anomaly feature is not expected to be well
approximated by a few basis features in D. Therefore, using
φ

χ

(e) as the background distribution, the sparse-coding error
e provides a discriminative and useful quantity for classifying
the feature vectors. In Figure 4, we plot these errors for three
different Map-Reduce application datasets. We can observe
the significant difference between errors for the normal and
anomaly class instances.

The proposed anomaly detection framework is conceptually
simple and its implementation is straightforward. An important
computational issue is to determine the sparse coefficients
cx given a test feature x. Fortunately, there are efficient
algorithms such as orthogonal matching pursuit (MOD) [19]
and LASSO [36] that compute sparse signal decomposition,
given the signal x and dictionary D. Using these efficient
sparse coding algorithms, the running time of our method,
both in training and testing, is fast and makes real-time
anomaly detection feasible. Furthermore, the simplicity of our
method allows various generalizations and extensions such
as incorporating incremental updates of the dictionary D and
background distribution φ

χ

for anomaly detection in dynamic
and complex environments, a topic we will pursue in the
future.

B. Remediation through Dynamic Resource Scaling

Dynamic resource scaling refers to the addition of Map-
Reduce slave nodes to an executing job. This is a feasible
solution to improve execution time in the presence of faults
because of two reasons: (1) Hadoop allows for seamless addi-
tion of slave nodes (without restart of the master node daemons
or changes to configuration files) and (2) Horizontal scaling
is provided through a programming API in most virtualized
and cloud environments. For a new node to be included in
an executing job, TaskTracker and DataNode daemons must
be started on it and the master node IP address must be
provided to it. These newly started daemons will make a
request for work to the master node and are then assigned
data blocks to process. We note that the master node need
not be aware of a slave node that may potentially be added
in the future. This provides necessary flexibility to add as
many nodes as needed for handling different faulty conditions.
Additionally, an important design goal in our work has been
to keep the underlying Hadoop framework unmodified in
order to ensure that our solution can be easily adopted in
practice. Dynamic resource scaling chosen as the remediation

240 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

0 50 100 150 200 250 300
0

1

2

3

4

5

TRAINING AND TEST INSTANCES

E
R

R
O

R
 M

A
G

N
IT

U
D

E

NORMAL TRAINING DATA

NORMAL TEST DATA

ANOMALY TEST DATA

(a) Wordcount

0 200 400 600 800 1000 1200
0

500

1000

1500

TRAINING AND TEST INSTANCES

E
R

R
O

R
 M

A
G

N
IT

U
D

E

NORMAL TRAINING DATA

NORMAL TEST DATA

ANOMALY TEST DATA

(b) Pi estimation

0 50 100 150
0

20

40

60

80

100

TRAINING AND TEST INSTANCES

E
R

R
O

R
 M

A
G

N
IT

U
D

E

NORMAL TRAINING DATA

NORMAL TEST DATA

ANOMALY TEST DATA

(c) Grep

Fig. 5. Errors in the sparse representation of training and test feature vectors for three Map-Reduce application datasets. Illustrates a significant difference
in the magnitudes between normal class and anomaly class instances.

technique, facilitates this design goal.
The number of nodes to be added depends on the time at

which the fault is detected, expected completion time of the
job, the number of chunks yet to be processed and the number
of nodes involved in the job. When the number of map tasks to
be executed is more than the number of slave nodes available,
then multiple map waves are executed. Dynamic resource
scaling can help as a recovery technique for an executing job,
only if at least one or more map and reduce waves are yet to
be started.

The scaling heuristic that is a part of FMR needs to add
sufficient number of nodes to reduce execution time penalty.
Both tasks that have already completed on the faulty node and
future tasks that would have executed on that node need to be
executed on newly added nodes. This condition is expressed
in Equation (1) where mapProgressPercentage is retrieved
from the Hadoop runtime using a built-in API.

N

nodes added

= ceil

�
1

1−MapProgPercentage

+ 1

�
(1)

After determining the optimal number of nodes to be used
for scaling (using Eq. 1), we determine the associated cost
of these resources (costOfScaling). In order to determine
whether the cost of scaling would be justified, we use Map-
Reduce execution time prediction models to estimate job
duration in the presence of a node fault (execT ime

fault

).
In our previous work [27], we have shown that Map-Reduce

execution times can be estimated using machine-learning
based regression models (PerfModel). We showed that 4
techniques, namely gaussian process regression, regression by
discretization, multilayer perceptron and model trees, achieved
best performance for predicting Map-reduce job execution
time. Average prediction errors obtained were less than 12%.
Out of these models, model trees were chosen for use in the
experiments in this paper.

Using this execution time, we calculate the potential cost
(delayPenalty) associated with exceeding the job deadline.
Any user-defined cost function (CostModel) can be used
here. The cost for the execution time penalty is compared
with the cost for resource scaling, and scaling is invoked if it
provides a cost benefit. This functionality of FMR is described
as pseudocode in Figure 6.

1: execT ime

nofault

= PerfModel(NumFaults = 0)
2: execT ime

fault

= PerfModel(NumFaults = 1)
3: delayPenalty = CostModel(execT ime

nofault

, execT ime

fault

)

4: N

nodes added

= ceil

�
1

1−MapProgPercentage

+ 1
�

5: costOfScaling = nodesToScale ∗ costPerNode

6: if costOfScaling < delayPenalty then
7: Invoke scaling operation
8: end if

Fig. 6. Pseudocode of the scaling heuristic in FMR

IV. IMPLEMENTATION OF FAULT-MANAGED MAP-REDUCE

The various components of FMR that together constitute the
MAPE control loop are illustrated in Figure 7 and described
in this section.

MAP-REDUCE
SYSTEM

MAP-REDUCE
APPLICATION

MAP-REDUCE
FRAMEWORK

SYSTEM SOFTWARE

INFRASTRUCTURE

MONITORING MODULE
GANGLIA BASED

MONITORING

NODE HEALTH SCRIPT

PLANNING MODULE

SCALING HEURISTIC
(MASTER)

ANOMALY DETECTION
(SLAVE)

ANALYSIS MODULE

HEART BEAT
PROCESSING

(USING GANGLIA
METRIC MODULES)

PRECURSOR
DETECTION

(USING HADOOP NODE
HEALTH SCRIPT)

EXECUTION MODULE

RESOURCE SCALING

BLACK-LISTING

PREDICTION MODELS
(MASTER)

COST MODELS
(MASTER)

Fig. 7. Autonomic control loop of Fault-managed Map-Reduce showing
a high-level overview of the monitoring, analysis, planning and execution
modules. Contributions described in this paper are shown within solid-outline
blocks. Contributions from prior work that are used in FMR are shown within
dashed-outline blocks.

Monitoring using Ganglia: Ganglia is an open-source
project [2] that provides a flexible monitoring framework for
distributed systems. In FMR, customized metrics are added to
Ganglia for calculating the heart beat rate and for performing
anomaly detection.

Node Health Script: The node health script is a feature
provided in Hadoop that allows for a pre-defined health script
to be periodically executed on each slave node. As soon as

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 241

a node anomaly is conveyed to the master through Ganglia,
the node is black-listed by FMR. Black-listing immediately
prevents any more tasks from being scheduled on that node.
Typically, slave node faults are detected by the master only
after a timeout interval. The advantage of blacklisting is that
the master is made to become aware of a slave’s degrading
health status immediately. This is beneficial since a recovery
action can be invoked without any delay. We also configure the
node health script to check for other fault precursors such as
task and daemon crash faults. This precursor detection func-
tionality helps detect some crash faults that are not preceded
by anomalous conditions (that could be detected by the sparse
coding technique).

Anomaly Detection: The anomaly detection module is in-
voked at the end of each task. The input feature vector
to the anomaly detection module is a heart beat wave that
corresponds to the last-completed task. The sparse coding
technique is implemented in Matlab and converted to a stand-
alone executable which is then executed on the slaves using
the Matlab Compiler Runtime (MCR) environment.

Recovery through Dynamic Resource Scaling: Once an
anomaly is detected, the anomalous node is forcefully black-
listed. Then the scaling heuristic is executed to determine
the number of nodes to be added. We use a cost model in
which dollar costs are associated with different penalty ranges.
Virtual machine images for the new slaves are pre-set with the
master IP address. TaskTracker and DataNode daemons are
started up on the new nodes, which then become a part of the
executing Map-Reduce job.

V. EXPERIMENTAL EVALUATION

Experimental Testbed: The test bed used to evaluate the
FMR approach consists of 16 IBM blade servers (HS22)
mounted on two different racks. Each physical node has a
8-Core Xeon 2.4 GHz CPU and 24 GB of RAM and runs
CentOS 5.5 with Xen 3.4.3. The two racks are linked together
by a Gigabit Ethernet network. Each physical node hosts five
guest virtual machines. This guest VM (which forms a Hadoop
slave node) runs Ubuntu 10.04.2 and is configured with a
single core and 2Gb of RAM. Hadoop version 0.20.203 is
used.

Map-Reduce applications: Applications from the Hadoop
distribution and the PUMA benchmark suite [4] were used
and are described below:

1) Wordcount (WC): Map outputs a (word, 1) key-value
pair for each word in a document. Reduce combines the
count for each word producing a (word, wordcount) pair.

2) Grep (GR): Map searches for a pattern in the input doc-
uments and produces (pattern,1). Reduce combines the
count for each pattern producing (pattern, patterncount).

3) Pi estimation (PI): Estimates the value of Pi using quasi-
Monte Carlo method.

4) Inverted index (II): Map generates the document index
for each word as (word, document index). Reduce com-
bines all occurrences of a word to produce (word, list
of document indices).

5) Term vector per host (TV): Determines frequently oc-
curring words in a document. Map produces (host,
termvector) for each host. Reduce combines term vectors
for each host and outputs (host, list(termvector)).

6) Histogram ratings (HR): Generates a histogram of movie
ratings from a dataset of user reviews. Map produces
(rating, 1) for each user review. Reduce combines the
count to produce (rating, count).

Input dataset: Dataset used for WC, GR, II and TV consists
of books from Gutenberg [5] with size varying between 5GB
to 20GB. PI does not require any input data. Input for HR is
generated using scripts from PUMA.

Job duration: Performance penalties are low for long-
running jobs that execute on a large number of nodes. How-
ever, long running jobs are not the common case for Hadoop
as seen from two production traces that were analyzed in
[14], [28]. In these studies, the average length of a job varies
between few tens of seconds to few tens of minutes. The
average Map-Reduce job size at Google [17] varied between
395 to 874 seconds over a period of three years between
2004 and 2007. FMR and its evaluation experiments thus
focus on short jobs with runtimes ranging between 300 to
600 seconds which correspond to the majority workload in
production environments.

Faultload: The following fault conditions were injected into
slave nodes:

1) CPU hog: A CPU-intensive sequence of matrix multi-
plication operations.

2) Memory hog: A sequence of memory leaks programmed
into an executing matrix multiplication process.

3) Disk hog: The linux dd command used to copy large
chunks of data between two disk partitions.

4) Node crash fault: The linux kill command used to termi-
nate the TaskTracker and DataNode daemon processes
running on the node.

Each fault experiment consists of loading HDFS with the
input, starting FMR scripts and the Map-Reduce job and then
injecting faults at pre-specified time instances. Node crash
faults are preceded by performance faults. After each fault
experiment, HDFS is reformatted and reloaded with input data.
This ensures that any non-uniformity in data distribution and
replication is eliminated for each new experiment. A set of
3000 job executions were performed for validating anomaly
detection, performance prediction and resource scaling compo-
nents of FMR and are described in the following subsections.

A. Anomaly Detection

The experiment shown in Figure 8 is used to illustrate
the operation of the anomaly detection module. A Wordcount
Map-Reduce job is executed with a CPU hog injected into
one node. We note that the anomalous slave node ‘Dom-13’
(in the fourth plot from the top) was correctly identified. In
accordance to the goal of early fault detection, the fault was
detected at the end of the first application heart beat wave and
is marked in using an arrowhead.

242 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

PE GR WC II TV HR
0.6

0.7

0.8

0.9

1

1.1

APPLICATION DATASETS

F
R

A
C

T
IO

N
 O

F
C

O
R

R
E

C
T

 P
R

E
D

IC
T

IO
N

S

NORMAL TEST DATA (True negative rate)

ANOMALY TEST DATA (True positive rate)

(a) Different Map-Reduce applications

CPU HOG MEM HOG DISK HOG
0.6

0.7

0.8

0.9

1

TYPE OF FAULT

F
R

A
C

T
IO

N
 O

F
C

O
R

R
E

C
T

 P
R

E
D

IC
T

IO
N

S

NORMAL TEST DATA (True negative rate)

ANOMALY TEST DATA (True positive rate)

(b) Different types of faults

Small Medium Large
0.5

0.6

0.7

0.8

0.9

1

1.1

TYPE OF VIRTUAL MACHINE INSTANCE

F
R

A
C

T
IO

N
 O

F
C

O
R

R
E

C
T

 P
R

E
D

IC
T

IO
N

S

NORMAL TEST DATA (True negative rate)

ANOMALY TEST DATA (True positive rate)

(c) Different virtual machine instances

Fig. 9. Evaluation of sparse coding based anomaly detection for (1) different Map-Reduce applications, (b) different faulty conditions, and (c) different VM
instance sizes in a heterogeneous environment.

0 20 40 60 80 100 120 140
−5

0

5
SLAVE NODE: DOM−7

0 20 40 60 80 100 120 140
−5

0

5
SLAVE NODE: DOM−8

0 20 40 60 80 100 120 140
−5

0

5
SLAVE NODE: DOM−9

0 20 40 60 80 100 120 140
−5

0

5
SLAVE NODE: DOM−13 (With Injected Performance Fault)

0 20 40 60 80 100 120 140
−5

0

5
SLAVE NODE: DOM−14

0 20 40 60 80 100 120 140
−5

0

5
SLAVE NODE: DOM−15

TIME

A
P

P
L
IC

A
T

IO
N

 H
E

A
R

T
 B

E
A

T
 R

A
T

E
 (

B
E

A
T

S
 P

E
R

 S
E

C
O

N
D

)

Fig. 8. Application heart beat waves for a 6-node Hadoop job in which a
CPU hog process was injected into one slave node ‘Dom 13’. The anomalous
node is shown in the fourth plot (from the top). An arrow head marks the
time of detection of the anomaly on this node.

Figure 9(a) shows the fraction of correct predictions for the
normal and anomaly test data for six datasets corresponding to
six different Map-Reduce applications. The fraction of correct
predictions in the anomaly dataset is the the True Positive
Rate (TPR) = TP

FN+TP

; while the fraction of correction
predictions in the normal dataset is the True Negative Rate
(TNR) = TN

TN+TP

. Here TP , TN , FP , FN stand for True
Positives, True Negatives, False Positives and False Negatives
respectively. In this context correctly detecting an anomaly is
termed a True Positive. We see that for all the datasets the TNR
is greater than the theoretical bound of 0.8 that was chosen
for the percentile parameter. This corresponds to a maximum
False Positive Rate of 0.2.

In Figure 9(b), we plot the TPR and TNR for the inverted
index application for different injected faults. In order to
identify the cause for variation in performance, we compare
the intensity of the effect (performance penalty) of each these
faults. A CPU hog, memory hog and disk hog causes 22%,
13% and 11% increase in average execution time. The CPU

0.8 0.85 0.9 0.95
0.4

0.6

0.8

1

1.2

PERCENTILE

F
R

A
C

T
IO

N
 O

F

C
O

R
R

E
C

T

P
R

E
D

IC
T

IO
N

S

NORMAL TEST DATA

ANOMALY TEST DATA

(a)

2 4 6
0.4

0.6

0.8

1

1.2

SPARSITY LEVEL

F
R

A
C

T
IO

N
 O

F

C
O

R
R

E
C

T

P
R

E
D

IC
T

IO
N

S

NORMAL TEST DATA

ANOMALY TEST DATA

(b)

Fig. 10. Sensitivity analysis: Variation of the fraction of correct predictions
for normal test data (true negative rate) and anomaly test data (true positive
rate) using the sparse coding anomaly detection technique for different
values of the (a) ‘Percentile’ parameter and (a) ‘Sparsity Level’ parameter.
Application: Term vector per host. Injected fault: CPU hog.

hog with maximum penalty is a more severe fault and hence
can be detected with better performance. The memory hog and
disk hog effects are more subtle and hence appear to result in
slightly lesser performance.

The time taken for prediction computation and model train-
ing is shown in Table I for 3 application datasets. We see
that for the largest dataset of 1400 instances, training takes 1
sec and testing takes only 0.008 secs. This ensures minimal
overhead when our anomaly detection model is used within
FMR.

TABLE I
TRAINING AND TEST DURATIONS FOR ANOMALY DETECTION

Dataset Application Total
Instances

Training
Duration

Testing
Duration

1 Pi Estimation 1497 1.06 secs 0.008 secs
2 Grep 202 0.13 secs 0.008 secs
3 Wordcount 400 0.22 secs 0.008 secs

Heterogeneity: The use of decentralized, local models for
anomaly detection enables us to extend FMR to work in a
heterogenous environment. A heterogeneous testbed was con-
figured consisting of three different virtual machine instance
types: ‘small’ VMs with 1 CPU and 2GB of RAM, ‘medium’
VMs with 2 CPUs and 4GB RAM and ‘large’ VMs with
4CPUs and 6GB of RAM. Performance of anomaly detection
for each VM instance type in this environment is shown in
Figure 9(c).

Sensitivity Analysis: In order to determine the effect of
choosing different parameters, we perform a sensitivity analy-
sis of two parameters, namely the sparsity level in Figure 10(a)
and percentile value in Figure 10(b). Sparsity level is varied
between 1 and 6 and the percentile parameter (which is related

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 243

to 1 − β) is varied between 0.8 and 0.96. The effect of
these variations on TPR and TNR is plotted. We see that
anomaly detection performance is quite stable within these
ranges, thereby providing sufficient leeway in choosing good
parameter values. We note that although anomaly data is not
needed for training, it can be leveraged when available for
parameter tuning.

Receiver Operating Characteristic curves: We plot ROC
curves for 6 applications in Figure V-A by varying the
confidence threshold between 0 and 1. All curves are close
to the upper-left corner, where TPR is high and FPR is low.
In addition, most of the curves provide a number of possible
values of confidence threshold (i.e. points on the curve with
markers) in the upper left corner region indicating that good
performance is possible for many confidence threshold values.

TABLE II
COMPARISON OF ANOMALY DETECTION TECHNIQUES

Application Multilayer
Perceptron

K-means
clustering

Support
Vector
Machines

Sparse-
coding

True positive rate / True negative rate
PI 1.0/0.96 0.99/0.88 0.76/0.3 1.0/0.93
GR 1.0/0.94 0.7/0.31 1.0/0.65 1.0/1.0
WC 0.98/0.88 0.96/1 1.0/0.69 1.0/0.92
II 0.99/0.95 0.8/0.66 1.0/0.49 0.92/0.95
TV 0.95/0.76 0.93/0.69 0.89/0.49 0.82/0.82
HR 0.99/0.98 0.975/0.99 1.0/0.51 0.99/0.96

Comparison of anomaly detection techniques: We compare
sparse coding with 3 classification techniques in Table II.
Multilayer perceptron provides best performance. However, it
needs anomaly data for training and takes ten to a hundred
seconds for training, thus making in unsuitable for FMR. K-
means clustering also needs anomaly data for training and
does not achieve very good TPR and TNR values. Single-
class SVM does not need anomaly data for training, making
it a viable candidate. However, sparse coding models achieve
much better performance for all 6 benchmark applications.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

Pi estimation
Grep
Wordcount

(a)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

Inverted index

Term vector per host

Histogram ratings

(b)

Fig. 11. ROC curves showing performance of anomaly detection as the
confidence threshold is varied. Six benchmark applications are shown in 2
separate plots (a) and (b) for clarity.

B. Dynamic Resource Scaling

We first evaluate the accuracy of model tree prediction,
which is a critical component of the FMR control loop.
Prediction accuracy for 6 test jobs is shown in Figure 12 and
was an average of 11.1%. Features used include number of

1 2 3 4 5 6
0

500

1000

JOB ID

E
X

E
C

U
T

IO
N

 T
IM

E
(i
n

 s
e

c
o

n
d

s
)

Actual Execution Time

Predicted Execution Time

Fig. 12. Prediction accuracy of the model tree algorithm used for Map-
Reduce job execution time prediction. Application: Wordcount. Jobs 1, 2, 3
have one fault injected, while jobs 4, 5 and 6 are fault-free.

1 2 3 4 5 6 7 8 9 10
600

700

800

900

NUM OF NODES SCALED

E
X

E
C

U
T

IO
N

 T
IM

E
(i
n

 s
e

c
o

n
d

s
)

No Faults

Node Fault (Fault−managed Map−Reduce)

Fig. 13. Evaluation of FMR scaling heuristic. Application: Pi estimation.
Fault: Node crash fault at 520 seconds. FMR scaling heuristic scales by 7
nodes (marked with an arrow in the plot)

slaves, dataset size, time of fault, number of faults, timeout and
Hadoop framework configuration parameters. The model tree
implementation in the Weka tool suite was used for training
and testing.

Next we evaluate the scaling heuristic in Figure 13 to
determine whether sufficient number of nodes are chosen for
scaling. For the job shown, the heuristic scales by 7 nodes
based on the map progress percentage of 0.83 in Eq (1). We
manually scale by 1 to 6 nodes and 8 to 10 nodes, to determine
if 7 is the right choice. We see that for N

nodes added

< 7,
penalty is > 5% and for N

nodes added

> 7 there is no
additional benefit.

The penalty reduction through dynamic resource scaling is
illustrated using a swimlane plot in Figure 14. In this plot, each
y-axis coordinate corresponds to the execution of a map task
in a single map-slot. Our experiments use Hadoop’s default
setting of two slots per node. So a pair of consecutive lines
(parallel to the x-axis) correspond to two map tasks running
simultaneously on a node.

Figure 14 (a) shows a Map-Reduce job that consists of
four map waves. The job did not experience any faults. In
Figure 14 (b), the same job is rerun with a CPU performance
fault injected into one of the nodes. The presence of a fault
results in an execution time penalty of 18.5%. In the next
execution of the same job, FMR scripts are enabled. Figure 14
(c) shows the addition of two nodes to the running job after
detection of the anomalous node. We note that with the help
of resource scaling, performance penalty is reduced to 4.6%.

In Figure 15, FMR is compared with Hadoop’s built-in
speculative execution. After a job begins execution, a CPU hog
process is injected and is followed by a node crash fault after
30 seconds. We see that with speculative execution, penalty
is not reduced. However using the FMR approach, through

244 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

1.3401 1.3401 1.3401 1.3401 1.3401 1.3401 1.3401 1.3401

x 10
12

0

20

40

(a) JOB WITH NO FAULTS

1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34

x 10
12

0

20

40

(b) JOB WITH PERFORMANCE FAULT

1.3401 1.3401 1.3401 1.3401 1.3401 1.3401 1.3401 1.3401

x 10
12

0

20

40

(c) JOB WITH PERF. FAULT AND DYNAMIC SCALING

TIME

S
L

A
V

E
 N

O
D

E
 M

A
P

 S
L

O
T

Fig. 14. Swimlane plots of three Map-Reduce jobs. (a) Job with no faults (b)
Job with injected CPU performance fault (Execution time penalty of 18.5%)
and (c) Job with injected performance fault and dynamic resource scaling
enabled (Execution time penalty reduced to 4.6%).

1 2 3 4
0

500

1000

SCENARIOS

E
X

E
C

U
T

IO
N

T
IM

E
(i
n

 s
e

c
o

n
d

s
)

Fig. 15. Comparison of FMR with speculative execution. (1) Job with no
faults (2) Job with fault and speculative execution turned off. (3) Job with
fault and speculative execution turned on. (4) Job with faults managed using
FMR approach. Application: Inverted Index. Fault: CPU hog process + node
crash fault after 30 seconds.

scaling by 4 nodes, the penalty is decreased to < 5% of the
fault-free execution time.

In the next set of experiments, node crash faults are injected
into a running job executing on different numbers of nodes. As
shown in Figures 16(a) to 16(f), we see that FMR consistently
helps in mitigating performance penalty. FMR helped decrease
performance penalty from an average of 119% to 14% across
these 6 sets of experiments.

C. Discussion

Virtualized environment: FMR has been implemented on
a virtualized environment which easily provides the actua-
tors needed for dynamic resource scaling. However, a non-
virtualized environment can also use FMR by provisioning
extra resources that can be added to the Hadoop cluster on-
demand. These extra resources can be utilized for executing
preempt-able jobs during those periods when they are not uti-
lized as part of recovery. However, a virtualized environment
provides the capability to extend recovery to other actions such
as migration (to handle hardware faults) and scaling up (to
handle resource exhaustion faults).

Application-specific anomaly detection models: The
anomaly detection model developed is specific to a Map-
Reduce application because each application has different
heartbeat characteristics. We believe that it is reasonable to
manage application-specific models because typical Map-
Reduce workloads involve the execution of the same job on
gradually evolving data sets. Recent literature shows that 80%
of jobs in a workload from Yahoo! were repeated at least 50
times [11]. The feature vectors needed for training the sparse
coding model are derived from one application heart beat
wave that corresponds to the processing of one data chunk by
a map task. Hence, even a single MapReduce job can provide
few tens to a few hundred feature vectors for training.

Scalability of FMR: Since anomaly detection is performed
by local, decentralized models at a node, the associated
overheads are local to a node. Therefore, the overhead does not
increase adversely as the number of slaves is increased. The
computation performed at the master (by FMR) for each slave
is limited and only consists of evaluating two binary metrics
for each slave (namely the presence/absence of an anomaly
and the result of the node-health script). The latest version
of Hadoop, called ‘NextGen’ Hadoop uses distributed masters
and will further help reduce time taken for this evaluation.
Furthermore, FMR aims at achieving soft deadlines for Map-
Reduce jobs. In a typical shared Map-Reduce cluster only a
subset of the jobs would have these soft-deadline requirements.
Thus, FMR needs to be enabled only for these jobs, thus
avoiding the need to monitor and manage all jobs.

VI. CONCLUSIONS

Map-Reduce has become an important platform for a va-
riety of data processing applications. Built-in fault-tolerance
mechanisms in Map-Reduce frameworks such as Hadoop,
suffer from performance degradations in the presence of
faults. Fault-managed Map-Reduce, proposed in this paper
provides an online, on-demand and closed-loop solution to
managing these faults. The control loop in FMR mitigates
performance penalties through early detection of anomalous
conditions on slave nodes. Anomaly detection is performed
through a novel sparse-coding based method that achieves
high true positive and true negative rates and can be trained
using only normal class (or anomaly-free) data. The local,
decentralized nature of the sparse-coding models ensures
minimal computational overhead and enables usage in both
homogeneous and heterogenous Map-Reduce environments.
After an anomalous condition is detected, dynamic resource
scaling, through the proposed scaling heuristic, is invoked as
the recovery action. Through extensive evaluation of a variety
of benchmark applications on a 72-node Hadoop cluster, we
show that FMR can effectively mitigate performance penalties.

VII. ACKNOWLEDGEMENTS

The authors would like to thank Dr. Nagarajan Kandasamy
for helping shepherd our paper. This work is supported in part
by the National Science Foundation grants No. OCI-0910812
and No. 0758596 and the AT&T Foundation.

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 245

Initial Early Mid Late
0

500

1000

1500

2000

OCCURRENCE TIME OF FAULT

E
X

E
C

U
T

IO
N

 T
IM

E
 (

in
 s

e
c
o
n
d
s
)

No Faults

Node Fault (Built−in Fault Tolerance)

Node Fault (Fault−Managed Map−Reduce)

(a) 12 node cluster + 10 nodes for scaling

Initial Early Mid Late
0

500

1000

1500

2000

OCCURRENCE TIME OF FAULT

E
X

E
C

U
T

IO
N

 T
IM

E
 (

in
 s

e
c
o
n
d
s
)

No Faults

Node Fault (Built−in Fault Tolerance)

Node Fault (Fault−Managed Map−Reduce)

(b) 22 node cluster + 10 nodes for scaling

Initial Early Mid Late
0

500

1000

1500

2000

OCCURRENCE TIME OF FAULT

E
X

E
C

U
T

IO
N

 T
IM

E
 (

in
 s

e
c
o
n
d
s
)

No Faults

Node Fault (Built−in Fault Tolerance)

Node Fault (Fault−Managed Map−Reduce)

(c) 32 node cluster + 10 nodes for scaling

Initial Early Mid Late
0

500

1000

1500

2000

OCCURRENCE TIME OF FAULT

E
X

E
C

U
T

IO
N

 T
IM

E
 (

in
 s

e
c
o
n
d
s
)

No Faults

Node Fault (Built−in Fault Tolerance)

Node Fault (Fault−Managed Map−Reduce)

(d) 42 node cluster + 10 nodes for scaling

Initial Early Mid Late
0

500

1000

1500

2000

OCCURRENCE TIME OF FAULT

E
X

E
C

U
T

IO
N

 T
IM

E
 (

in
 s

e
c
o
n
d
s
)

No Faults

Node Fault (Built−in Fault Tolerance)

Node Fault (Fault−Managed Map−Reduce)

(e) 52 node cluster + 10 nodes for scaling

Initial Early Mid Late
0

500

1000

1500

2000

OCCURRENCE TIME OF FAULT

E
X

E
C

U
T

IO
N

 T
IM

E
 (

in
 s

e
c
o
n
d
s
)

No Faults

Node Fault (Built−in Fault Tolerance)

Node Fault (Fault−Managed Map−Reduce)

(f) 62 node cluster + 10 nodes for scaling

Fig. 16. Comparison of job execution times of a Pi Estimation job in the presence of a node crash fault through the use of Hadoop’s built-in fault tolerance
and FMR. x-axis labels ‘Initial’, ‘Early’, ‘Mid’ and ‘Late’ correspond to a node crash fault injected at 1 sec, 120 sec, 220 sec and 320 sec from job start.

REFERENCES

[1] Apache Hadoop. http://hadoop.apache.org/.
[2] Ganglia Monitoring Tool. http://ganglia.sourceforge.net/.
[3] Jeff Dean. http://tinyurl.com/87kgcev.
[4] Purdue MapReduce Benchmark Suite. http://tinyurl.com/bn5gmga.
[5] Gutenberg. http://www.gutenberg.org/, 2009.
[6] Jay Kreps. http://tinyurl.com/cu24pwz, 2009.
[7] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu,

B. Saha, and E. Harris. Reining in the outliers in map-reduce clusters
using mantri. In Proc. of OSDI, 2010.

[8] K. Bare, S. P. Kavulya, J. Tan, X. Pan, E. Marinelli, M. Kasick,
R. Gandhi, and P. Narasimhan. Asdf: an automated, online framework
for diagnosing performance problems. 2010.

[9] L. A. Barroso and U. Hlzle. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. 2009.

[10] D. Borthakur and et al. Apache hadoop goes realtime at facebook. In
2011 ACM SIGMOD Intl. Conf. on Management of Data, 2011.

[11] E. Bortnikov, A. Frank, E. Hillel, and S. Rao. Predicting Execution
Bottlenecks in Map-Reduce Clusters. In HotCloud, 2012.

[12] E. S. Buneci and D. A. Reed. Analysis of application heartbeats: learning
structural and temporal features in time series data for identification of
performance problems. In Proc. of Supercomputing, 2008.

[13] E. Candes and T. Tao. Decoding by linear programming, 2004.
[14] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz. The case for evaluating

mapreduce performance using workload suites. In MASCOTS, 2011.
[15] Y. Cong, J. Yuan, and J. Liu. Sparse reconstruction cost for abnormal

event detection. In Proc. of CVPR, 2011.
[16] X. G. Daniel Dean, Hiep Nguyen. Ubl: Unsupervised behavior learning

for predicting performance anomalies in virtualized cloud systems. In
Proc. of ICAC, 2012.

[17] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. Commun. ACM, 51(1):107–113, Jan. 2008.

[18] F. Dinu and T. E. Ng. Understanding the effects and implications of
compute node related failures in hadoop. In Proc. of HPDC, 2012.

[19] D. L. Donoho, Y. Tsaig, I. Drori, and J. luc Starck. Sparse solution
of underdetermined linear equations by stagewise orthogonal matching
pursuit. Technical report, 2006.

[20] M. Elad. Sparse and Redundant Representations: From Theory to
Applications in Signal and Image Processing. Springer, 2010.

[21] Y. C. Eldar and M. Mishali. Robust recovery of signals from a structured
union of subspaces. IEEE Trans. Inf. Theor., 55(11), 2009.

[22] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca.
Jockey: guaranteed job latency in data parallel clusters. In EuroSys,
2012.

[23] M. Gabel, A. Schuster, R.-G. Bachrach, and N. Bjorner. Latent fault
detection in large scale services. In Proc. of DSN, 2012.

[24] H. Herodotou, F. Dong, and S. Babu. No one (cluster) size fits all:
automatic cluster sizing for data-intensive analytics. In SOCC, 2011.

[25] H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E. Miller, and A. Agar-
wal. Application Heartbeats. In Proc. of ICAC, 2010.

[26] S. Kadirvel and J. Fortes. Towards self-caring mapreduce: Proactively
reducing fault-induced execution-time penalties. In HPCS, 2011.

[27] S. Kadirvel and J. Fortes. Grey-box approach for performance prediction
in map-reduce based platforms. In Proc. of ICCCN, 2012.

[28] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan. An analysis of traces
from a production mapreduce cluster. In CCGRID, 2010.

[29] P. Lama and X. Zhou. Aroma: Automated resource allocation and
configuration of mapreduce environment in the cloud. In ICAC, 2012.

[30] X. Pan, J. Tan, S. Kavulya, R. Gandhi, and P. Narasimhan. Ganesha:
BlackBox diagnosis of MapReduce systems. SIGMETRICS Perform.
Eval. Rev., 37(3), Jan. 2010.

[31] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure trends in a large
disk drive population. In Proc. of FAST, 2007.

[32] B. Schroeder and G. Gibson. A large-scale study of failures in high-
performance comp. systems. Trans. on Dep. and Sec. Comp., 2010.

[33] B. Schroeder and G. A. Gibson. Disk failures in the real world: what
does an mttf of 1,000,000 hours mean to you? In Proc. of FAST, 2007.

[34] J. Tan, X. Pan, E. Marinelli, S. Kavulya, R. Gandhi, and P. Narasimhan.
Kahuna: Problem diagnosis for Mapreduce-based cloud computing en-
vironments. In Proc. of NOMS, 2010.

[35] Y. Tan, H. Nguyen, Z. Shen, X. Gu, C. Venkatramani, and D. Rajan.
Prepare: Predictive performance anomaly prevention for virtualized
cloud systems. In Proc. of ICDCS, 2012.

[36] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society, Series B, 58:267–288, 1994.

[37] A. Verma, L. Cherkasova, and R. H. Campbell. Resource provisioning
framework for mapreduce with performance goals. In Middleware, 2011.

[38] G. Wang, A. Butt, P. Pandey, and K. Gupta. A simulation approach to
evaluating design decisions in mapreduce setups. In MASCOTS, 2009.

[39] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica.
Improving mapreduce performance in heterogeneous environments. In
Proc. of OSDI, 2008.

[40] B. Zhao, L. Fei-Fei, and E. P. Xing. Online detection of unusual events
in videos via dynamic sparse coding. In Proc. of CVPR, 2011.

