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ABSTRACT
MapReduce data processing workflows often consist of mul-
tiple cycles where each cycle hosts the execution of some
data processing operators e.g., join, defined in a program.
A common situation is that many data items that are prop-
agated along in a workflow, end up being “fruitless” i.e.
they do not contribute to the final output. Given that the
dominant costs associated with MapReduce processing (I/O,
sorting and network transfer) are very sensitive to the size
of intermediate states, such fruitless data items contribute
unnecessarily to workflow costs. Consequently, it may be
possible to improve the performance of MapReduce data
processing workflows by eliminating fruitless data items as
early as possible. Achieving this will require maintaining ex-
tra information about the state (output) of each operator,
and then passing this information to descendant operators in
the workflow. The descendant operators can use this state
information to prune fruitless data items from their other
inputs. However, this process is not without any overhead
and in some cases, its costs may outweigh its benefits. Con-
sequently, a technique for adaptively selecting Information
Passing as part of an execution plan is needed. This adap-
tivity will need to be determined by a cost model that ac-
counts for MapReduce’s partitioned execution model as well
as its restricted model of communication between operators.
These nuances of MapReduce impose limitations on the ap-
plicability of information passing techniques developed for
traditional database systems.

In this paper, we propose an approach for implement-
ing Adaptive Information Passing for MapReduce platforms.
Our proposal includes a benefit estimation model, and an
approach for collecting data statistics needed for benefit es-
timation, which piggybacks on operator execution. Our ap-
proach has been integrated into Apache Hive and a compre-
hensive empirical evaluation is presented.

1. INTRODUCTION
A dominant trend for large scale data intensive process-

ing is to use parallel processing over a cluster of commodity
grade machines. The MapReduce [13] parallel processing
model that was made popular a few years ago by Google
has emerged as the de facto standard for processing data-
intensive workloads. Data intensive tasks are captured in
the MapReduce model as workflows made up of sequences
of MapReduce cycles/jobs. Each MapReduce cycle consists
of 2 phases - a Map and a Reduce phase. The Map phase
executes the map function which takes a set of key-value pairs
as input, and maps each pair to an intermediate key-value
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Figure 1: An Abstract MapReduce Job

pair. Each phase can have multiple instances (mappers and
reducers respectively) running concurrently on assigned data
partitions i.e., partition parallelism. A popular open-source
implementation of Google’s MapReduce proposal is Apache
Hadoop [1]. In order to implement a data processing task in
this model, programmers have to figure out the best trans-
lation of their tasks into the MapReduce model. This pro-
cess has been simplified with the introduction of extended
MapReduce platforms such as Hive [22] and Pig [21], that
provide high-level declarative languages with querying con-
structs ala SQL, and compilers for automatically compil-
ing high-level programs into MapReduce execution work-
flows. The compilation process assigns query operators or
constructs to specific MapReduce cycles. Fig.1 shows an
abstract data processing MapReduce model which captures
the structure of what each cycle with data processing op-
erators looks like using Hive as an example. Primary op-
erators (Pm, Pr) are operators that take input data from
the Hadoop framework, process them, and feed them into
other operators. Once the operators in each phase complete
their processing, a terminal operator (Tm, Tr) collects the
resulting output. Further, for non-trivial data processing
tasks that require multiple MapReduce cycles, control and
data dependencies are implied by the high-level program and
represented as a workflow.

An important thing to note about MapReduce data pro-
cessing workflows is that they can be very costly. Table 1
shows the dominant costs (CPU costs of map and reduce
function are ignored) in a MapReduce cycle. The scheduler
schedules a set of slave nodes (mappers) to execute the Map
phase, and assigns a split or partition of the input file to
each mapper. The input data loading cost is represented
as CLoad in Table 1. (Note that multiple splits can be as-
signed to a mapper, in which case multiple map function in-
stances are executed on the node). Once all mappers are
complete, the intermediate key-value pairs are materialized
on the mappers’ local disk (cost CMapStore) in preparation
for the Reduce phase. The scheduler then assigns nodes
(reducers) to reduce a partition of map output values in a
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Figure 2: Unnecessary data movement of “fruitless” data
items across a workflow

process that consists of three phases: copy — copying the
sorted map output from mappers’ disks to reducer nodes,
resulting in a data transfer cost CShuffle; merge — merging
the sorted output lists from different mappers based on the
intermediate key with cost CMerge, and reduce — reduce()
is invoked once for each intermediate key, and applied to the
associated group of values. The output key-value pairs gen-
erated by all reducer instances are merged and materialized
into the underlying distributed file system e.g., Hadoop Dis-
tributed File System (HDFS) contributing to cost CRedStore.
The cost of a workflow is the aggregate cost of all cycles in
the workflow. As can be observed, these costs are all sen-
sitive to the size of data. Therefore, developing ways to
keep the footprints of intermediate states small is crucial to
performance of MapReduce workflows.

Table 1: Cost Factors in a MapReduce Job

Cost Factor Description
CLoad Input data loading cost
CSort Map-side sorting cost
CShuffle Data transfer cost
CMerge Reduce-side partition merging cost
CMapStore Map output data materialization cost
CRedStore Reduce output data materialization cost

1.1 The Problem
Due to the significant overhead associated with each MapRe-

duce cycle, a key objective when optimizing MapReduce
data processing workflows is minimizing the length of the
workflow i.e., the number of MapReduce cycles in the work-
flow. Another very important objective (similar to relational
databases) is minimizing the overall size of intermediate re-
sults or states produced during a data processing workflow
(query). This is particularly crucial because of the multiple
I/O, sorting, and network data transfer phases of intermedi-
ate results during a MapReduce data processing workflow.
State-producing operators such as the JOIN operator, whose
outputs may be larger than their inputs are an important
consideration when thinking about minimizing the size of
intermediate states produced. Indeed, in relational query
optimization, the JOIN operator is a very fundamental op-
erator for combining datasets, and its optimization is the
focus of a lot of research. Typically, this is achieved by or-
dering operators in a way that minimizes inputs to each join.
Cost models based on heuristics are used to estimate out-
puts of each operation so as to determine the best ordering

of operations. In order to achieve this during compile-time,
the parameters to such cost models will have to be precom-
puted, requiring preprocessing of data. This is natural for
relational databases where data structures like indexes and
statistical profiles of data are maintained as data is ingested
into the system. However, MapReduce data processing plat-
forms are typically not used to manage or host data in the
long term but rather just for processing data-intensive work-
loads. Thus, features like statistics and indexing are im-
mature or absent in MapReduce-based platforms like Hive
and Pig. Further, any cost models used for relational opti-
mization are not adequate for MapReduce data processing,
because they do not capture key MapReduce-specific costs.
Consequently, it is very important to consider runtime op-
timization techniques that can be applied as data is being
ingested. Further, since these platforms are often used in
batch processing mode, information gathered during earlier
tasks in the batch workload can be used to inform the exe-
cution of latter tasks within the same batch workload.

A useful group of runtime optimization techniques in rela-
tional query optimization is called Information Passing(IP).
Such techniques support passing information from earlier
phases of data processing to later execution steps, particu-
larly join operations, to help them prune their states more
aggressively. If this is done early enough, we could avoid
fruitless data from traveling along in the workflow only to
be eventually pruned. As an example, Fig.2 shows an exam-
ple job plan consisting of three MapReduce jobs executing
equi-join (joining relations on equality condition on particu-
lar fields). The execution sequence is Job1, Job2, and Job3
(all joins are repartitioning joins). Job3 joins the two inter-
mediate tables on ps suppkey and l suppkey after Job1 and
Job2 complete. In this case, it is obvious that only records
with suppkey 61025 will be joined and emitted to the fi-
nal output (output of Job3) while remaining records will be
discarded. The other records are essentially fruitless or irrel-
evant to final result. Unfortunately, these fruitless records
affect CLoad, CSort, CMapSort, CShuffle, and CMerge costs
for Job3. Further, they contribute to the costs of Job1 and
Job2. If on the other hand, it is possible to pass informa-
tion about the output context of Job1 to Job3, then it is
possible to have Job3 prune its inputs (output of Job2 and
Job1) while loading them, so that some savings in its CSort,
CMapStore, CShuffle, and CMerge can be achieved. Better
still, we may be able to pass this information to Job2 so that
while it writes its output, it can prune records that are irrel-
evant to final results e.g., records 30114, 132210. In addition
to savings in Job3’s costs, we can get additional savings with
respect to Job2’s CRedStore and Job3’s CLoad. Such savings
can be significant if pruning irrelevant tuples can be done
much earlier in the workflow. For example, assume an ex-
ecution plan such that these records are eventually pruned
in Jobk and not in Job3. Then, pruning these records from
Job2’s output will avoid carrying them along and process-
ing them in some of jobs in Job3 to Jobk − 1, before being
eventually pruned out in Jobk.

In shared-memory or distributed environments where re-
lational information passing techniques have been investi-
gated, IP is usually achieved through some centralized shared
memory structure which can be accessed by all operators.
Shared nothing cluster environments and rigid communica-
tion models allowed by MapReduce make such an implemen-
tation strategy difficult. These issues will be elaborated in
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Section 2.1. More significant is that the overhead of informa-
tion passing may surpass its benefits. Therefore, techniques
for runtime, adaptive selection of an information passing
strategy as part of workflow execution need to be developed.
Further, the decision for information passing selection has to
be based on a cost model that is MapReduce-aware and in-
formed by characteristics of data as determined during pro-
cessing. The latter also suggests the need for a light-weight
technique for collecting information about data at runtime
by piggybacking on data processing.

1.2 Contributions
Specifically, we make the following contributions:

• We propose an architecture that supports adaptively
enabling information passing (IP) in Hadoop-based data
processing platforms based on its cost-benefits trade-
offs. The architecture provides support for IP-aware
operators, IP-plan compilation and execution. We present
a strategy for integrating these components into Apache
Hive.

• We propose a MapReduce-based benefit estimation cost
model for estimating the benefits of an IP-enabled ex-
ecution plan. In addition, we present a light-weight
data statistics collection technique that piggybacks on
workflow execution, and collects necessary parameter
values for the IP benefit estimation cost model.

• Finally, we present a comprehensive evaluation of the
proposed framework using two datasets including a
benchmark.

2. RELATED WORK

2.1 Sideways Information Passing
Relational database research has proposed a few variants

of Sideways Information Passing (SIP) techniques [19, 17,
8, 9, 20] where information is passed between operators in an
execution plan. Magic-set rewriting [19] ships summary in-
formation on examined values from a parent query to its sub-
queries or views so that they can discard unmatched records.
Semi-join [9] processes join over remote sites. It projects and
sends join columns from one site to another, and joins the
projection with a remote relation. The resulting records are
transferred to the original site and joined. In a sense, the
task of passing information is integrated into the semantics
of the operator itself rather than being an augmentation. In
[8], an operator named Eddy routes records among relational
operators based on dynamic runtime properties so as to max-
imize performance. [17, 20] produce filters from operators
to other co-related operators to prune unnecessary records.
Compile-time plans are augmented by run-time benefit esti-
mation to reduce the information passing overhead. [17, 8,
20] introduced adaptive SIP approaches. Adaptivity can se-
lectively add IP to an execution plan based on a cost model
that relies on statistics of the underlying database system.

Discussion. While these SIP techniques have similar
goals with our proposal, their implementations make as-
sumptions that do not carry over to MapReduce execution
platforms, making their adoption infeasible. Specifically,
[19, 20] is designed for a centralized shared-memory envi-
ronment where summaries can be exchanged using buffers
or other message passing techniques [17, 8] that assume the

existence of a centralized repository for exchanging tuples
or summaries at will. On the other hand, MapReduce exe-
cutes in a shared-nothing environment with a very restricted
communication model between nodes. Further, operator ex-
ecution in existing techniques is holistic i.e, one instance of
operator processes all the input for that operator. This is in
contrast to partitioned execution in MapReduce where mul-
tiple instances of an operation are executed, each processing
one partition of the operator’s input. The consequence is
that information about the state of a MapReduce operator
is fragmented across the different instances whereas in the
traditional case, all summary information can be found in
a single location. Finally, the adaptivity model proposed in
[17] assumes the availability of data statistics. However, as
was mentioned before, such features are lacking in existing
MapReduce data processing platforms or require significant
overhead [15] to compute. These assumptions by existing
approaches make for a much simpler information passing
problem than would be required in the MapReduce setting.
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Figure 3: Summary Distribution

2.2 Information Passing Other Join Optimiza-
tions for MapReduce Platforms

Some recent efforts [10, 16] have focused on enabling in-
formation passing in MapReduce. A series of semi-join tech-
niques in [10] resemble the traditional 2-way semi-join. How-
ever, each join operation is implemented using three MapRe-
duce cycles which can be very expensive. In some earlier
work [16], we proposed a basic information passing technique
Hadoop Information Passing (HIP) that enables summary
exchanges between multiple MapReduce jobs in a workflow.
In this approach, fragmented summaries about the state of
an operator are generated at the end of the cycle in which its
executes. The summaries are stored into the Hadoop Dis-
tributed File System as compressed files of summary lists.
If the total size of those summary fragments do not exceed
a user-defined threshold, they are broadcast to nodes at the
initiation of a subsequent job that takes as input, the earlier
job’s output. Other relevant work include efforts to reduce
the length of a MapReduce workflow by clustering opera-
tions into few cycles as possible using multi-way join algo-
rithms [18, 7, 23]. If the length of a workflow is reduced to
just one cycle, then information passing becomes unneces-
sary. However, this is not always feasible for non-trivial data
processing tasks because invariably, different operators will
have conflicting key partitioning requirements forcing their
execution to be assigned to different cycles. Also, some of
the algorithms result in a large amount of replication which
impedes performance. In the case of [23], a cost-based query
optimization approach is proposed, where the multiplicity of
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replicated-join is decided by cost estimation. However, this
approach requires additional MapReduce cycles per input
table to calculate the necessary statistics.

3. ADAPTIVE INFORMATION PASSING IN
HADOOP WORKFLOWS

In this section, we discuss our proposal for enabling infor-
mation passing on Hadoop-based processing systems. Fig.4
shows our extended Hive framework with dotted lines denot-
ing the new or extended components. Our system consists of
three major components, (i) an information passing frame-
work that enables IP-aware plans to generate and utilize
summaries across jobs, (ii) a benefit estimator that estimates
the costs for summary generation and propagation for each
job, and (iii) a statistics collector that piggybacks on the
MapReduce execution process to collect statistics required
by the benefit estimator.

3.1 Information Passing Framework
At compile-time, this framework decides whether infor-

mation passing or statistics generation should be enabled by
contacting several components. The default Hive job execu-
tor was modified to enable and execute IP-related decisions.

Compile-time preparation. A Plan analyzer analyzes
a MapReduce job plan to produce plan information. Plan
information contains job-specific information and relation-
ships among the multiple jobs in a job plan. Information
for each job is stored in a data structure called JobDe-
scriptor, which maintains the job ID, a pointer to the Hive
job descriptor, the type of reduce-side primitive operator
PR (e.g., join or group-by), paths for summary input and
output, and so on. The relationships among jobs are rep-
resented in a dataflow graph and a dependency graph. A
dataflow graph describes the input/output dataflow of jobs,
and a dependency graph (reverse of the dataflow graph) de-
scribes their execution order. A job executor that submits
each job in a MapReduce job plan to the Hadoop frame-
work, references the plan information to make a decision
on information passing. A cost estimator retrieves statis-
tics about the job’s input tables from the statistics repos-
itory, and calculates job costs. Job descriptors are aug-
mented with such job cost information. Before submitting
the current job JC , the job executor invokes the IP planner
to check whether the job should generate summary infor-
mation (SUMMARY CREATION ) for any subsequent jobs,
and/or load any summaries created by previous jobs (SUM-
MARY USAGE).
Algorithm 1 corresponds to the decision-making process

for summary generation, which consists of two steps. First,
the IP planner probes the plan information and checks whether
any subsequent job processing a join operation can leverage
the summary information that JC may produce (lines 3-4).
For example, job JN−1 in Fig.5a is eligible for summary gen-
eration since job JN can use the summary to prune unnec-
essary data while loading TableA. Next, the IP planner calls
the benefit estimator to estimate the benefit that the sum-
mary can bring about (line 5). If there is considerable bene-
fit (configurable via parameter β > 0), the planner makes a
decision to enable SUMMARY CREATION (line 6) so that
JC generates summary information during its execution.

Algorithm 1: Decision-making for State Creation

1 SUMMARY CREATION ← false;
2 if IP is enabled in configuration file then
3 if JC linked to any job JN in dataflow graph then
4 if descriptor(JN ).ReducerType == JOIN then
5 if BenefitEstimator.estimate() > β then
6 SUMMARY CREATION ← true;

end if

end if

end if

end if
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Figure 5: Possible IP Plans (a) Map-side pruning using
child-to-parent IP, (b) Reduce-side pruning using sibling-to-
sibling IP, (c) another example of child-to-parent IP using
intermediate tables

The IP planner also examines JC to determine usability
of available summaries from a previously executed job JP .
Algorithm 2 shows the corresponding decision-making algo-
rithm for summary utilization which considers two possible
cases of information passing: child-to-parent and sibling-to-
sibling. Fig.5 shows three job plans illustrating the two sce-
narios (the execution sequence is JN−2, JN−1, JN , JN+1,
and current job JC = JN ). First is the case of child-to-
parent IP between a parent job JC and a child job JP (lines
3-7). If job JC has a join operator in its reduce-phase (line
3), the planner looks up the dependency graph to find any
jobs whose output is fed into JC i.e., child jobs which have
generated summaries that have not yet been used (lines 4-5).
There are two possible cases of child-to-parent IP: a job may
either join an intermediate table and a base table (Fig.5a),
or it may join two intermediate tables (Fig.5c) such that the
summary generated by the child was not used by its sibling.
In both cases, the planner determines whether the size of the
summary files Pi (1 ≤ i ≤ r, for r reducers) generated by
the child job is less than a user-defined threshold α. This is
done to avoid heap memory leakage issues caused by loading
large summary information. If the summary size is less than
the threshold, the planner invokes the benefit estimator to
determine the benefit in summary usage. Based on the es-
timated benefit, the summary from the child job is used by
JC to prevent irrelevant data from being shuffled between
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map and reduce phases. This map-side pruning helps to re-
duce CSort, CShuffle, and CMerge costs in JC . The second
case is that of sibling-to-sibling IP where the summary in-
formation generated by a previously-executed sibling job JS

in the dataflow graph, can be used to prune the output of
JC (line 8). For example, JN in Fig.5b has a sibling job
(JN−1) which generated a summary. JN uses the summary
to curtail CStore costs in JN , and CLoad, CSort, CShuffle,
and CMerge in JN+1. Before the job executor submits each
job to Hadoop, all decisions are encoded in the job so that
corresponding operators generate and / or load summaries.

Algorithm 2: Decision-making for State Utilization

1 SUMMARY USAGE ← false ;
2 if IP is enabled in configuration file then

//Child-to-Parent IP
3 if descriptor(JC).ReducerType == JOIN then
4 if JC has a neighbor JP in dependency graph then
5 if JP generated summaries Pi (1 ≤ i ≤ r)

such that
∑

|Pi| ≤ α then
6 if BenefitEstimator.estimate()> β then
7 SUMMARY USAGE ← true;

//Sibling-to-Sibling IP
8 if JC has a sibling job JS in dataflow graph then
9 if JSgenerated summaries Pi (1 ≤ i ≤ r) such

that
∑

|Pi| ≤ α then
10 SUMMARY USAGE ← true;

Run-time operation. In order to generate summary in-
formation and utilize it, operators in a job should be aware
of decisions and operate accordingly. Hence, we designed
IP-aware reduce-side Tr and map-side Pm operators. As de-
scribed earlier, Tr is the final logical operator in the reduce
phase that stores the reduce output to HDFS. If a job should
generate summary information (SUMMARY CREATION
is true), decision-aware Tr operator generates bloom filters
on the target column that is a join key in a subsequent job.
Algorithm 3 describes the pseudo code for the IP-Awaremap
and reduce function skeletons. Note that the init (close)
function calls each operator’s init() (close()) method in the
beginning (end) of each phase. At runtime, the IP-aware
Tr operator calculates the hash value on the target column
for each record, and puts the hash value in an in-memory
buffer (lines 3-5). In the close() of the operator, the hash
values are compacted using a bloom filter to minimize the
size of the summary information (lines 8-10), and stored
into the HDFS. Multiple instances of the Tr operator pro-
duce multiple partial summaries (one per reducer), and the
job executor merges them into a single summary (merged
bloom filter) as shown in Fig.3b.

The merged summary is broadcasted to computing nodes
via JobConf before the subsequent job executes. JobConf is
a data transport facility provided by the Hadoop framework
to propagate system-wide and job-specific configurations to
nodes. The JobConf is copied once to each node’s local disk
rather than to every mapper or reducer, and hence reduces
the summary propagation costs. At the initialization phase
of the subsequent job, the IP-aware map-side operator Pm

loads the merged summaries into an in-memory buffer (lines
12-13). Whenever a record is read, the operator calculates
the hash value for the target column (join key), probes the
in-memory buffer, and prunes out irrelevant records (lines
15-17). Note that in the case of sibling-to-sibling IP, the

Algorithm 3: IP-Aware map()/reduce() Skeletons

//Reduce() of current job Jn

Reduce (key:grpKey, val:Corresponding list of tuples T )
Init ();
reduce ()

1 foreach tu ∈ T do
2 out tup ← Normal reduce processing;
3 next join key ← extract join key for next job;
4 hashV al ← next join key.hash();
5 Add distinct hashV al to in-memory sorted set;
6 emit <null, out tup>;

Close ()
7 status ← close status of all reduce operators;
8 if status is Success then
9 summary ← bloom filter on hashV als;

10 Store summary to HDFS;

//Merge summary from r reducers
11 mergedSummary ← merge(summary1,...,summaryr);

//Map() of a subsequent job Jn+1

Map (key:null, val:Tuple tup from Input)
Init ()

12 Load mergedSummary;
13 summarySet ← build in-memory sorted set from

mergedSummary;
map ()

14 join key ← extract the join column from tup;
15 if tup ∈ baseRelation then
16 if join key.hash() does not exist in summarySet

then
17 Prune out tup;

18 out tup ← Normal map processing;
19 emit <join key, out tup> ;

Close ();

summary loading and pruning happens in the reduce phase
using the IP-aware Tr operator. If the Tr operator also needs
to generate summary, the pruning precedes the summary
generation phase. The next section describes the benefit
estimation model that guides decisions in the information
passing framework.

3.2 Benefit Estimation Model
Our benefit estimation model does not consider the case

of sending summaries to sibling jobs (e.g., Fig.5b). In-
stead, it estimates the benefit from consuming summaries
in parent jobs (e.g., Fig.5a and 5c). If a given summary
is beneficial for a parent job, it is expected that a sib-
ling job can achieve more benefit by using the summary in
terms of CSTORE and CLOAD. Hence, the proposed bene-
fit estimation model aggregates partial benefits in CSORT ,
CSHUFFLE , and CMERGE (Bsort, Bshuffle, and Bmerge re-
spectively), and differences the aggregated benefit and the
cost for summary creation and propagation (Csummary):

B = Bsort +Bshuffle +Bmerge − Csummary (1)

Benefit in each step is estimated by subtracting the cost in
the IP-enabled approach from the cost in the default ap-
proach. Hence, benefits in the three steps are:

Bsort = Csort−orig − Csort−ip (2)

Bshuffle = Cshuffle−orig − Cshuffle−ip (3)

Bmerge = Cmerge−orig − Cmerge−ip (4)

.
In sort-phase, MapReduce performs external merge sort
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and the cost can be estimated as follows:

Csort−orig = M(CR + CW )(�logB−1

M

B
�+ 1) (5)

when each mapper emits intermediate data of M pages on
average, and the size of sorting buffer is B. CR (CW ) is the
unit cost to read (write) a page from (to) disk. Let ∆ be
the average size of unnecessary data that is expected to be
pruned by a given summary information, then the cost in
the IP approach is:

Csort−ip = (M −∆)(CR +CW )(�logB−1

M −∆

B
�+ 1) (6)

.
When the intermediate data is shuffled into r reducers,

each reducer receives, on average, (M × m)/r pages from
m mappers. Hence, the estimated data shuffle cost of the
original approach is:

Cshuffle−orig =
M ×m

r
CT (7)

where CT is the unit cost to transfer a page. The estimated
data shuffle cost in the IP approach is:

Cshuffle−ip =
(M −∆)m

r
CT (8)

In reduce-phase, each reducer receives partitions from all
m mappers and merges them into one block. Hence, we
estimate the merge cost in the default approach as equation
9, and that of the IP approach as equation 10.

Cmerge−orig = R(CR + CW )(�logB−1 m�) (9)

Cmerge−ip = (R−∆ · m
r
)(CR + CW )(�logB−1 m�) (10)

where R is the average input size per reducer. Since M ·m =
R · r, we substitute (M ·m)/r for R producing the following
equations:

Cmerge−orig = M · m
r
(CR + CW )(�logB−1 m�) (11)

Cmerge−ip =
m

r
(M −∆)(CR + CW )(�logB−1 m�) (12)

Cost Csummary is caused by summary generation and prop-
agation and consists of four costs:

Csummary = Cip−store + Cip−merge + Cip−copy + Cip−load

(13)
Each Tr operator stores a partial summary information in a
bloom filter of size |F | into HDFS. Hence, the cost to store
a partial summary is:

Cip−store = (UT + UW )|F | (14)

where UR, UW , and UT are unit costs to read, write, and
transfer a single byte, respectively. Since partial summaries
generated by r’ reducers are combined into one bloom filter,
the cost to merge partial summaries is:

Cip−merge = (UT + UR)|F |r′ + (UT + UW )|F | (15)

The cost to copy a merged summary to nodes is:

Cip−copy = N(UR + UW + UT )|F | (16)

The summary loading cost of each operator from local disk
is:

Cip−load = UR|F | (17)

Parameters such as CR, CW , CT , UR, UW , and UT are
machine-specific and can be earned by performance mea-
surement. B and N can be calculated with Hadoop config-
uration parameters, and |F | is set in the Hive configuration
file. At the time that benefit estimation is performed, the
number of reducers (r′) in a current job has already been
set by the Hive compiler. However, the number of mappers
(m) and reducers (r) in its parent job are unknown since
they depend on the input table sizes of the parent job and it
is complicated to estimate those parameters without input
statistics. For the same reason, the estimation of M and ∆
is complicated. In the next section, we describe our statis-
tics collection approach that piggybacks on MapReduce job
execution.

3.3 Piggybacking Statistics Collection on Op-
erator Execution

Our approach for statistics collection piggybacks on the
execution of MapReduce jobs. Generated statistics are used
by the cost estimator to estimate statistics on intermediate
data in a MapReduce job plan. These statistics are used by
the benefit estimator to calculate necessary parameters such
as m, r, M , and ∆, which are supplied to the benefit esti-
mation model to make decisions about information passing.
Required statistics include the size of tables, the number of
records, the average sizes of columns, and the value distri-
butions within a column. The general idea is that rather
than requiring a separate pre-processing step for computing
statistics, we choose to exploit the fact there is a good likeli-
hood that users will want to execute multiple queries on their
datasets. Therefore, for each query, we compute and store
statistics on selected columns of the tables being processed.
Then, for future queries that refer those columns, we use the
already computed statistics. Note that the statistics plan-
ner does not estimate statistics on all columns in input ta-
bles. For example, while evaluating TPC-H queries, columns
for comments (e.g., ps comment, l comment, c comment,
and p comment) and auxiliary information (e.g., c address,
s address, and s phone) are rarely positioned in filter or
join conditions, and hence are not important for cost estima-
tion. Such columns can be excluded to reduce the overhead
of statistics generation and transmission costs. Users can
manually specify additional columns into the column set by
updating the Hive configuration file.

At compile-time, the statistics planner creates a list of in-
put tables from a MapReduce job plan, and extracts a set of
meaningful columns whose statistics are required for cost es-
timation. The statistics planner probes the statistics repos-
itory using Java Remote Method Invocation (Java RMI) to
check the availability of statistics related to the listed tables
and columns. If the statistics are unavailable, the statistics
planner enables statistics collection and embeds the decision
into the job plan. Additionally, the statistics planner regis-
ters the input table sizes in the statistics repository if such
information is missing.

At run-time, the map-side primary operators (Pm) in each
job generate the statistics on the required columns. Once the
operators finish execution, the generated statistics are reg-
istered with the statistics repository. The generated statis-
tics are partial since the Pm operators process records from
different input portions. In this environment, it is straight-
forward to calculate the number of records and the average
sizes of columns from fragmented statistics. However, re-
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constructing the value distributions from fragmented statis-
tics is quite tricky. Sampling [11, 12] or histogram [23]
can be considered but such approaches may incur high in-
accuracy or huge data transmission overhead. In order to
combat this issue, we used a recent logarithmic counting
method called as HyperLogLog [14]. This algorithm sup-
ports set union operation which enables combination of mul-
tiple statistics fragments in a natural way. Therefore, par-
tial value-distribution from multiple input partitions can be
merged efficiently. Next, the memory footprint that the
algorithm requires to store bit-vectors is relatively small
(O(loglogD)) with high accuracy. For example, the algo-
rithm consumes 1.5KB memory with a 2% error rate for 109

cardinality values [14]. When a job completes its execution,
the statistics repository unions partial bit-vectors that have
been registered.

(a)

J1

TableA TableB

J2

TableB TableC

(key, columnA) (key, columnA)

J3

(key, columnA, columnA)

(b)

Figure 6: (a) Query1, (b) Query2

4. EXPERIMENTAL EVALUATION
The information passing approach has been implemented

in Apache Hive 0.5 [2] on top of Apache Hadoop 0.20.0 [3].
This section presents an extensive study of the proposed
approach by comparisons with original Hive, HIP [16], and
semi-join [10]. For HIP, the threshold of total summary size
was set to 512KB and 4MB. For the proposed IP approach,
two sizes of bloom-filter were used for storing summary infor-
mation (512KB and 4MB). First two steps of semi-join were
implemented using vanilla MapReduce applications. How-
ever, the last step was implemented as a repartitioning join,
instead of Hive’s fragment-replication join named map-side
join. This is because the map-side join failed for experi-
ments in which the size of intermediate data from the first
two steps was not small enough to fit into memory.

4.1 Experiment Setup
Experiments were conducted on a cluster on NCSU VCL [6]

which consists of 21 blade servers (one master node and 20
slave nodes). Each node has a 3.0GHz dual-core Xeon pro-
cessor, 4GB memory, and a 28GB SCSI disk, and runs Red
Hat Enterprise Linux 5. Hadoop framework was configured
with 512MB of block size, replication factor 1, no specula-
tive execution, and 1024MB of heap size for mappers and
reducers.

4.2 Workloads and Analysis
Two kinds of synthetic datasets, including one benchmark

were used. The first synthetic dataset is generated based on
user-supplied parameters such as number of records, col-
umn sizes, and range of join column values. This bench-
mark was chosen since it is complicated to manually set

reference ratios among generated tables with existing bench-
marks. Three tables were generated using this benchmark:
TableA, TableB, and TableC. Each table is 20GB and in-
cludes three columns (key : 25B, columnA: 75B, columnB :
100B). The key column in each table was used as a join key.
The join key density of TableB and TableC is fixed to one
while the join key density in TableA varies across experi-
ments. Hence, records in TableA match different numbers
of records in other tables. Records in TableB and TableC
are exactly same. In order to evaluate the effects of pass-
ing summary information to different MapReduce jobs, two
benchmark queries were used as shown in Fig.6. The query
in Fig.6(a) compiles into two MapReduce jobs. The first job
joins TableA and TableB, producing intermediate records of
(TableB.key, TableA.columnA). The second job joins the in-
termediate output from the first job with TableC, and gen-
erates (TableB.key, TableA.columnA, TableC.columnA). For
HIP and IP, the execution time of Job2 is summed up with
any delay in execution time of Job1. Semi-join was com-
puted on the intermediate records from Job1 and TableC,
and the execution times of three steps were summed up.
Next, the query in Fig.6(b) is translated into three MapRe-
duce jobs. The first one is similar to the first job in the previ-
ous query. The second job joins TableB and TableC, and pro-
duces same number of records. The intermediate records are
of (TableB.key and TableC.columnA). The last job joins the
two intermediate tables and generates records of the form
(TableB.key, TableA.columnA, TableC.columnA). Execution
times for Job2 and Job3 for different approaches were also
compared. However, semi-join was not performed for this
query since the first two steps of semi-join cannot remove
any records deriving no benefit. Second set of experiments
used the TPC-H benchmark [5] dataset (40GB). The Hive
version of TPC-H queries [4], which are written in HiveQL
were used. Among the TPC-H benchmark queries, a set of
relevant queries with multiple join operations were chosen.
Different query plans were evaluated.
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4.3 Experimental Results
Performance improvement with varying reference

ratios. The IP approach enhances query processing perfor-
mance by pruning unnecessary records before being joins.
Hence, the effectiveness of the approach depends on the
reference ratio between joined tables. To check the rela-
tionship between performance and reference ratio, TableA’s
reference ratio was varied such that its records match dif-
ferent numbers of records in the other tables. Fig.7 shows
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the execution times of the query in Fig.6(a). First, semi-
join failed for reference ratio 0.1 and 0.5 (denoted by broken
lines on the y-axis to indicate that execution failed after
a lengthy execution period) since the size of join key list
exceeded available heap memory in its first step. For ref-
erence ratio 0.001 and 0.01, the semi-join approach did not
show better performance than the original Hive approach.
On the other hand, HIP and IP showed performance im-
provements as the reference ratio decreases. However, the
IP approach was beneficial with relatively higher reference
ratio than HIP (reference ratio = 0.01 in Fig.7(a) and refer-
ence ratio = 0.1 in Fig.7(b)). A problem with HIP approach
is that it cannot calculate the size of summary information
before partial summary fragments are merged and loaded
into memory. Hence, the total size of summary fragments
is compared with the user-defined threshold. As a conse-
quence, even if the size of merged summary information is
less than the threshold, it may disallow generated summary
information to be loaded by jobs. On the other hand, IP
approach decides about summary generation and utilization
based on benefit estimation, and can maximize the benefit
of information passing. In Fig.7(b), for example, HIP dis-
abled the use of summary for reference ratio 0.1, while IP
allowed summary to be used by Job2 deriving benefit.

When HIP processes Query2 in Fig.6(b), Job1 and Job2
generate summaries, and Job3 utilizes those summaries.
Hence, as shown in Fig.8(a-b), Job2 execution times in HIP
are longer than the original Hive approach due to summary
generation overhead. On the other hand, the IP approach
transports summary information from Job1 to Job2, and
prunes unnecessary records at the end of Job2. Hence, it
could derive benefits in materialization steps when its benefit
estimation enables summary information (e.g., when refer-
ence ratio = 0.001 and 0.01 in Fig.8(a) and reference ratio =
0.001, 0.01, and 0.1 in Fig.8(b)). The benefits were less than
8% performance improvement. In case of Job3, IP achieved
more performance improvement than HIP since reduced in-
termediate data from Job2 derived benefits in data loading
phase in addition to shuffle-phase as shown in Fig.8(c-d).

Performance improvement with varying block
sizes. This experiment evaluates the impact of varying
HDFS block size on the different approaches. The refer-
ence ratio was fixed to 0.01, and HIP threshold and size of
bloom-filter in IP were set to 4MB. Fig.9(a) shows the per-
formance improvement rates of Job2 in Query1 relative to
the original Hive approach. Semi-join was worse than Hive
in all settings while the performance degradation rate de-

creased as block size increased since the execution time of
semi-join increased slower than that of Hive. Both HIP and
IP showed linear speedups with increasing block sizes. Each
mapper that loads a block from TableC is assigned more
data as the block size increases. Hence, given the summary
information produced in the previous job, both approaches
are able to prune out larger amount of “fruitless” data items
before being shuffled, thus deriving higher cost saving in
shuffle-phase.

Fig.9(b) shows the performance improvement rates of HIP
and IP for processing Job2 in Query2. In HIP, summary
information is always generated by children jobs (e.g., Job1
and Job2 in Fig.6(b)), and transported to parent jobs (e.g.,
Job3 in Fig.6(b)) in a dataflow graph. Hence, in the case
of HIP, Job2 is accompanied with an overhead to generate
summary information causing less than 1% slowdown. On
the other hand, the IP approach can prune unnecessary data
by using summary information transported from a sibling
job (e.g., Job1 in Fig.6(b)) in a dataflow graph. Hence, IP
derives benefit in the output materialization step of Job2 as
shown in Fig.9(b). However, the benefit is relatively small
(less than 1% speedups) for all block sizes.

Fig.9(c) compares the performance improvement rates of
HIP and IP for Job3 in Query2. First of all, the IP ap-
proach outperforms HIP for all block sizes. HIP showed
more than 20% performance improvement by preventing
unnecessary data before data shuffle-phase. On the other
hand, IP achieved relatively better performance enhance-
ments than HIP since already reduced intermediate data
could reduce the cost in data loading phase in addition to
the data shuffle cost. In the second place, with 512MB to
1024MB block sizes, both approaches showed almost con-
stant performance improvements. Hive and HIP scheduled
same numbers of mappers (86 mappers) and reducers (26
reducers) with those block sizes where the amounts of input
data to each mapper and each reducer were not changed even
if the block size increased. Hence, the effect of summary in-
formation in shuffle-phase was almost same with those block
sizes. In case of IP, the same numbers of mappers (86 map-
pers) and reducers (14 reducers) were scheduled from 512MB
to 1024MB block sizes. Therefore, the effect of reduced in-
put data was almost same in data-loading and shuffling steps
with different block sizes.

Performance measurements with TPC-H bench-
mark. Experiments with TPC-H benchmark were per-
formed to measure the effectiveness of the IP approach.
In these experiments, the bloom-filter size of IP and the
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Figure 10: TPC-H queries with (a)linear and (b) non-linear plans, (c) Benefit estimation (TPC-H Q9 linear plan)

summary size limitation of HIP were configured to 512KB.
Fig.10(a) shows the execution times of the different ap-
proaches for TPC-H queries which are translated into linear
plans. HIP and IP approaches improve the query process-
ing performance for most of the queries up to 27.0% and
28.6%, respectively. However, HIP does not improve the
performance of Q3, and degraded the performance of Q10 a
little due to overhead of generating and transporting sum-
maries. With non-linear plans as shown in Fig.10(b), the
IP approach showed 5-6% performance improvements when
processing Q2, Q5, and Q10, and improved the execution
time of Q7 by about 31%. In HIP, the execution times of
Q2 and Q7 were improved 2% and 26%, respectively while
that of Q10 was degraded about 3% due to the overhead of
summary generation. It is notable that HIP did not work
for Q5 because one of the jobs in the plan did not have
enough heap memory space for storing its output summary
information. HIP stores a list of hash values on a join col-
umn in memory. Hence, if the size of the in-memory list
exceeds available memory space, it drives reducers to fail
their execution. On the other hand, IP stores such data in
a more compact bloom filter whose size is configurable, thus
avoiding such problems.

Benefit Estimation. HIP and IP approaches without
benefit estimation, may worsen query processing perfor-
mance for cases where the overhead of generating and trans-
porting summary information exceeds the benefit achieved
by using the summary information. For example, with TPC-
H Q9, both approaches showed worse performance when
they were enabled. Fig.10(c) shows the execution times of
a Q9 linear plan in different approaches. We compared the
original Hive, HIP, IP without benefit estimation, and IP
with benefit estimation. In HIP, jobs always generate sum-
mary information as long as they have subsequent jobs to

which such summary information can be transferred. In ad-
dition, it transports summary information to the next job
if its size is less than a user-defined threshold, even if the
summary may not be beneficial. Because of such summary
generation and transmission overheads, HIP brought about
a 80 second delay in the execution time of the Q9 linear plan.
In IP without benefit estimation, all jobs in the query plan
always generate summaries and transport them to next jobs.
As a result, such imprudent use of summary information
added a cost of about 125 seconds to the original execution
time. On the other hand, the IP approach which leverages
benefit estimation, could selectively allow summary gener-
ations and transmissions based on cost estimations. This
allowed for maximizing the benefit of IP and preventing any
large performance degradation in worst cases.
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Piggyback Statistics Collection. Statistics collection
which piggybacks query processing may impose penalties on
its performance. This section evaluates the effect of piggy-
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Figure 12: Piggyback statistics collection overhead (a) vary-
ing RSD values (b) varying number of columns

back statistics collection. While processing TPC-H queries,
distinct value cardinalities were generated on columns that
were either join keys or were involved in filter conditions.
The slowdown on execution time was then measured. The
slowdown for each query was calculated as following:

slowdown(%) =
TP − TO

TO
× 100

where TP is the execution time of a query with piggyback
statistics collection, and TO is the execution time of the
original Hive approach. During the experiments, three rela-
tive standard deviations (RSDs) (0.1, 0.01, and 0.001) were
used as a parameter to HyperLogLog. This was done to
change the size of required memory space. As the RSD
value increases, HyperLogLog requires less memory space
while causing higher error rate. Fig.12(a) shows the slow-
downs of the TPC-H queries. As RSD became smaller, the
slowdown of query processing performance increased. When
RSD = 0.001, slowdowns were between 6% and 41% while
error rates in distinct value cardinalities were less than 0.4%.
RSD = 0.01 caused 4-33% slowdowns with less than 1.6%
error rates. With RSD = 0.1, slowdowns were between 4%
and 31% with error rates less than 30.7%. Fig.11 shows error
rates in distinct value cardinality estimation on a set of key
columns. In the experiment, processing overhead to generate
statistics was the main factor that affected the slowdowns
of query execution times. For TPC-H Q7, the processing
overhead for statistics generation affected about 97% of the
slowdowns when RSD is 0.1 and 0.01, while registering par-
tial statistics caused 3% of the slowdowns. However, when
RSD = 0.001, the overhead to register partial statistics to
the statistics repository caused about 19% of the slowdown.
As a result, as the RSD value increases, partial statistics reg-
istration overhead can be one of the dominant factors that
affect query performance.

Next, slowdowns were measured by manually changing
the number of columns on which distinct value cardinali-
ties were generated. This experiment used a query which
loads lineitem table and performs a groupby operation on
l linenumber. RSD was fixed at 0.01. As shown in Fig.12,
the increase in number of columns involving distinct value
cardinality collection, resulted in more processing and statis-
tics transmission overheads, thus increasing slowdown in
query processing time. Hence, choosing minimal columns
from which distinct value cardinalities are collected is nec-
essary to decrease the performance degradation of piggyback
statistics collection.

5. CONCLUSIONS
We present an adaptive information passing approach for

early pruning of intermediate states in a MapReduce data
processing workflow. The approach is based on a MapReduce-
aware cost model for estimating potential benefits or loss
of information passing in a particular workflow. We also
present a light-weight approach for computing statistics by
piggybacking on operator execution. Our approach for in-
tegrating the proposed information passing technique into
a popular platform, Apache Hive, is presented. A compre-
hensive empirical evaluation using two datasets shows the
benefits of our approach over existing techniques.
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