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Abstract

Originating from the field of physics and economics, the
term elasticity is nowadays heavily used in the context
of cloud computing. In this context, elasticity is com-
monly understood as the ability of a system to automati-
cally provision and deprovision computing resources on
demand as workloads change. However, elasticity still
lacks a precise definition as well as representative met-
rics coupled with a benchmarking methodology to enable
comparability of systems. Existing definitions of elastic-
ity are largely inconsistent and unspecific, which leads
to confusion in the use of the term and its differentia-
tion from related terms such as scalability and efficiency;
the proposed measurement methodologies do not provide
means to quantify elasticity without mixing it with ef-
ficiency or scalability aspects. In this short paper, we
propose a precise definition of elasticity and analyze its
core properties and requirements explicitly distinguish-
ing from related terms such as scalability and efficiency.
Furthermore, we present a set of appropriate elasticity
metrics and sketch a new elasticity tailored benchmark-
ing methodology addressing the special requirements on
workload design and calibration.

1 Introduction

Elasticity has originally been defined in physics as a ma-
terial property capturing the capability of returning to its
original state after a deformation. In economical theory,
informally, elasticity denotes the sensitivity of a depen-
dent variable to changes in one or more other variables
[1]. In both cases, elasticity is an intuitive concept and
can be precisely described using mathematical formulas.

The concept of elasticity has been transferred to
the context of cloud computing and is commonly con-
sidered as one of the central attributes of the cloud
paradigm [10]. For marketing purposes, the term elastic-
ity is heavily used in cloud providers’ advertisements and

even in the naming of specific products or services. Even
though tremendous efforts are invested to enable cloud
systems to behave in an elastic manner, no common and
precise understanding of this term in the context of cloud
computing has been established so far, and no ways have
been proposed to quantify and compare elastic behavior.
To underline this observation, we cite five definitions of
elasticity demonstrating the inconsistent use and under-
standing of the term:

1. ODCA, Compute Infrastructure-as-a-Service [9]
”[. . . ] defines elasticity as the configurability and
expandability of the solution [. . . ] Centrally, it is the
ability to scale up and scale down capacity based on
subscriber workload.”

2. NIST Definition of Cloud Computing [8] ”Rapid
elasticity: Capabilities can be elastically provi-
sioned and released, in some cases automatically,
to scale rapidly outward and inward commensurate
with demand. To the consumer, the capabilities
available for provisioning often appear to be unlim-
ited and can be appropriated in any quantity at any
time.”

3. IBM, Thoughts on Cloud, Edwin Schouten,
2012 [11] ”Elasticity is basically a ’rename’ of
scalability [. . . ]” and ”removes any manual labor
needed to increase or reduce capacity.”

4. Rich Wolski, CTO, Eucalyptus, 2011 [12] ”Elastic-
ity measures the ability of the cloud to map a single
user request to different resources.”

5. Reuven Cohen, 2009 [2] Elasticity is ”the quantifi-
able ability to manage, measure, predict and adapt
responsiveness of an application based on real time
demands placed on an infrastructure using a combi-
nation of local and remote computing resources.”

Definitions (1), (2), and (3) in common describe elas-
ticity as the scaling of system resources to increase or
decrease capacity, whereby definitions (1), (2) and (5)
specifically state that the amount of provisioned re-
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sources is somehow connected to the recent demand or
workload. In these two points there appears to be some
consent. Definitions (4) and (5) try to capture elasticity in
a generic way as a ’quantifiable’ system ability to handle
requests using different resources. Both of these defini-
tions, however, neither give concrete details on the core
aspects of elasticity, nor provide any hints on how elas-
ticity can be measured. Definition (3) assumes that no
manual work at all is needed, whereas in the NIST defi-
nition (2), the processes enabling elasticity do not need to
be fully automatic. In addition, the NIST definition adds
the adjective ’rapid’ to elasticity and draws the idealistic
picture of ’perfect’ elasticity where endless resources are
available with an appropriate provisioning at any point in
time, in a way that the end-user does not experience any
performance variability.

We argue that existing definitions of elasticity fail to
capture the core aspects of this term in a clear and un-
ambiguous manner and are even contradictory in some
parts. To address this issue, in this short paper, we pro-
pose a new refined definition of elasticity considering in
detail its core aspects and the prerequisites of elastic sys-
tem behavior (Section 2). Thereby, we clearly differen-
tiate elasticity from its related terms scalability and ef-
ficiency. In Section 4, we present metrics that are able
to capture elasticity, followed by Section 5, in which
we outline a benchmarking methodology for quantifying
elasticity discussing the issues of representativeness, re-
producibility and fairness of the measurement approach.

2 Elasticity

In this section, we first describe some important
prerequisites in order to be able to speak of elasticity,
present a new refined and comprehensive definition, and
then analyse its core aspects and dimensions. Finally,
we differentiate between elasticity and its related terms
scalability and efficiency.

2.1 Prerequisites
The scalability of a system including all hardware, vir-
tualization, and software layers within its boundaries is
a prerequisite in order to be able to speak of elasticity.
Scalability is the ability of a system to sustain increas-
ing workloads with adequate performance provided that
hardware resources are added. Scalability in the context
of distributed systems has been defined in [6], as well
as more recently in [3, 4], where also a measurement
methodology is proposed.

Given that elasticity is related to the ability of a system
to adapt to changes in workloads and resource demands,
the existence of at least one specific adaptation process
is assumed. The latter is normally automated, however,

in a broader sense, it could also contain manual steps.
Without a defined adaptation process, a scalable system
cannot behave in an elastic manner, as scalability on its
own does not include temporal aspects.

When evaluating elasticity, the following points need
to be checked beforehand:

• Autonomic Scaling:
What adaptation process is used for autonomic scal-
ing?

• Elasticity Dimensions:
What is the set of resource types scaled as part of
the adaptation process?

• Resource Scaling Units:
For each resource type, in what unit is the amount
of allocated resources varied?

• Scalability Bounds:
For each resource type, what is the upper bound on
the amount of resources that can be allocated?

2.2 Definition
Elasticity is the degree to which a system is able to

adapt to workload changes by provisioning and de-
provisioning resources in an autonomic manner,
such that at each point in time the available re-
sources match the current demand as closely as pos-
sible.

2.3 Dimensions and Core Aspects

Any given adaptation process is defined in the context of
at least one or possibly multiple types of resources that
can be scaled up or down as part of the adaptation. Each
resource type can be seen as a separate dimension of the
adaptation process with its own elasticity properties. If a
resource type is a container of other resources types, like
in the case of a virtual machine having assigned CPU
cores and RAM, elasticity can be considered at multi-
ple levels. Normally, resources of a given resource type
can only be provisioned in discrete units like CPU cores,
virtual machines (VMs), or physical nodes. For each di-
mension of the adaptation process with respect to a spe-
cific resource type, elasticity captures the following core
aspects of the adaptation:

Speed The speed of scaling up is defined as the time
it takes to switch from an underprovisioned state
to an optimal or overprovisioned state. The speed
of scaling down is defined as the time it takes to
switch from an overprovisioned state to an optimal
or underprovisioned state. The speed of scaling
up/down does not correspond directly to the tech-
nical resource provisioning/deprovisioning time.

2
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Precision The precision of scaling is defined as the ab-
solute deviation of the current amount of allocated
resources from the actual resource demand.

As discussed above, elasticity is always considered
with respect to one or more resource types. Thus, a direct
comparison between two systems in terms of elasticity
is only possible if the same resource types (measured in
identical units) are scaled.

To evaluate the actual observable elasticity in a given
scenario, as a first step, one must define the criterion
based on which the amount of provisioned resources is
considered to match the actual current demand needed
to satisfy the system’s given performance requirements.
Based on such a matching criterion, specific metrics that
quantify the above mentioned core aspects, as discussed
in more detail in Section 4, can be defined to quantify
the practically achieved elasticity in comparison to the
hypothetical optimal elasticity. The latter corresponds to
the hypothetical case where the system is scalable with
respect to all considered elasticity dimensions without
any upper bounds on the amount of resources that can
be provisioned and where resources are provisioned and
deprovisioned immediately as they are needed exactly
matching the actual demand at any point in time. Op-
timal elasticity, as defined here, would only be limited
by the resource scaling units.

2.4 Differentiation

In this section, we highlight the conceptual differences
between elasticity and the related terms scalability and
efficiency.

Scalability is a prerequisite for elasticity, but it does not
consider temporal aspects of how fast, how often,
and at what granularity scaling actions can be per-
formed. Scalability is the ability of the system to
sustain increasing workloads by making use of ad-
ditional resources, and therefore, in contrast to elas-
ticity, it is not directly related to how well the actual
resource demands are matched by the provisioned
resources at any point in time.

Efficiency expresses the amount of resources consumed
for processing a given amount of work. In contrast
to elasticity, efficiency is not limited to resource
types that are scaled as part of the system’s adap-
tation mechanisms. Normally, better elasticity re-
sults in higher efficiency. The other way round, this
implication is not given, as efficiency can be influ-
enced by other factors independent of the system’s
elasticity mechanisms (e.g., different implementa-
tions of the same operation).

3 Derivation of the Matching Function

To capture the criterion based on which the amount of
provisioned resources is considered to match the actual
current demand, we define a matching function m(w) = r
as a system specific function that returns the minimal
amount of resources r for a given resource type needed
to satisfy the system’s performance requirements at a
specified workload intensity. The workload intensity w
can be specified either as the number of workload units
(e.g., user requests) present at the system at the same
time (concurrency level), or as the number of workload
units that arrive per unit of time (arrival rate). A match-
ing function is needed for both directions of scaling
(up/down), as it cannot be assumed that the optimal re-
source allocation level when transitioning from an under-
provisioned state (upwards) are the same as when transi-
tioning from an overprovisioned state (downwards).
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Figure 1: Illustration of a Measurement-based Derivation
of Matching Functions

The matching functions can be derived based on mea-
surements, as illustrated in Figure 1, by increasing the
workload intensity w stepwise, while measuring the re-
source consumption r, and tracking resource allocation
changes. The process is then repeated for decreasing w.
After each change in the workload intensity, the system
should be given enough time to adapt its resource alloca-
tions reaching a stable state for the respective workload
intensity. As a rule of thumb, at least two times the tech-
nical resource provisioning time is recommended to use
as a minimum. As a result of this step, a system spe-
cific table is derived that maps workload intensity levels
to resource demands, and the other way round, for both
scaling directions within the scaling bounds.

4 Elasticity Metrics

To capture the core elasticity aspects speed and preci-
sion, we propose the following definitions and metrics as
illustrated in Figure 2:

• A is the average time to switch from an underprovi-
sioned state to an optimal or overprovisioned state
and corresponds to the average speed of scaling up.

3



26 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

• ∑A is the accumulated time in underprovisioned
state.

• U is the average amount of underprovisioned re-
sources during an underprovisioned period.

• ∑U is the accumulated amount of underprovisioned
resources.

• B, ∑B, O, and ∑O are defined similarly for over-
provisioned states.
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Figure 2: Capturing Core Elasticity Metrics

We define the average precision of scaling up Pu as
Pu =

∑U
T where T is the total duration of the evaluation

period, and accordingly Pd = ∑O
T is defined as the aver-

age precision of scaling down. Based on the above de-
fined quantities, one could define an elasticity metric for
scaling up Eu as inversely proportional to A and U , e.g.
Eu = 1

A×U
, and accordingly elasticity for scaling down

Ed = 1
B×O

. The elasticity of a system under test (SUT) s
can then be captured in a matrix Ms where each vector vd
represents an elasticity dimension d and contains the val-
ues of the elasticity core metrics Eu, A, Pu for scaling up
and Ed , B, Pd for scaling down.

As an alternative to these metrics, the dynamic time
warping (DTW) distance [7] can be used as a robust dis-
tance metric to capture the similarity between the de-
mand and supply curves as well as to approximate the
technical reaction time of the adaptation mechanism. A
case study demonstrating this approach can be found
in [5].

5 Towards Benchmarking Elasticity

Characterizing the elasticity of a single system is not a
simple task on its own and it becomes even more com-
plicated when comparing different systems. An elastic-
ity benchmark is expected to deliver reproducible results
and generate a consistent order of the different systems
under test (SUTs) reflecting their potential and observed
elasticity, while not mixing this with general system ef-
ficiency and scalability aspects. Traditional benchmark-
ing approaches induce identical workloads on different

SUTs to provide a basis for fair comparisons, whereas
an elasticity benchmark is required to induce identical
demand curves. If two elastic systems exhibit signifi-
cant differences in efficiency (the amount of resources re-
quired for meeting performance requirements at a given
workload intensity level), it might well be that when pro-
cessing an identical workload, their adaptation mecha-
nisms are exercised in a significantly different manner.
As illustrated in Figure 3, in that case, deriving the elas-
ticity metrics for the same workload would result in un-
fair comparison since the more efficient system would
appear to exhibit better elasticity given that its adapta-
tion mechanisms were not stressed to the same extent.
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Figure 3: Elasticity vs. Efficiency

Therefore, the first step towards portability of an elas-
ticity benchmark and comparability of its results would
be the specification of a representative set of demand
curves and common performance goals in terms of re-
sponsiveness, throughput or utilisation for the consid-
ered resource types. The demand curves themselves
should contain bursts of different intensity, upward and
downward scaling trends and seasonal patterns of dif-
ferent shapes, concerning amplitude, duration and base
level capturing the most representative real-life scenar-
ios. Further challenges include the automated derivation
of the mapping functions as well as the generation of a
workload that induces the targeted demand curves as ac-
curately as possible on the evaluated SUTs.

6 Conclusion

In this short paper, we proposed a refined definition of
elasticity to contribute in establishing a common under-
standing of this term in the context of cloud computing.
Furthermore, we examined the core aspects of elasticity
explicitly differentiating it conceptually from the classi-
cal notions of scalability and efficiency. Finally, we pro-
pose metrics to capture the core elasticity aspects as well
as an elasticity benchmarking approach focusing on the
special requirements on workload design and its imple-
mentation.
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