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Abstract
Large-scale datacenters (DCs) host tens of thousands

of diverse applications each day. Apart from determining
where to schedule workloads, the cluster manager should
also decide when to constrain application admission to
prevent system oversubscription. At the same time dat-
acenter users care not only for fast execution time but
for low waiting time (fast scheduling) as well. Recent
work has addressed the first challenge in the presence of
unknown workloads, but not the second one.

We present ARQ, a multi-class admission control
protocol that leverages Paragon, a heterogeneity and
interference-aware DC scheduler. ARQ divides applica-
tions in classes based on the quality of resources they need
and queues them separately. This improves utilization
and system throughput, while maintaining per-application
QoS. To enforce timely scheduling, ARQ diverges work-
loads to a queue of lower resource quality, if no suit-
able server becomes available within the time window
specified by its QoS. In an oversubscribed scenario with
8,500 applications on 1,000 EC2 servers, ARQ bounds
performance degradation to less than 10% for 99% of
workloads, while significantly improving utilization.

1. Introduction
An increasing amount of computing is performed in the
cloud, primarily due to cost benefits for both the end-
users and the operators of datacenters (DC) that host
cloud services [3]. The operator of a cloud service must
schedule the stream of incoming applications on avail-
able servers in a resource-efficient manner, i.e., achieving
fast execution (user’s goal) at high resource utilization
(operator’s goal). This scheduling problem is particularly
difficult for several reasons, including diverse application
characteristics [3, 19], insufficient workload knowledge,
co-scheduled application interference and platform het-
erogeneity. An additional challenge occurs during periods
of adversarial traffic, i.e., intervals with very high load,
when the system can become oversubscribed, resulting
in poor performance. Most DCs employ some admission
control to minimize such effects.

DC users are interested in two performance metrics;
how fast the application starts running (waiting time) and
how fast it completes thereafter (execution time). While
recent work has shown how to improve execution time in
the presence of unknown workloads, varying interference

sensitivities and heterogeneous servers [14], it does not
solve the “head of line blocking” problem [27]. Addition-
ally, some applications have strict scheduling deadlines,
while others can tolerate delays in order to be assigned
to preferred servers. In all cases, resource requirements
should be taken into account at admission point [8].

We propose ARQ (Admission control with Resource
Quality-awareness), a QoS-aware admission control pro-
tocol that builds on Paragon and accounts for the resource
quality an application needs to preserve its QoS. Resource
quality reflects the additional load a server can support
without violating application QoS, given its configura-
tion and the applications it currently hosts. ARQ divides
workloads to multiple classes and directs them to differ-
ent queues. This way demanding workloads do not block
easy-to-satisfy applications, as they wait for an appropri-
ate server to become available. On the other hand, since
DC applications have strict QoS guarantees, they can only
be queued for limited amounts of time, while waiting
for an appropriate server. ARQ detects when an appli-
cation is about to violate its performance requirements
and re-directs it to a different queue before the QoS vio-
lation occurs. We explore the trade-off between waiting
time and quality of resources and solve the corresponding
optimization problem to find the optimal switching point.

We evaluate ARQ both in small and large-scale exper-
iments. First, we compare the system without and with
ARQ in a local cluster with 40 machines and show the
benefits in performance and efficiency. We also evaluate
ARQ on a 1000-server cluster on Amazon EC2. For an
oversubscribed scenario with 8500 applications, Paragon
with ARQ guarantees that 99% of workloads have less
than 10% performance degradation, while improving uti-
lization by 46%.

2. Background

2.1. Paragon Overview

Paragon is a heterogeneity and interference-aware DC
scheduler [14]. It assigns applications to heterogeneous
servers based on the platform they benefit from and the
co-scheduled applications that minimize destructive inter-
ference to preserve QoS. Paragon has two components, a
classification engine and a greedy scheduler. We briefly
describe their operation in the following paragraph.

The first component of Paragon performs fast classi-
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fication of incoming applications, in terms of the server
configuration (SC) they perform better on and the interfer-
ence they cause and tolerate in various shared resources,
such as the processor, cache hierarchy, memory, storage
and networking subsystems. The interference profile is
obtained through targeted microbenchmarks of tunable in-
tensity that create contention in specific shared resources.
These microbenchmarks are called sources of interference
(SoIs). The classification engine is built as a recommenda-
tion system, similar to Netflix [5] or e-commerce systems
and leverages the knowledge the system already has about
previously-scheduled applications, keeping profiling over-
heads low. Then, the greedy scheduler searches for a
machine of desired SC, that minimizes destructive inter-
ference between existing and new load. Paragon scales to
tens of thousands of applications and improves utilization,
while maintaining per-application QoS.

2.2. Current Limitations

While Paragon shows that accounting for heterogeneity
and interference improves resource efficiency without
QoS losses, it does not decide when applications should
be admitted and scheduled. Paragon accounts for work-
load characteristics to decide where to assign a workload,
but it does not solve the “head of line blocking” problem
that can cause high waiting times. By default, applica-
tions are scheduled in a simple FIFO order. This has
two shortcomings; first, easy-to-satisfy workloads can get
trapped behind demanding applications, e.g., workloads
that require exclusive instances of high-end, multi-socket
servers to preserve their QoS. Second, in the event of an
oversubscribed scenario, i.e., when the required resources
are more than the total resources available in the system,
Paragon implements an application-agnostic admission
control protocol. It queues applications in a single queue
until the first server becomes available, and then resumes
FIFO-ordered scheduling. This ignores the fact that appli-
cations need resources of a certain quality to meet their
QoS, and can result in performance degradation.

3. Admission Control

3.1. Overview

Large cloud providers such as Amazon EC2 and Windows
Azure, typically deploy some admission control protocol.
This prevents machine oversubscription, i.e., the same
core servicing more than one applications, resulting in
high interference and QoS violations.

We design ARQ, a QoS-aware admission control pro-
tocol that queues and schedules applications based on
the quality of resources they need. This solves two prob-
lems; first, applications that demand few, easy-to-satisfy
resources are not blocked behind demanding workloads.
Second, if no suitable servers are available for a given
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Figure 1: ARQ design. Each queue corresponds to appli-
cations with different resource quality requirements.

application, the workload waits for a server of appropriate
quality to be freed. Alternatively, the application would
be directed to the first free server to avoid queueing delays,
with the risk of performance losses.
Resource quality: The resource demands of a workload
reflect the load a server should support for the application
to meet its QoS. This is a function of the interference the
server can tolerate from the new application, and the inter-
ference the new workload can tolerate from applications
already running on the machine. We use the classification
engine in Paragon to derive the per-server tolerated (ti)
and caused (ci) interference over a set of shared resources.
Shared resources include the cache and memory hierar-
chy, CPU modules, and storage and networking devices.
Details on how ci’s and ti’s are obtained can be found
in [14]. The interference profile of a server is updated
upon initiation or completion of an application’s execu-
tion. Similarly, upon application arrival, an interference
profile is obtained for each new workload. This infor-
mation guides scheduling decisions by assigning applica-
tions to suitable servers. Given the interference profile of
a server or application, we define resource quality as:

Qi = avg(∑
i

ci +∑
i
(100− ti)) (1)

where ci and ti are summed over all shared resources for
which interference is measured. Conceptually, higher Qi
reflects applications with high demands (high caused and
low tolerated interference) that need high-quality system
resources. Low Qi on the other hand, corresponds to
workloads that are insensitive to interference, and can
satisfy their QoS even when assigned to servers with
poor resource quality, e.g., highly-loaded machines, or
machines with few cores.
Multi-class admission control: We design ARQ as an
admission control protocol with multiple classes of “cus-
tomers” [1, 6, 17, 20, 21], where customers in this case
correspond to applications. The class an application be-
longs to is determined by its Qi value. Applications with
Qi values that fall in the same range are assigned to the
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Figure 2: CDF of server busy times and CDF of the prob-
ability that there will be at least one free server within a
specific time window from an application’s arrival.

same class. Qis range from 0 to 100%. We assume ten
classes of applications for now, and justify this selection
in the evaluation section (see sensitivity study in Section
5). Fig. 1 shows an overview of ARQ. Each queue cor-
responds to applications of a specific class. From top to
bottom we move from more to less demanding applica-
tions. Upon arrival, the cluster manager determines the
class an application belongs to and queues it appropriately.
Each class has a corresponding server pool of appropriate
resource quality. Separating applications based on their
resource quality requirements helps ARQ resolve bottle-
necks where applications that are sensitive to interference
block workloads that are not. On the other hand, applica-
tions cannot be queued indefinitely waiting for the perfect
server. We address this issue by diverging workloads to
queues with better or worse resource qualities.

3.2. Waiting Time versus Resource Quality

Diverging an application to a different queue creates a
trade-off between the time an application is waiting in
a queue, and the quality of resources it is allocated. We
approach this trade-off as an optimization problem.
Queue bypassing: When there is no available server in
the pool of a class, queued workloads should be diverged
to another queue. There are two possible options for
where a workload can be redirected. First, it can be di-
verged to a higher queue. If the queue directly above the
queue the workload was originally placed in is empty, the
workload is assigned to one of its servers. This hurts uti-
lization, since resources of higher quality than necessary
are allocated, but preserves the workload’s QoS require-
ments. In the opposite case the workload is diverged to a
lower queue. In that case, performance may be degraded,
since the application receives resources of lower quality
than required. However, the scheme guarantees that in all
cases the application will be assigned to a server within
the time window dictated by its QoS constraints.
Free-server probability distributions: ARQ needs to
know the likelihood that a server of a specific class will
become available within the time an application can be
queued for, to decide when the workload should be di-

verged to the next queue. We statistically analyze the
server busy time periods for each server pool to obtain
these probability distributions. Busy periods are defined
as the per-server time intervals from the moment a server
is assigned a workload, until that workload completes.

We first use distribution fitting to represent the per-pool
server busy time in a closed form using known distribu-
tions. Fig. 2a shows the CDF of server busy time for
the first server pool (highest quality servers) in a 1,000
server experiment. More details on the methodology can
be found in Section 4. We show the experimental data
(dots) and the closed form representation, derived from
distribution fitting. In this case, the data is fitted to a curve
resembling a normal distribution. The CDF reflects the
fraction of servers that are freed within some time after
they have been allocated to an application. For example,
60% of servers in this server pool are freed within 2700
sec from the time an application is scheduled to them.

Using this closed form CDF we easily derive the free-
server CDF, which reflects the probability that within a
time interval from an application’s arrival, at least one
server of the corresponding pool will be available. Fig. 2b
shows the free-server probability CDF for the first server
pool. The highlighted point shows that there is a 60%
probability that within 56 sec from an application’s arrival
to that queue, there will be at least one free server in the
pool. Free-server CDFs are updated during workload
execution to capture changes in application behavior.
Switching between queues: ARQ determines the switch-
ing point between queues with the objective to maximize
the probability that a server becomes available within a
certain window from an application’s arrival. For simplic-
ity of explanation we assume that an application’s QoS
is defined at 0.95x of the application’s optimal perfor-
mance. This means that the workload can tolerate at most
a 5% performance degradation. Scheduling deadlines
or queries-per-second (QPS) can also serve as queueing
constraints. Given the free-server CDFs for each server
pool, ARQ solves the following optimization problem for
application a, switching between queues i and j:

max{(Sa −wti(t)) ·Qi ·Pri[t],(Sa −wt j(t)) ·Q j ·Pr j[t]}
s.t. (wti(t)+wt j(t)+Pa)< 0.05 ·CTa

where Pri[t] is the probability that there is a free server
in queue i, Qi is the resource quality of queue i, CTa is
the optimal execution time for application a, Pa is the
classification overhead of Paragon, and Sa = 1.05 ·CTa −
Pa is the available “slack” that can be used for queueing,
before the application violates its QoS constraints. ARQ
finds the switching time that maximizes the probability
that a server of either queue i or j will become available
such that the application preserves its QoS guarantees. It
also promotes waiting longer for a server of the same class
rather than eagerly switching to the next queue (Qi > Q j).
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Server Type GHz, cores, L1(KB), LLC(MB), mem(GB) #
Xeon L5609 1.87 2x8 32/32 12 24 DDR3 1
Xeon X5650 2.67 2x12 32/32 12 24 DDR3 2
Xeon X5670 2.93 2x12 32/32 12 48 DDR3 2
Xeon L5640 2.27 2x12 32/32 12 48 DDR3 1

Xeon MP 3.16 4x4 16/16 1 8 DDR2 5
Xeon E5345 2.33 1x4 32/32 8 32 FB-DIMM 8
Xeon E5335 2.00 1x4 32/32 8 16 FB-DIMM 8
Opteron 240 1.80 2x2 64/64 2 4 DDR2 7

Atom 330 1.60 1x2 32/24 1 4 DDR2 5
Atom D510 1.66 1x2 32/24 1 8 DDR2 1

Table 1: Server characteristics of the local cluster. The
total core count is 178 for 40 servers of 10 different SCs.

In our analysis we assume batch, single-node appli-
cations. In the case of interactive or transactional work-
loads additional care must be taken to accommodate load
changes, e.g., through VM migration. The scheduler de-
tects such changes and adjusts workload placement to
preserve QoS. Detection is based on SoI injection and
application reclassification.

4. Methodology
Server systems: We evaluated Paragon on a 40-machine
local cluster (Table 1) and a 1000-machine cluster with
14 server types on EC2. We used exclusive (reserved)
server instances, i.e., there is no interference from external
workloads. We also verified that no external scheduling
decisions or actions such as auto-scaling or migration are
performed during the course of the experiments.
Schedulers: We compared Paragon with ARQ to four
schedulers. First, Paragon without admission control,
second, a heterogeneity-oblivious scheme that only ac-
counts for interference but not heterogeneity. Third, an
interference-oblivious scheme and finally, a scheduler
that is both heterogeneity and interference-agnostic, and
assigns applications to least-loaded machines.
Workloads: We used 29 single-threaded, 22 multi-
threaded, 350 multi-programmed and 12 I/O-bound work-
loads. We use the full SPEC CPU2006 suite and work-
loads from PARSEC [7], SPLASH-2 [32], BioParal-
lel [18], Minebench [22] and SPECjbb. For multipro-
grammed workloads, we use 350 mixes of 4 applications
each [26]. The I/O-bound workloads are data mining
applications in Hadoop and Matlab. For scenarios with
more than 413 applications we replicated these workloads
with equal likelihood and randomized their interleaving.
Workload scenarios: For the small-scale experiments
we examine three workload scenarios. First, we exam-
ine a low-load scenario with 178 applications, selected
randomly from the workload pool, and submitted with
10 sec inter-arrival times. Second, a high-load scenario
where 178 applications arrive following a Gaussian distri-
bution (µ=10, σ2=1) that experience significant phases
during their execution. Finally, we examine a scenario,

Figure 3: Performance comparison of Paragon and
ARQ, across two workload scenarios, against Paragon
without admission control, a heterogeneity-oblivious, an
interference-oblivious and a least-loaded scheduler.

where 178 applications arrive with 1 sec intervals. This
is an oversubscribed scenario, since after a few seconds
there are not enough resources to execute all applications
concurrently. For the large-scale experiments on EC2 we
examine an oversubscribed scenario where 7,500 work-
loads arrive with 1 sec intervals and an additional 1,000
applications arrive in burst after the first 3,750 workloads.

5. Evaluation
5.1. Small-scale Experiments

Performance: Fig. 3 shows the performance compari-
son between the different schedulers for the second and
third scenarios in the small-scale cluster. The differences
for the low-load scenario where resources are plentiful
are small. We focus on the differences between Paragon
without and with the use of ARQ. Applications are or-
dered from worst to best performing. For the scenario
with workload phases the applications that preserve their
QoS increase from 66% to 91%, and the average perfor-
mance improves to 99.3%. For the oversubscribed system,
while without ARQ only 64% of applications maintain
their QoS, with ARQ 88% of workloads preserve their
performance requirements. This shows that accounting
for resource quality at admission point drains the backlog
of queued workloads much faster.
Overheads: ARQ limits waiting time to preserve QoS.
Fig. 4 shows the breakdown of execution time for se-
lected applications in the oversubscribed scenario. Time
is divided in useful execution time, overheads from train-
ing and classification, overheads from the greedy server
selection [14] and overheads from queueing. mcf and
blackscholes do not have a bar for the least-loaded (LL)
scheduler because they did not complete successfully due
to memory exhaustion in the server. In all cases overheads
are very low and execution time for most workloads is
very close to one (optimal). The overheads from queueing
are less than 5% at all times. The cases where queueing
is high correspond to workloads that had to be diverged
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Figure 4: Overheads from classification, queueing and scheduling compared to useful execution time. Overall, the
overheads in Paragon with ARQ are less than 5% for most applications.

Figure 5: Required versus allocated core count for the
oversubscribed scenario in the small-scale system and
sensitivity of ARQ to the number of queues. Performance
and utilization are normalized to the values for 10 queues.

to queues of lower resource quality, in which case useful
execution time is also suboptimal.
Resource allocation: Fig. 5a shows the required versus
allocated core count for Paragon with and without ARQ
for the oversubscribed scenario. Once the system en-
ters the oversubscribed phase ([9000-17000]sec), Paragon
without ARQ allocates all available cores and then queues
applications, while Paragon with ARQ will only dispatch
applications if an appropriate server is freed. This drains
the backlog faster since, even though applications are
queued for longer, they run in higher quality platforms.
Server utilization: We also measure server utilization
before and after the use of ARQ. We focus on the over-
subscribed scenario where ARQ has the highest impact.
Paragon without ARQ improves utilization by 47% com-
pared to a LL scheduler. Adding ARQ slightly reduces
this improvement since applications are queued instead
of being dispatched immediately. Despite this, utilization
still improves by 45.5%. This means that the performance
benefits of ARQ do not incur an efficiency penalty.
Sensitivity to design parameters: Fig. 5b shows the
performance - utilization tradeoff for different numbers of
queues. Both metrics are normalized to the values for 10
queues. More queues result in fewer cases of workloads
being blocked behind demanding applications, therefore
they improve performance, but reduce the number of
servers in the corresponding pools, hurting utilization.
In contrast, few queues revert to the default scheduler
where many applications are scheduled in FIFO order,
increasing utilization and hurting performance. 10 queues
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Figure 6: Performance for the different schedulers in the
oversubscribed scenario on 1,000 EC2 machines.

achieve both high performance and efficiency.
Large-scale experiments: Fig. 6 compares the perfor-
mance of the different schedulers for the large-scale sce-
nario. While Paragon without ARQ only preserves QoS
for 61% of workloads, introducing admission control in-
creases that fraction to 83%. Additionally, it bounds
degradation to less than 10% for 99% of workloads. This
shows that the protocol scales well with the number of
servers and applications, while maintaining overheads
similar to the ones for the small-scale experiments.

6. Conclusions

We have presented ARQ, a QoS-aware admission con-
trol protocol for heterogeneous datacenters. ARQ divides
applications to classes based on their resource quality re-
quirements and queues them separately in a multi-class
network. ARQ is derived from validated queueing models,
and it improves system throughput by reducing applica-
tion waiting time, and diverging workloads to different
queues when necessary. In an oversubscribed scenario
with 8,500 applications on 1,000 servers, 99% of work-
loads experience less than 10% degradation compared to
79% of workloads without ARQ.
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