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Abstract

Minimizing the total amount of physical memory con-
sumption of a set of virtual machines (VM) running on a
physical machine is the key to improving a hypervisor’s
consolidation ratio, which is defined as the maximum
number of VMs that can run on a server without any
performance degradation. To give each VM just enough
physical memory equal to its true working set (TWS),
we propose a TWS-based memory ballooning mechanism
that takes away all unneeded physical memory from a
VM without affecting its performance. Compared with a
state-of-the-art commercial hypervisor, this working set-
based memory virtualization technique is able to produce
noticeably more effective reduction in physical mem-
ory consumption under the same input workloads, and
thus represent promising additions to the repertoire of
hypervisor-level optimization technologies.

1 Introduction

Memory virtualization enables the hypervisor to allocate
to each running VM just enough physical memory with-
out performance degradation (memory ballooning) and
consolidate physical memory pages with identical con-
tents across VMs (memory deduplication [6, 10, 18, 16]).
These optimization techniques make the best of the avail-
able physical memory on a virtualized server and maxi-
mize the number of VMs that could run on it, or the con-
solidation ratio. Because memory deduplication is an
important technique used in both commercial and open-
source hypervisors [21, 8] and has been extensively dealt
with in a separate paper [13], this paper focuses only on
memory ballooning.

When a VM is started, the amount of physical memory
that the hypervisor gives to the VM is equivalent to that
specified in its configuration file. However, in most cases
VMs do not use up all the given memory because VMs
tend to be provisioned conservatively. By definition, the

amount of physical memory that a VM needs at any point
in time is its working set size at that instant. Therefore, if
there exists a way to accurately estimate a VM’s working
set size, the hypervisor could leverage this estimate to
take away unneeded memory pages from the VM using
the memory ballooning mechanism [21, 8, 20].

This paper describes the design, implementation and
evaluation of an intelligent memory ballooning algo-
rithm based on the working set size information of run-
ning VMs. To derive the working set size of a given VM,
we exploit the page reclamation mechanism built into
the guest OS by iteratively decreasing the VM’s physi-
cal memory allocation until it starts swapping in pages.
When we say a VM’s current working set size is X, we
meant the size of the memory pages the VM is going to
access in the next observation window is X. In our de-
sign, the observation window is set to 1 second.

2 Working Set Estimation

The physical memory given to a VM on a virtualized
server at the start-up time forms the VM’s guest physi-
cal address space, which is mapped to the server’s ma-
chine physical address space through a mapping table,
the Extended Page Table (EPT) in the case of the X86
architecture. The working set of a VM is defined as
the set of memory pages in the guest physical address
space that are being actively used by the VM in the re-
cent past [21]. If a VM’s working set is a proper subset
of the VM’s guest physical address space, some physi-
cal memory pages allocated to the VM could be safely
reclaimed. Even when a VM’s exact working set is not
available, being able to estimate the working set’s size is
still useful.

A naive way to determine a VM’s working set is to in-
tercept memory accesses made by the VM, for example,
marking a VM’s memory pages as not-present in the EPT
so as to trap and record the number of accesses to each of
its pages. The working set of a VM is the set of memory
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pages that have been accessed at least once in the obser-
vation window. However, this scheme is infeasible be-
cause the overhead of trapping every memory read/write
is simply too prohibitive to be acceptable in practice. To
get around this problem, VMware’s ESX used a sam-
pling approach to estimating the working set size of a
VM. Periodically it marks a randomly sampled subset
of the VM’s guest physical pages as invalid, counts the
number of pages in the subset that are accessed when-
ever a protection fault against any of these pages occurs,
and uses the resulting count to infer the VM’s working
set size.

Another way to estimate a VM’s working set size,
used by the self-ballooning mechanism [15] in the Xen
hypervisor, is to directly use the Committed AS statis-
tic maintained by the Linux kernel, which corresponds
to the total number of anonymous memory pages con-
sumed by all processes on a VM. For page reclamation,
Linux maintains two LRU (Least Recently Used) lists,
Active and Inactive, for each of the following two types
of memory pages: (1) Anonymous Memory, which cor-
responds to the heaps and stacks of user processes, and
(2) Page Cache, which corresponds to the kernel’s mem-
ory to buffer and cache the payloads of disk reads and
writes.

Utilizing the hardware reference bit, Linux puts pages
that are accessed more frequently into Active list and
leave pages that are accessed less frequently in Inactive
list. The page reclamation mechanism traverses the In-
active list to free its pages and possibly re-allocate them.
If a reclaimed page belongs to anonymous memory, the
kernel marks the page’s page table entry as non-present,
and swaps out the page’s content to the swap disk. When
the page is later accessed, a swapin event occurs and it is
swapped in. If a reclaimed page belongs to page cache,
the kernel flushes its content to disk if it has been dirtied.
If the page is later accessed, a refault event occurs and it
is brought back in.

When a VM’s physical memory allocation is larger
than or equal to its working set size, the number of
swapin and refault events should be close to zero. This
observation inspires the third way to estimate a VM’s
working set size: Gradually decreasing the balloon tar-
get of the balloon driver in the VM until the VM’s swapin
and refault counts start to become non-zero. The amount
of physical memory allocated to the VM at that instant is
the VM’s working set size. More concretely, a 3-state
finite state machine, as shown in Figure 1, is used to
adaptively track a VM’s working set size (WSS). Any-
time the WSS changes, we adjust the VM’s balloon tar-
get accordingly. The finite-state machine starts in the
FAST state and initializes the VM’s WSS to the VM’s
Committed AS. While in the FAST state, the finite-state
machine iteratively lowers the VM’s WSS by 5% of the
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Figure 1: The finite-state machine used to track a VM’s
working set size.

current Committed AS value at the end of every epoch
(epoch size set to 1 second currently), until swapin or
refault events occur within the current epoch, which
suggests the finite-state machine may have overshot the
WSS adjustment. As soon as swapin/refault events arise
in an epoch, the finite-state machine raises the VM’s cur-
rent WSS estimate by the sum of the observed swapin
and refault event counts, and enters the COOL DOWN
state, regardless of whether the finite-state machine was
originally in the FAST, COOL DOWN or SLOW state.

While in the COOL DOWN state, the finite-state ma-
chine initializes a cool-down counter to a default time-
out value (currently set at 8 seconds) and waits for
it to expire, and resets the cool-down counter to the
same default value if additional swapin/refault events
arise. In the SLOW state, the finite-state-machine ap-
plies the same logic as in FAST state except that the
VM’s WSS is iteratively lowered by 1% of the cur-
rent Committed AS value in each epoch. Whenever
the tracked VM’s Committed AS changes, the finite-
state machine considers the VM’s working set size has
changed significantly, and resets itself by entering the
FAST state and re-initializing the VM’s WSS to the new
Committed AS.

3 TWS-based Memory Ballooning

Memory ballooning [21, 8] is a technique that reclaims
physical memory from a VM by installing inside the VM
a balloon driver that allocates memory pages from the
VM’s kernel via the standard APIs, pins them down, and
returns them to the hypervisor. The balloon target of a
balloon driver is the difference between the VM’s con-
figured memory requirement and the amount of memory
it allocates from the VM.

How to correctly set a VM’s balloon target is an impor-
tant issue. When a balloon driver allocates more than the
host VM’s free memory pool, the VM OS’s page recla-
mation mechanism is triggered to evict cold pages. The
upper bound on a VM’s balloon target is the VM’s con-
figured memory requirement, and the lower bound is the
VM’s minimum memory requirement that prevents Out-
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of-Memory exceptions. The optimal way to set a VM’s
balloon target is to set it to the VM’s working set size, be-
cause this allows the hypervisor to reclaim the maximum
amount of physical memory from a VM while reducing
the performance impact on the VM to the minimum.

The self-ballooning mechanism in the Xen hyper-
visor sets a Linux VM’s balloon target to its current
Committed AS value. This approach guarantees that
applications consuming anonymous memory not suffer
from any swap-in delay because all their stacks and
heaps are likely to be memory-resident. However, com-
pared with the working set-based approach to setting
the balloon target, this approach has two deficiencies.
First, Committed AS does not factor the page cache
into a VM’s physical memory demand, and thus may
cause substantial performance degradation for applica-
tions with intensive disk I/O activities, which could sig-
nificantly benefit from the page cache. In contrast, the
working set approach keeps a counter for refault events,
and incorporates this counter into the calculation of a
VM’s working set size and thus balloon target. Second,
Committed AS captures only the pages that are allocated
but not those that are actually used recently. More specif-
ically, Committed AS is incremented upon the first ac-
cess to each newly allocated anonymous memory page
and is decremented only when the owner process explic-
itly frees the page. For example, if a program allocates
and accesses a memory page only once when the pro-
gram starts but leaves it untouched until the program ex-
its, the Linux kernel cannot exclude this cold page from
a VM’s Committed AS even though it is clearly outside
the VM’s working set. In contrast, the working set ap-
proach actively forces the VM OS to invoke its page
reclamation mechanism to pinpoint and evict cold pages.

4 Performance Evaluation

In this paper, we report the results of a performance eval-
uation study of TWS-based memory ballooning. The
test machine used in this study contains an Intel Core
i7 quad-core processor with VT and EPT enabled and
16 GB physical memory, and runs Xen-4.1 with 64-bit
vanilla Linux 3.2.6 as the Dom0 kernel. All the VMs in
this study are configured with 1 virtual CPU and 2GB
memory, and run Linux 3.2.6 64-bit kernel with the our
developed zballoond kernel module for memory balloon-
ing. Zballoond is a kernel thread that wakes up every
second to collect relevant information, such as Commit-
ted AS, swapin count and refault count, and make adjust-
ments to the balloon target.

To verify the effectiveness of these TWS-based bal-
looning algorithm, we first compared it with self-
ballooning mechanism in the Xen hypervisor. Then we
compared it with the latest VMware ESXi 5.0 server.1

Benchmark TWS Ballooning Self Ballooning
Used Degra- Target Degra- Target

dation dation
SPECweb 0% 263.3MB 0% 263.3MB
SPECcpu 3.08% 783.6MB 4.11% 922.6MB

OLTP 3.31% 350.8MB 17.99% 328.8MB

Table 1: Comparison between TWS-based ballooning
and self ballooning in terms of performance degradation
and balloon target for the three benchmarks, SPECweb
Banking, SPEC CPU 401 and OTLP. The performance
degradation is calculated based on a comparison with
the performance of the same VM that is configured with
2GB memory.

In this comparison, we used two identical test machines
where one runs the Xen hypervisor with the TWS-based
memory virtualization optimizations and the other runs
the ESXi server. The memory given to each VM does
not include anything owned by the hypervisor.

4.1 Effectiveness of TWS-based Ballooning
We evaluate the effectiveness of TWS-based ballooning
by comparing the performance degradation and balloon
target of a VM running a set of benchmark programs
when TWS-based ballooning is used with those when
Xen’s self-ballooning is used. The balloon target of a
VM is the amount of physical memory that a memory
ballooning scheme allocates to the VM. The performance
degradation of a memory ballooning scheme is the per-
formance difference between a benchmark program run-
ning in a VM whose physical memory allocation is con-
trolled by the ballooning scheme in question and the
same benchmark program running in a VM that is con-
figured with and indeed given 2GB memory, or the Base-
line configuration. The following three benchmark pro-
grams are used: SPECweb Banking [3] running against
Apache [1], SPEC CPU, and OLTP from the Sysbench
suite [4] running against MySQL [2].

Table 1 shows the performance degradation and bal-
loon target comparison between TWS-based ballooning
and self-ballooning for the three benchmark programs.
The memory requirement of SPECweb Banking bench-
mark is smaller than the minimum physical memory al-
location to the test VM, 263.3MB. As a result, both
TWS-based ballooning and self-ballooning produce the
same balloon target, which is the same as the minimum
physical memory allocation, and the benchmark program
does not experience any performance degradation under
TWS-based ballooning and under self-ballooning, when
compared with the Baseline configuration. For the SPEC
CPU 401 benchmark, the average balloon target of TWS-
based ballooning is 15.07% (783.6MB vs. 922.6MB)
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Figure 2: The balloon targets produced by TWS-based
ballooning and self-ballooning over time, and the result-
ing combined swapin and refault count over time under
TWS-based ballooning, when the SPEC CPU 401 bench-
mark is used as the test workload.
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Figure 3: The balloon targets produced by TWS-based
ballooning and self-ballooning over time, and the result-
ing combined swapin and refault count over time un-
der TWS-based ballooning, when the Sysbench OLTP
benchmark is used as the test workload.

smaller than that of self-ballooning, and yet the perfor-
mance degradation of TWS-based ballooning is smaller
than that of self-ballooning (3.08% vs. 4.11%).

The superiority of TWS-based ballooning comes from
the fact that the working set size it produces effectively
removes pages that are allocated but unused, as shown
by the gap between the two balloon target curves in Fig-
ure 2. However, despite allocating a smaller amount
of physical memory to the test VM, the performance
degradation of TWS-based ballooning is smaller than
self-ballooning, because it reacts faster to the sudden
change in the VM’s demand, e.g. at time points 320 sec-
onds, 460 seconds, and 630 seconds of Figure 2. Dur-
ing these transitions, TWS-based ballooning is able to
allocate more physical memory than Committed AS, and
thus cuts down unnecessary swapin and refault events.

Because the OLTP benchmark performs intensive disk
I/O accesses and thus requires a larger page cache, Com-
mitted AS is not an accurate estimate of the benchmark’s

working set as it does not take into account page cache.
As a result, the average balloon target produced by TWS-
based ballooning is 6.70% higher than self-ballooning,
and justifiably so, because the performance degradation
of TWS-based ballooning is only 3.31%, which is signif-
icantly smaller than that of self-ballooning, or 17.99%.
As shown in Figure 3, TWS-based ballooning detects re-
fault events and increases the test VM’s balloon target
accordingly, and as a result produces a balloon target that
is more in line with the VM’s working set size and more
capable of reducing the performance overhead of mem-
ory ballooning to the minimum.

We also run two VMs, one with a constant working set
size of 300MB and the other with a constant working set
size of 1200MB, on the Xen hypervisor with TWS-based
ballooning and on VMware’s ESXi 5.0. Each VM is
configured with 2 GB memory but given only 263.3MB
at the start-up time. After these two VMs start to run,
it takes TWS-based ballooning 10 seconds to reach the
ideal physical memory allocation, i.e., giving 300MB to
the 300MB VM and giving 1200MB to the 1200MB VM.
However, for the same set-up, it takes VMware ESXi 136
seconds to reach the same ideal physical memory alloca-
tion. The reason that VMware ESXi takes longer to ac-
complish the same is because it uses a sampling approach
to probe a VM’s working set size.

5 Related Work

Standard operating systems estimate the active portion
of buffer cache or page cache by maintaining LRU-
like statistics [19, 12, 5] to implement page replacement
logic. Lu et al. [14] proposed to allocate a small por-
tion of memory to each VM while leaving the remaining
memory as an exclusive cache is managed by the hyper-
visor. Thus, the memory accesses of VMs can be in-
tercepted within the exclusive cache, and the LRU miss
ratio curve [5] is derived to measure the working set size.
Zhao et al. [24, 23] track the memory access of VMs by
changing the user/supervisor privilege bit of guest page
table entries to supervisor mode so that all memory ac-
cess of VM will be trapped because the VM runs in user
mode. Similarly, the LRU miss ratio curve is also derived
for working set size prediction.

To reduce the overhead from trapping memory access,
the VMware ESX server [21] uses sampling based mech-
anism to predict the working set size of VMs. To per-
form the sampling, the ESX server randomly chooses a
few hundreds memory pages periodically, e.g., the de-
fault setting is to choose 100 pages per 60-second for
each VM. However, this mechanism only gives a rough
estimation of the VM working set size, and it can not re-
flect the working set size exceeding the current allocated
memory.

4
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When it comes to reclamation mechanism, the Clock
algorithm [9] is commonly used in guest OSs and sev-
eral research efforts [17, 22, 7, 11] aimed to estimate
the working set size by monitoring the changes of access
bit on the hardware page table. This approach requires
modifications to the guest OS. In contrast, our approach
leverages the guest OS’s page reclamation mechanism
and does not require any guest OS modifications.

6 Conclusion

Making efficient utilization of the physical memory
available on a virtualized server is a key technical chal-
lenge for modern hypervisors. Possible solutions include
memory de-duplication, which allows different VMs to
share common pages, and memory ballooning, which re-
claims unused pages from a VM when its physical mem-
ory allocation is larger than its working set size. This
paper describes and evaluates techniques that exploit the
knowledge of each VM’s working set to deliver more ef-
ficient memory ballooning. More concretely, the specific
research contributions of this work are

• A low-overhead active probing mechanism that
could accurately sense the working set of each VM
and track it dynamically,

• An intelligent memory ballooning algorithm that
could detect allocated but unused pages and reclaim
them, and

Compared with VMware’s ESXi, which is a state-of-
the-art hypervisor, the proposed working set estimation
scheme is more accurate and more responsive to working
set changes, but incurs a slight probing overhead, the pro-
posed memory ballooning algorithm is able to quickly
reclaim more memory pages without incurring additional
performance penalty.
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