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Abstract

The growing popularity of virtualized data centers and

clouds has led to virtual machine sprawl, significantly in-

creasing system management costs. We present Coriolis,

a scalable system that analyzes virtual machine images

and automatically clusters them based on content and/or

semantic similarity. Image similarity analysis can im-

prove in planning many management activities (e.g., mi-

gration, system administration, VM placement) and re-

duce their execution cost. However, clustering images

based on similarity – content or semantic – requires large

scale data processing and does not scale well. Coriolis

uses (i) asymmetric similarity semantics and (ii) a hierar-

chical clustering approach with a data access requirement

that is linear in the number of images. This represents a

significant improvement over conventional clustering ap-

proaches that incur quadratic complexity and therefore

becoming prohibitively expensive in a cloud setting.

1 Introduction

Cloud computing lends a fundamental shift to how busi-

nesses view IT, from being capital-intensive to being a

commodity that can be acquired on-demand and paid for

as per usage. However, the growing popularity of cloud

data centers has led to the problem of virtual machine

sprawl. Standardization is a key principle that allows

cloud providers to provide services on-demand and at a

lower cost than what individual IT departments can do.

System management costs reduce with standardization of

software at all levels: operating systems, middleware, ap-

plications, and management tools [1, 13].

We conjecture that classifying (possibly) diverse vir-

tualized servers in a cloud into clusters of similar virtual

machines (VMs) can improve the planning of many sys-

tem management activities. We classify VM similarity

into two types – content similarity and semantic similar-

ity. Content similarity refers to data similarity in the raw

files that constitute virtual machines. Semantic similarity

refers to the similarity in the operating system, middle-

ware, and application software present in two virtual ma-

chines. Several management activities can be planned

better to reduce their execution cost using analysis of

content and/or semantic similarity.

We develop and evaluate Coriolis, a framework for

clustering images based on any given notion of similar-

ity. Conventional clustering techniques require at least

quadratic data access or worse, prohibitive for cloud en-

vironments with a large number of VMs. Further, cluster-

ing images based on the conventional symmetric notion

of similarity leads to a uniform data access pattern; con-

sequently, caching techniques that leverage popularity or

locality for optimizing index lookup in deduplication sys-

tems [15, 6] are not applicable. Coriolis employs a novel

tree-based VM clustering algorithm that consumes time

that is only linear in the number of images. The algo-

rithm uses an asymmetric notion of similarity to avoid

computing all-pairs similarity values and a hierarchical

order to introduce popularity in data access.

2 VM Similarity: Types and Applications

The similarity across VMs in enterprise data centers and

clouds has been studied extensively in the context of data

deduplication [5, 6, 8, 9, 15]. In this section, we dis-

cuss both content and semantic similarity and then dis-

cuss how such similarity can be utilized for streamlining

system management tasks.

2.1 Content Similarity

The classical notion of similarity is that of content,

whereby a subset of the bytes contained within the im-

ages are identical. Identical content can occur either in

the form of whole or partial files [11] and techniques to

detect similar content have ranged from whole file and

fixed size chunking to more sophisticated variable size

chunking [8, 15]. Content similarity is useful in minimiz-

ing the amount of data that needs to be managed for a task

involving a collection of VMs (e.g., VM backup [14] or

Virtual Image Library [3]). A recent large-scale study of

VM images in a production IaaS cloud investigates such

content similarity [7]. This study found that the distri-

bution of content similarity across images is skewed and

that individual VM images tend to be similar to a small

subset of images than to the entire image population lead-

ing to clusters of similar images. They also noted that

computing pair-wise similarity is very expensive and re-

ported results for only 30% of their image collection due

to scalability issues.

2.2 Semantic Similarity

Semantic similarity characterizes the similarity of soft-

ware functionality within images. Examples of seman-

tically similar software include instances of the same

application, different versions of the same application,

or even different applications that accomplish the same

goal (e.g., MySQL and DB2 which both implement

database systems and require database expertise to man-

age). Causes for semantic similarity include standard-

ization of the software stack in modern enterprises and

1



102 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

Use Case Content Semantic

Administrator Allocation × �
Troubleshooting × �
VM Placement � �

Migration � �

Table 1: Similarity types relevant for each use case

the popularity of specific types of programming mod-

els. As identified in previous work, when enterprises are

migrated to the cloud, they are adjusted and standard-

ized so that the same set of agents and processes can be

used for management services such as backup recovery,

security compliance, and patching [13]. Semantic sim-

ilarity is useful for streamlined system administration,

troubleshooting, and management tasks such as grouped

scheduling of maintenance and upgrade engineers lead-

ing to lower personnel costs. With the growing problem

of virtual image sprawl, administrators find it increas-

ingly difficult to keep track of what software is installed

on each VM. Automating the detection of VMs with se-

mantically similar software is thus valuable. Unfortu-

nately, the nature of semantic similarity in enterprise and

cloud data centers is not well understood.

2.3 Harnessing Image Similarity

We identify four common system management scenarios

that can leverage image similarity to reduce data center

costs. The most natural use case is allocation of servers

to system administrators for routine maintenance. It has

been shown that system administrators can be more effi-

cient and manage up to 80% more servers if the servers

have a similar software stack [1]. A second use case

is troubleshooting system errors during regular updates

in data centers. Troubleshooting in data centers is of-

ten akin to manual outlier detection where the engineer

attempts to identify servers that responded similarly to

the update. Once similar servers are identified, the engi-

neer identifies the difference between the failed server

and the successful server to fix the issue. Automated

clustering of servers based on semantic similarity can aid

such identification. Third, placement of VMs to hosts or

to management systems often leverage content for effi-

ciency. Images with high semantic similarity are likely to

exhibit higher number of duplicate pages in main mem-

ory, which can be deduplicated. Similarly, images with

higher content similarity can benefit more from dedupli-

cation performed at a shared management server (e.g.,

vSphere [14]).

The final use case is migration of enterprise applica-

tions from one data center to another. Migration is per-

formed in batches or waves, where a certain number of

images (e.g., 25) are migrated in one weekend [13]. Mi-

grating images with similar content together can reduce

migration time using deduplication. Further, images with

similar applications can be reconfigured with fewer ap-

plication experts, reducing migration cost. Identifying

image clusters with both high content and semantic sim-

ilarity and using them to create waves can help reduce

both migration time and cost. Table 1 summarizes the

type of similarity relevant for all the use cases.

3 Similarity-based VM Clustering

Clustering is a well-studied problem in computer science.

While the problem is NP-hard, various heuristics exist

with acceptable clustering performance.

3.1 A Representative Clustering Algorithm

k-means is one of the most popular clustering techniques

employed in the real world. The algorithm starts with an

initial set of k-clusters and refines them iteratively. Even

though multiple variants of the algorithm exist, they all

apply two canonical operations in each iteration:

• Assignment Step: Assign each element to the clus-

ter with the closest mean. Distance computation is

the core internal operation, performed k times for

each element. If there are N elements to cluster, this

requires kN Distance operations.

• Update step: Calculate the new mean for each clus-

ter. The core step is a Merge operation which com-

putes the average for 2 elements along each of the D

dimensions. In each iteration, across the k clusters,

N −1 merge operations are performed.

The worst case time for k-means is exponential in N. For

arbitrary set of points in [0,1]D, if each point is indepen-

dently perturbed by a normal distribution with variance

σ2, then the expected running time of k-means algorithm

is bounded by O(N34k34D8 log4(N)/σ6) [4]. Even for

simple cases, the best known bounds on average running

time are at least O(N4).

3.2 A Similarity Function for Images

In spite of its high computational complexity in number

of elements, k-means is popular in practice because the

time taken for each Distance and Merge operation is usu-

ally very small. Even for problems with 100 dimensions,

Distance and Merge operations require only about 100

addition and division operations. However, these opera-

tions are not very well-defined for VM images. We first

define a natural definition of these operations and then

present the time taken for each operation.

For VM images, it is more natural to define a similarity

measure than a distance measure. Two images are sim-

ilar if they contain a large number of identical elements

(files or software). Given a pair of images Ii, I j, similarity

between the images can be defined as

SIM(Ii, I j) =
wt(Ii ∩ I j)

wt(Ii ∪ I j)
(1)
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Image Size Similarity Merge

8.8 GB 45.5 sec 14.7 sec

12.3 GB 75.2 sec 24.1 sec

13.6 GB 98.5 sec 31.2 sec

16.3 GB 142.3 sec 44.2 sec

19.7 GB 172.2 sec 53.5 sec

22.1 GB 232.7 sec 64.9 sec

Table 2: Time for Similarity and Merge operations.

Images and file are stored in a database making use

of appropriate indices for these operations.

where Ii∪ I j is a meta-image that consists of the union of

Ii and I j, Ii ∩ I j is a meta-image that consists of the inter-

section of Ii and I j. The weight (wt) function is defined

based on the type of similarity that needs to be computed.

To estimate content similarity, the wt function is the sum

of all files in the image, weighted by the sizes of the files.

To estimate semantic similarity, the wt function is the

sum of all software deployed in the image weighted by

the complexity of the software. Adopting other notions

of similarity is straightforward (e.g., a weighted compo-

sition of content and semantic similarity). Distance can

now be calculated simply as 1− SIM(Ii, I j). The Merge

operation would create a new image that constitutes the

set of all unique elements across the images.

3.3 Scaling Challenge

We measured the running time for a single Similarity

and a single Merge operation on a dual-core 2 GHz In-

tel Xeon with 4GB memory and images stored on a 5-

disk RAID5 SATA array. Table 2 lists run times for

real images of different sizes. While the actual times

seem small, in aggregate, the costs of these operations

present a significant challenge. For example, a data cen-

ter with 1000 images would have to perform 10003 sim-

ilarity computations (even for the best special cases on

average complexity), and would need about 2000 years.

In-memory data structures can reduce the cost of these

operations. We conducted experiments by enabling the

in-memory feature in MySQL. We observed that the

maximum time taken for one similarity computation is

5 seconds (a reduction of 50X), which though significant

only brings down the similarity computation in our previ-

ous example to 40 years. Further, this requires the entire

index to be memory resident which is not practical. One

could envision computing similarity based on only files

that are larger than a certain threshold size in each image,

but that again would bring down the running time only by

a constant factor, while compromising accuracy.

An alternate approach to speed up clustering is to per-

form approximate clustering based on pair-wise similar-

ity information. The k-medoids clustering algorithm [12]

does exactly that by restricting the cluster center in an it-

eration to one of the existing points (images). Hence,

both assignment and update steps in each iteration can

leverage pair-wise similarity values that are computed in

advance. This simplifying approximation, however, still

requires pair-wise similarity computation for all images.

Since individual similarity operations are expensive for

VM images, this approach becomes un-affordable in

practice for moderate to large numbers of VMs as is typi-

cal in a cloud, as we shall demonstrate later (§4.3). Anec-

dotally, in a recent study on VM image similarity, the au-

thors reported pair-wise similarity only for a fraction of

their image corpus citing scalability challenges [7]. With

1000 images, this would take 2 years with the file sys-

tems on disk and 15 days with an in-memory system.

Clearly, there is a need to reduce the number of opera-

tions even further. Unfortunately, k-medoids suffers from

an additional challenge, that of determining k a priori.

The value of k should ideally be the minimum number of

clusters required subject to cluster size constraints dic-

tated by the application. However, this information is not

always known a priori. In the next section, we discuss

an approach that successfully overcomes the core limita-

tions of existing clustering approaches.

4 Coriolis

Coriolis uses a novel approach to VM clustering. We dis-

cuss this approach and evaluate its scalability relative to

the state-of-the-art k-medoids clustering in this section.

4.1 Solution Idea: Asymmetric Clustering

To solve the computational and memory challenge in VM

clustering, we draw on a key insight in Coriolis. First, we

observe that to significantly speed-up the Distance and

Merge operations, caching only a small subset of the im-

age manifest and hash index of image content must be

able to satisfy a large fraction of operations. Enabling

cache effectiveness requires introducing asymmetry into

the clustering algorithm, that is, the algorithm cannot af-

ford to consider all content from all images as equally im-

portant. The Coriolis clustering approach involves con-

structing a tree, where each node in the tree is either a

cluster of images or a single image, such that each level

in the tree from the root node represents a minimum ex-

tent of similarity within images in a cluster. The salient

aspects of this approach are:

• Hierarchical multi-level similarity: Use multiple

levels of similarity to quickly find most relevant

clusters. By design, restrict comparisons only with

clusters that are similar, reducing the total number

of Similarity operations.

• Ordered Index Lookup: Clusters at low similar-

ity levels are more popular than leaf nodes. Images

with popular content will require more accesses and

can be cached.

• Online Clustering: Add a new node to existing

clusters. Allows addition/deletion of images with

only incremental computation.
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S > 0.5
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Figure 1: Tree-based clustering. Computed Similar-

ity Values {(A,B):0.75, (C,E):0.95, (CE, D):0.8}

4.2 Coriolis’ Tree-based Clustering

Coriolis’s tree-based clustering approach is outlined be-

low and it is based on two key ideas. The most com-

mon operation in clustering is to identify the cluster most

similar to a given element and the first idea focuses on

speeding up this operation. Since clusters can grow to

become very large whereas individual images are typi-

cally small, we define and use an asymmetric similarity

function S within Coriolis that runs in time proportional

to the smaller of the two. In particular, we define similar-

ity as the coverage offered by a larger node B (typically

a cluster) to a new node A that is being added to the clus-

ter by replacing the union operator in the denominator by

the min operator.

S =
wt(A∩B)

min(wt(A),wt(B))
(2)

Our second key idea is to ensure skew in the usage

of images and image clusters allowing effective caching.

Further, we reuse the similarity computations done for

an image when computing similarity for other images.

Coriolis uses a tree-based partitioning of the images to

achieve both these goals. Each level of the tree represents

a predefined minimum level (extent) of similarity. The

root of the tree captures a similarity level S ≥ 0. Thus, all

images can be clustered in this meta-node. The last level

of the tree captures a similarity level S = 1; it consists

of either single images or a collection of duplicate im-

ages. Intermediate levels represent predefined similarity

levels, 0 < S < 1, which increases with the depth of the

tree. We elaborate our representation using the example

in Figure 1. Consider 5 images A,B,C,D,E . The tree

has 4 levels representing similarity of 0,0.5,0.9 and 1 re-

spectively. A and B have a similarity measure of 0.75.

Hence, they are clustered at level S > 0.5 but are inde-

pendent nodes at level S > 0.9. Similarly, C and E have

a similarity of 0.95 and are grouped together up to all

levels S > 0.9 but are independent nodes at level S = 1.

Given a new image vi, our goal is to find similar nodes

(or meta-nodes) with as few Similarity operations as pos-

sible. Coriolis’s grouping of VM image clusters within

a hierarchical tree structure allows early pruning of im-

A,B,C

D,E,F

A,B,F C,D,E

C,EA B,F D

C E

S > 0.5

S = 1.0 B F

S > 0.9

S >= 0

Figure 2: Clustering a new image F. Computed

Similarity Values are {(AB,F):0.95, (CDE,F):0.3,

(A,F):0.75, (B:F):0.95}

ages that are not similar to the new image vi. Adding a

new image to the Coriolis VM image tree, the new im-

age is first added to the root meta-node. Once an image

is added to a node, we compute the similarity of the new

node with each of its children to determine if it can be

added to any child. If the similarity S level is found ad-

equate with more than one child, the new image is only

added to the child node with which the similarity is the

greatest. If no such child node exists, we create a new

child node and add vi to the node. This process termi-

nates when we reach a leaf node.

Figure 2 illustrates a new image F as it traverses the

tree. It is important to note here that the number of

Similarity and Merge operations executed for an image is

proportional to the depth of the tree. The depth of the tree

is a pre-defined constant, bound by the log of the num-

ber of images inserted. Hence, the approach allows us to

create a tree in time no more than O(N logN), where N is

the number of images. And given the similarity levels at

various tree depths, the tree can then be queried in linear

time for clusters with specific properties.

4.3 Scalability Evaluation

To evaluate Coriolis, we used VM images from 2 pro-

duction data centers. The first set of 9 images is from a

large-scale enterprise data center at IBM. The latter set of

12 images is from the CS department’s small-scale data

center at Florida International University. The former set

of images are diverse compared to the latter set reflecting

the needs typical of a large-scale enterprise data center.

Next, we created increasingly larger sets of images from

these initial set of 21 production images. We did this by

separating out 3 of the 21 images and randomly sampling

files contained within these to generate synthetic images.

The net effect is that the synthetic images contain a ran-

dom combination of files from these 3 source images. We

performed clustering experiments in a Linux VM config-

ured with 16 GB RAM on an 6-core AMD Opteron pro-

cessor virtualized using the VMware ESX hypervisor.

We choose k-medoids for this comparison as it is sig-
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Figure 3: Scalability of k-medoids and tree-based

clustering algorithms.

nificantly faster than k-means. Fig 3 presents the time

taken by the k-medoids algorithm and the tree-based

clustering algorithm as the problem size is increased. The

time includes the time taken to read file metadata and

store it in a database, where similarity and merge op-

erations are performed. The k-medoids algorithm takes

significantly longer and displays a quadratic increase in

clustering time as the number of images is increased. We

observed that more than 95% of the time is spent in com-

puting similarity as the cluster size is increased. For clus-

tering 99 images, it takes nearly 3 days, which is clearly

unacceptable. In contrast, our tree-based clustering al-

gorithm reduces the number of similarity computations

by a factor of 8 and is able to cluster the images within

10 hours; an acceptable window of time even for heavy-

weight management VM tasks carried out over week-

ends.

5 Related Work
Redundancy elimination based on identifying duplicate

data is a popular topic of research [10, 15]. Finding sim-

ilar clusters is a related problem but is more data inten-

sive because it requires processing over the entire index

of the data as well as a manifest linking images to their

contents. Further, the data access for this problem does

not have inherent data popularity and locality, which is

used extensively by deduplication techniques for scaling.

The research work closest to ours is VMFlocks which

applies standard de-duplication techniques for images

that are migrated together across data centers [2]. Given a

batch of images, It eliminates raw data duplicates across

the given set of VM images. However, it does not tackle

identifying images with high redundancy or leveraging

semantic similarity.

6 Conclusions

We described the Coriolis framework and system that

was specifically designed for scalable clustering of VM

images so as to counter the negative effects of VM sprawl

in cloud data centers. We argued that the state-of-the-

art k-medoids clustering algorithm incurs quadratic com-

plexity which we demonstrated as infeasible for cloud

scale data centers. Coriolis’s distinguishing strength lies

in its scalable tree-based image clustering technique that

supports an arbitrary similarity metric. This novel tech-

nique allows clustering to be performed in O(N logN)
time for a data center with N images, allowing it to scale

to large data centers. Our future work will explore the

utility of Coriolis for data center administrator allocation,

troubleshooting, and large-scale VM migration.
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