
USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 59

Autonomic Management of Dynamically Partially Reconfigurable FPGA
Architectures using Discrete Control

Xin An, Eric Rutten
INRIA, Grenoble, France (xin.an@inria.fr, eric.rutten@inria.fr)

Jean-Philippe Diguet, Nicolas le Griguer
Lab-STICC, Lorient, France (jean-philippe.diguet@univ-ubs.fr, nicolas.le-griguer@univ-ubs.fr)

Abdoulaye Gamatié
LIRMM, Montpellier, France (abdoulaye.gamatie@lirmm.fr)

Abstract

This paper targets the autonomic management of dy-
namically partially reconfigurable hardware architec-
tures based on FPGAs. Discrete Control modelled with
Labelled Transition Systems is employed to model the
considered behaviours of the computing system and de-
rive a controller for the control objective enforcement.
We consider system application described as task graphs
and FPGA as a set of reconfigurable areas that can be
dynamically partially reconfigured to execute tasks. The
computation of an autonomic manager is encoded as a
Discrete Controller Synthesis problem w.r.t. multiple
constraints and objectives e.g., mutual exclusion of re-
source uses, power cost minimization.

keywords: Hardware Architectures, Dynamically
Partially Reconfigurable FPGA, Discrete Control.

1 Control of autonomic hardware

Controlling FPGAs. We apply the autonomic frame-
work to the context of FPGAs (Field Programmable Gate
Arrays), hardware devices that compute a logic function
by configuring its gates in a programmable way. A recent
progress is dynamically partially reconfigurable (DPR)
FPGAs. They support partial reconfigurations where
only part of gates are reconfigured and reconfigurations
to be performed at runtime. Autonomic computing has
been seldom applied to such hardware systems, though
they represent a significant case of its relevance.

Control for autonomic management. We adopt con-
trol techniques to design the MAPE-K (Monitor, Anal-
yse, Plan, Execute, based on Knowledge). Formal mod-
els are used to describe the possible behaviours of the
system under design, and control objectives giving the
adaptation policy are specified separately. A controller is
then derived based on the system models and objectives.
The use of classical control techniques and models, typ-
ically these based on continuous time dynamics and dif-

ferential equations, has been explored for various com-
puting systems [6] and sometimes applied for hardware
architectures [5]. A similar approach can be adopted
by using discrete control techniques, where systems are
considered from the viewpoint of events and states. The
behaviours can then be modelled in the form of Petri nets
or automata for synchronisation [10].

Discrete control for autonomic FPGAs. We apply
discrete control for the autonomic management of DPR
FPGA based embedded systems. A systematic mod-
elling framework is proposed, where system application
behaviour, task implementations and executions, archi-
tecture reconfigurations and environment are modelled
separately by using Labelled Transition Systems (LTS)
or automata. Discrete Controller Synthesis (DCS) sup-
ported by a programming language and synthesis tool has
been applied to compute an autonomic manager.

2 Background notions

2.1 FPGA-based architectures
Basic reconfigurable cell. A FPGA is composed of an
array of logic cells and programmable routing channels
to implement custom hardware functionalities. A pro-
gram consists of one or more bitstreams, which are bi-
nary files storing information to configure logical cells
and the routing switches. Recent large FPGAs contain
more than 200K logic cells that can be combined and in-
terconnected to implement very complex designs. Multi-
core architectures with tens of large hardware accelera-
tors and processors can be implemented.

Run-time partial reconfiguration. In the new gen-
eration of FPGAs, the hardware configuration can be up-
dated at run-time by using the partial reconfiguration fea-
ture. They have the ability to reconfigure hardware dur-
ing the running of the static part, i.e., the part which does
not contain any reconfigurable area. It assumes that the
hardware reconfiguration does not disturb the execution

60 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

NoC

A1 A2

A3 A4

NI

FPGA Chip

Static Region

Other HW

 Softcore
Microblaze ICAP

Compact Flash Card

Reconfigurable Region

Figure 1: FPGA with a microblaze softcore.

of the application. The bitstreams therefore cover only
some regions of the FPGA array.

Such DPR FPGAs make them suitable for address-
ing constraints on resources (re-using some areas for dif-
ferent functions for applications that can be partitioned
into phases) by adapting resources to available paral-
lelism according to environment variations. DPR FP-
GAs are a trade-off : that they are slower than ded-
icated Application-Specific Integrated Circuits (ASIC),
but much faster than using general purpose CPUs.

Management of reconfiguration. From a technical
viewpoint, each hardware configuration file used for the
different implementations of the partially reconfigurable
regions is stored into a compact flash card. It can be
loaded by a processor (e.g. microblaze, which is a 32-bit
soft-core processor as implementable on Xilinx FPGAs).
It performs the reconfiguration using the ICAP (Internal
Configuration Access Port) as in Figure 1.

The runtime management of reconfiguration involves
a control loop, taking decision according to events mon-
itored on the architecture, choosing the appropriate next
configuration to install, and executing appropriate recon-
figuration actions. The architecture dynamism increases
the design complexity, for which a complete tool-chain
is lacking [8]. Due to the relative novelty of DPR tech-
nologies, the management of reconfiguration has to be
designed manually for important parts.

Amongst different approaches to address this issue, we
investigate the adoption of an autonomic computing ap-
proach for the design of reconfiguration control. The
MAPE-K structure is based on behavioural models (in
the form of automata) for the knowledge about the re-
configurability of these hardware platforms, and discrete
control techniques for designing the adaptation policies.

2.2 Discrete control
We consider the modeling framework [1] based on la-
belled transition systems (LTSs) and their parallel com-
position. LTSs are defined by a finite set of states, be-
tween which there are transitions (from source state to

target state) with a label of form c / a: a firing condi-
tion c and an action a. When a LTS is in some state, if
there is a transition for which the condition is true, then
it is taken and the next state will be its target state. At the
same time the action part will take the value true. Two
or more LTSs can be composed (noted formally by "|"),
representing that they run in parallel: one global step cor-
responds to one local step for every LTS.

The formalism of LTSs can be used to apply discrete
controller synthesis (DCS), a formal operation on au-
tomata [3, 7]. DCS is an automatic and constructive
method to ensure required properties on system behav-
iors. It applies to an LTS (originally uncontrolled), where
inputs I are partitioned into two subsets, Iu and Ic,
the uncontrollable and controllable inputs. It takes into
account some control objectives: properties that must be
enforced by control. A controller is synthesized automat-
ically, if it exists, from given LTS’s and objectives, by
applying appropriate algorithms [7] (not detailed here).
Its purpose is to constrain the values of controllable vari-
ables, in function of states and of uncontrollable inputs,
such that system behaviors satisfy the given objectives.
The controller is maximally permissive, meaning that it
allows the largest possible set of correct behaviors.

2.3 Discrete control as MAPE-K
Figure 2(a) shows the MAPE-K architecture of an au-
tonomic system with a loop defining basic notions of
Managed Element (ME) and Autonomic Manager (AM).
The managed element, system or resource is monitored
through sensors. An analysis of this information is used,
in combination with knowledge about the system, to plan
and decide upon actions. These reconfiguration opera-
tions are executed, using as actuators the administration
functions offered by the system API. Self-management
issues include self-configuration, self-optimisation, self-
healing (fault tolerance and repair), and self-protection.

Autonomic managers work in closed loop: for this,
one design methodology is to apply techniques from

control

state
inputs outputs

transition
function

sensor

state
inputs

actuator

outputs

transition
function

sensor

state
inputs

actuator

outputs

transition
function

controlcontrol

managed element

Figure 3: Autonomic coordination for multiple AMs.

2

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 61

(a)

sensor

execute
knowledge

monitor

analyse plan

actuator

managed element (b)

sensor

state
inputs

actuator

managed element

outputs

transition
function

(c)

sensor

state
inputs

actuator

managed element

outputs

transition
function

control

Figure 2: Autonomic system: (a) the MAPE-K manager; (b) FSM autonomic manager; (c) controllable AM.

Control Theory [6], with the advantage of ensuring in-
teresting properties on the resulting behaviour of the con-
trolled system e.g., stability, convergence, reachability or
avoidance of some evolutions. In most cases, continuous
models are used, typically for quantitative aspects. More
recently, some works relied on Discrete Event Systems
(DES), using supervisory control [3], typically for logi-
cal or synchronisation purposes e.g., deadlock avoidance
in multithreaded programs [10]. They are based on reac-
tive systems models such as Petri nets or Finite State Ma-
chines (FSM), which we also call automata. As shown in
Figure 2(b), this instantiates the general autonomic loop
with knowledge on possible behaviours represented as a
formal state machine, and planning and execution in the
form of the automaton transition function with a control
output, which will trigger the actuator.

Basic features required for a system to be managed
in an autonomic fashion have been identified in previous
work e.g., in the context of component-based autonomic
management [9]: for an ME to be manageable it must
be observable and controllable. The manager transforms
flows of observations into flows of control choices and
actions. Observability translates into outputs, as shown
by dashed arrows in Figure 2(c) for an FSM AM, ex-
hibiting (some) of the knowledge and sensor information
(raw, or analysed); this can feature state information on
the AM itself or of MEs below. Controllability translates
to having the AM accept some influence on the decision,
and it corresponds to additional input for control, as in
Figure 2 for an FSM AM. Its values can be used in the
guards and exhibit choices between different transitions.

This builds up to a hierarchical framework as in the
structure shown in Figure 3. Given that AMs have
been made observable and controllable, an upper-level
AM can perform their coordination using their additional
control input to enforce a policy. Considering the case of
FSM managers makes it possible to encode the coordi-
nation problem as a DCS problem. The controller of this
upper-level AM is synthesised by DCS.

3 DCS for managing DPR architectures

We present the computing systems of interest through an
illustrative example, first informally, then in the model.

3.1 DPR FPGAs
Hardware architecture. We consider a multiproces-
sor architecture implemented on an FPGA chip (see Fig-
ure 1), which includes a general purpose processor: Soft-
core Microblaze, and a reconfigurable area divided into
four tiles: A1–A4. The communications between ar-
chitecture components are achieved by a Network-on-
Chip (NoC). Each processor and reconfigurable tile im-
plements a NoC Interface (NI). Reconfigurable tiles can
be combined and configured to implement and execute
tasks by loading predefined bitstreams.

The architecture is equipped with a battery supplying
the platform with energy. Regarding power management,
an unused reconfigurable tile Ai can be put into sleep
mode with a clock gated mechanism such that it con-
sumes a minimum static power.

a)

B

A

C

D

b)
task A

or

task B

task C

task B

task C

1) 2) 3)

Figure 4: a) DAG application specification, and b) Sys-
tem configurations and reconfiguration.

Application software. We consider system functional-
ity described as a directed, acyclic task graph (DAG). A
DAG consists of a set of nodes representing the set of
tasks to be executed, and a set of directed edges repre-
senting the precedence constraints between tasks. Figure
4(a) shows an example consisting of four tasks.

In our framework, we suppose each task performs its
computation with the following four control points:
• being requested or invoked;
• being delayed: requested but not yet executed;
• being executed: to be executed on the architecture;
• notifying execution finish, once it reaches its end.

Occurrences of control points being requested and noti-
fying finishes depend on runtime situations, and are thus
unpredictable and uncontrollable. The way of delaying
and executing tasks is taken charge by a runtime man-
ager aiming to achieve system objectives.

3

62 10th International Conference on Autonomic Computing (ICAC ’13) USENIX Association

Task implementation. Given a hardware architecture,
a task can be implemented in various ways characterised
by various parameters of interest, such as used reconfig-
urable tiles (ur), worst case execution time (WCET) (wt),
and power peak pp. For example, two implementations
of task A can be:
• A on A1: wt = 50, pp = 20;
• A on A3+A4: wt = 10, pp = 30;

In this preliminary work, we assume that WCET repre-
sents the time cost induced from the start of bitstream
loading to the end of task execution. Among possible
task implementations, a runtime manager is in charge of
choosing the best according to system objectives.

System reconfiguration. Figure 4(b) shows three sys-
tem configuration examples. In configuration 1, task A
is running on tiles A3 and A4 while tiles A and B are set
to the sleep mode. Configurations 2 and 3 show two sce-
narios with tasks B and C running in parallel. Once task
A finishes its execution according to the graph of Fig-
ure 4(a), the system can go to either configuration 2 or
configuration 3 depending on the system requirements.
For example, if the current state of the battery level is
low, the system would choose configuration 2 as config-
uration 3 requires the complete FPGA working surface
and therefore consumes more power.

System objectives. System objectives define the sys-
tem functional and non-functional requirements. This
section gives the objectives considered in the paper, and
categorises them as logical and optimal control objec-
tives. Generally speaking, logical objectives concern
state exclusions, whereas optimal objectives target the
states associated with optimal costs. Considered logical
and optimal control objectives are as follows:

1. resource usage constraint: exclusive uses of recon-
figurable areas A1-A4;

2. energy reduction constraint: switch areas to sleep
mode when executing no task;

3. power peak constraint: power peak of hardware
platform is constrained w.r.t battery levels;

4. minimise power peak of hardware platform.
More system objectives can be addressed in our frame-
work. We refer the readers to [2] for more details.

3.2 System modelling as a DCS problem
We specify the modelling of the computing system be-
haviour and control in terms of labelled automata. Sys-
tem objectives are defined based on the models. We fo-
cus on the management of computations on the recon-
figurable tiles and dedicate the processor area A0 exclu-
sively to the resulting controller.

Architecture behaviour. The architecture (see Fig-
ure 1) includes a processor, four reconfigurable tiles
{A1,A2,A3,A4} and a battery. Each tile has two execu-
tion modes, and the mode switches are controllable. Fig-
ure 5(a) gives the model of the behaviour of tile Ai. The
mode switch action between Sleep (Sle) and Active (Act)
depends on the value of the Boolean controllable variable
c_ai. The output acti represents its current mode.

The battery behaviour is captured by the automaton
in Figure 5(b). It has three states labelled as follows:
H (high), M (medium) and L (low). The model takes
input from the battery sensor, which emits level up and
down events, and keeps track of the current battery level
through output st.

Application behaviour. Software application is de-
scribed as a DAG, which specifies the tasks to be exe-
cuted and their execution sequences and parallelism. Its
execution behaviour can be captured by using an automa-
ton with states representing the set of tasks that are ac-
tive in current states. The firing conditions of transitions
are task finish notifications, which could enable the ex-
ecutions of (some of) its immediate succeeding tasks by
emitting start requests of these tasks. An algorithm to
systematically construct such an scheduling automaton
for a DAG can be found in [2].

Task execution behaviour. In consideration of the
four control points of task executions (see Section 3.1),
the execution behaviour of task A associated with two
implementations (see Section 3.1) can be modelled as
Figure 5(c). It features an initial idle state IA, a wait state
WA, and two executing states X1

A , X2
A corresponding to

two implementations of task A. Controllable variables
are integrated in the model to encode the controllable
points: being delayed and executed. Upon the receipt
of start request rA, task A goes to either:
• executing state Xi

A, i ∈ {1,2} if the value of control-
lable variable ci leading to Xi

A is true, or
• wait state WA if delayed, i.e., the value of Boolean

expression c =
∨

ci, i ∈ {1,2} is false.
From wait state WA, upon the receipt of event ci, it

goes to execution state Xi
A. When the execution of task

A finishes, i.e., the end notification event eA is received,
the automaton goes back to idle state IA. Output es rep-
resents its execution state.

Local execution costs. The execution costs of different
task implementations are different. Three cost parame-
ters are considered (see Section 3.1). We capture them
by associating cost values denoted by a tuple (rs,wt, pp)
with the states of task models, where: rs ∈ 2RA (RA is the
set of architecture resources), wt ∈ N (a WCET value)
and pp ∈ N (a power peak). The costs associated with

4

USENIX Association 10th International Conference on Autonomic Computing (ICAC ’13) 63

a)

ActiSlei

acti = true

acti = false
c_ai

not c_ai

c_ai

acti

RMi

b)

H M L

down

upup

downdown

st=h st=m st=l

stup

BM

c)

WA

IA

XA
1 XA

2

rA, c1
rA, c2

rA, not c

c2

eA
eA

c1

({A1},
50,20)

 ({A3,A4},
 10,30)

({},⊥,0)

({},⊥,0)

TMA

rA,eA

c1,c2

es

es=XA
1 es=W es=XA

2

es=I

Figure 5: Models RMi for tile Ai, BM for battery, and T MA for the execution behavior of task A.

executing states are the values associated with their cor-
responding implementations. For idle and wait states,
apparently rs = /0, pp = 0. However, the wt values for
idle and wait states depend on the execution times of
their precedent tasks. We therefore represent it by using
a special symbol ⊥, and thus we have wt ∈ N∪ ⊥.

Global system behaviour model. The parallel com-
position of control models for reconfigurable tiles
RM1-RM4, battery BM and tasks T MA-T MD, plus
scheduler Sdl comprises the system model: S =
RM1|...|RM4|BM|T MA|...|T MD|Sdl with initial state
q0 = (Sle1, ...,Sle4,H, IA, ..., ID, I). Sdl represents the au-
tomaton that captures the application behavior as dis-
cussed in Section 3.2. It represents all the possible sys-
tem execution behaviours in the absence of control (i.e.,
a runtime manager is not yet integrated).

Global costs. A system state q is a composition of lo-
cal states (denoted by q1, ...,qn), and we define its global
cost from the local ones as follows:
• used resources: union of used resources associated

with the local states, i.e., rs(q) =
⋃

rs(qi),1≤ i≤ n;
• power peak: the sum of values associated with the

local states, i.e., pp(q) = ∑(pp(qi),1 ≤ i ≤ n);

System objectives. The two types of system objec-
tives: logical and optimal ones, can then be defined in
terms of the states and the costs defined on the states or
paths of the model. For example, Objective 1) exclusive
uses of reconfigurable areas A1-A4 by tasks is defined
by ∀qi,q j ∈ q, i �= j, that rs(qi)

⋂
rs(q j) = /0. We refer

the readers to [2] for the detailed definition.
We have validated our models and manager computa-

tions experimentally by implementing a video process-
ing system on an ML605 board from Xilinx containing
an FPGA. The BZR language has been used to encode
system models and objectives, and generate a correct au-
tonomic manager in C code for the system. They are
detailed elsewhere [2] due to lack of space.

4 Conclusion and Perspectives

Reconfigurable architectures, especially DPR FPGAs,
constitute a platform for adaptive computing that is gain-

ing widespread use. They are a typical target for auto-
nomic computing approaches, although they are not of-
ten explicitly tackled that way. In this paper, we pro-
posed a systematic modeling framework for DPR FPGA
based embedded systems, and applied formalisms and
tools from discrete control to encode and perform the au-
tonomic manager computation as a DCS problem.

Perspectives include the ongoing work to enrich our
models with reconfiguration costs, and the use of modu-
lar synthesis and compilation [4] for manager computing.
We are working on more experimental systems, which
will validate more completely our approach.

References
[1] ALTISEN, K., CLODIC, A., MARANINCHI, F., AND RUT-

TEN, E. Using controller-synthesis techniques to build property-
enforcing layers. In Proceedings of the European Symposium on
Programming (ESOP’03) (2003), pp. 174–188.

[2] AN, X., RUTTEN, E., DIGUET, J.-P., LE GRIGUER, N., AND
GAMATIÉ, A. Autonomic management of reconfigurable embed-
ded systems using discrete control: Application to fpga. Research
Report RR-8308, INRIA, May 2013. http://hal.inria.fr/
hal-00824225.

[3] CASSANDRAS, C., AND LAFORTUNE, S. Introduction to Dis-
crete Event Systems. Kluwer Academic Publishers, 2008.

[4] DELAVAL, G., MARCHAND, H., AND RUTTEN, E. Contracts
for modular discrete controller synthesis. In Conf. on Languages,
Compilers, and Tools for Embedded Systems (2010), pp. 57–66.

[5] EUSTACHE, Y., AND DIGUET, J.-P. Specification and os-based
implementation of self-adaptive, hardware/software embedded
systems. In Conf. on Hardware/Software codesign and system
synthesis (CODES/ISSS) (2008), pp. 67–72.

[6] HELLERSTEIN, J., DIAO, Y., PAREKH, S., AND TILBURY, D.
Feedback Control of Computing Systems. Wiley, 2004.

[7] MARCHAND, H., AND SAMAAN, M. Incremental design of a
power transformer station controller using a controller synthesis
methodology. IEEE Trans. on Soft. Eng. 26, 8 (2000), 729 –741.

[8] SANTAMBROGIO, M. D. From reconfigurable architectures to
self-adaptive autonomic systems. IJES 4, 3/4 (2010), 172–181.

[9] SICARD, S., BOYER, F., AND PALMA, N. D. Using components
for architecture-based management: the self-repair case. In Proc.
Conf. ICSE (2008).

[10] WANG, Y., LAFORTUNE, S., KELLY, T., KUDLUR, M., AND
MAHLKE, S. The Theory of Deadlock Avoidance via Discrete
Control. In Conf. POPL (2009).

5

