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Abstract
We report our experience building and evaluating

pmemcached, a version of memcached ported to byte-
addressable persistent memory. Persistent memory is
expected to not only improve overall performance of ap-
plications’ persistence tier, but also vastly reduce the
“warm up” time needed for applications after a restart.
We decided to test this hypothesis on memcached, a pop-
ular key-value store. We took the extreme view of per-
sisting memcached’s entire state, resulting in a virtually
instantaneous warm up phase. Since memcached is al-
ready optimized for DRAM, we expected our port to be
a straightforward engineering effort. However, the effort
turned out to be surprisingly complex during which we
encountered several non-trivial problems that challenged
the boundaries of memcached’s architecture. We detail
these experiences and corresponding lessons learned.

1 Introduction
Key-value stores with simple get/put based interfaces
have become an integral part of modern data centers.
The list of successful key-value stores is long – Cassan-
dra [21], Dynamo [11], LevelDB [22], memcached [14,
23], Redis [28] – to name a few. At the same time, emerg-
ing persistent memory technologies [1, 13, 18, 19, 25, 30],
such as Intel and Micron’s 3D XPoint [1], promise to pro-
vide the byte-addressability of DRAM (simple load/store
access) and the persistence of traditional storage technolo-
gies, at performance 1000X greater than state-of-the-art
NAND flash. This can fundamentally change the way
applications manage persistent data.

With persistent memory on the horizon, many re-
searchers are developing systems that ensure fast or even
instantaneous recovery of application data [3, 5, 7, 26].
The overarching intuition is that by leveraging byte-
addressability and the high performance of persistent
memory, applications can drastically reduce, or even elim-
inate, the time needed to recover and “warm up” their
state after a restart. While we share this view, we decided
to test it in the context of memcached, a key-value store
primarily used as a DRAM-resident cache. Warming up
memcached’s state after a restart can take up to several
hours for workloads with large data sets [16]. Persisting
that state could drastically reduce the warm up time.

During this exercise we wanted to investigate several
important questions. Does persisting memcached’s state
entail any significant performance overheads? In the early
years of persistent memory adoption, programmers will
be forced to maintain existing application architectures to
continue support for platforms without persistent memory.
Minimal variation between this legacy code and the new
persistent memory optimized code is desirable. How diffi-
cult will it be to persist memcached without changing its
high level architecture? What hurdles will we encounter
in this effort? Is there a pattern to these problems? Are
there common programming practices that could be used
to address them? How generic are these problems? Are
there issues that cannot be addressed without rearchitect-
ing memcached?

We first summarize the existing structure and operation
of memcached (§ 2). We frame the description of our ex-
perience developing “pmemcached”, our persistent mem-
ory port of memcached, in terms of 10 lessons learned
(§ 3). Our findings were interesting, and in some cases,
quite surprising. A big takeaway was that this exercise
can be surprisingly non-trivial. The required lower level
changes were contagious and quickly became pervasive.
Failure-atomicity – providing all or nothing semantics
across a failure boundary – seems fundamental. We found
that we needed failure-atomic transactions more widely
than we expected [4, 6, 8, 15, 20, 27, 33]. Other high
level surprises and lessons learned include the challenges
posed by tricky interactions between persistent and non-
persistent objects, co-location of semantically persistent
and nonpersistent data, and unexpected critical section
inflation.

We evaluated pmemcached on Intel’s Software Emu-
lation Platform for persistent memory [12, 35] using the
YCSB workload generator [9] (see § 4). We did achieve
almost instantaneous warm up. We expected some perfor-
mance degradation, however it varied significantly across
different workloads. Degradation relative to memcached
was about 10–15% for YCSB’s read heavy workloads,
but about 40–60% for YCSB’s write heavy workloads.

2 memcached Overview
The high level architecture of memcached is typical of
many key-value stores: It contains a stateful client re-
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quest management module, a centralized data structure to
host key-value pairs (a growable hash table), a memory
manager called the “slab” allocator, an LRU cache man-
agement subsystem, and a set of dedicated background
threads for LRU cache management, hash table resize,
etc. memcached’s key-value pairs are updated using the
copy-on-write programming idiom – a new copy of the
key-value object is created for every update.

Communication with clients happens over TCP. Re-
quest processing is done in multiple stages using a per-
request state machine. Different parts of the incoming
message are processed in different stages. For instance, a
put request first goes through a stage that processes only
the size of the key-value pair, by allocating a key-value
pair object from the slab allocator. A later stage initial-
izes the newly allocated key-value pair. Similarly, a get
request first goes through a stage that retrieves a pointer
to the key-value pair in the hash table; a later stage copies
the retrieved value into the response buffer. Request pro-
cessing buffers host pointers to key-value pairs. As a
result, these key-value pairs are lazily reclaimed, using
reference counters, when they are removed from the hash
table (e.g., due to a concurrent put).

3 Programming pmemcached
We assume that the OS provides support for naming
blocks of persistent memory in the file system [10, 12],
and for mapping them in application address spaces via
the mmap system call. Applications can thereafter access
these blocks with simple load/store instructions. This
approach follows SNIA’s emerging programming model
for persistent memory [31]. pmemcached’s entire persis-
tent state resides in a single file, which is mapped as a
contiguous region in pmemcached’s address space.

Starting from this point, we ported memcached’s orig-
inal code to a persistent memory friendly version. This
turned out to be an educational experience!

Lesson 1: Persistence of data structures can be conta-
gious. While assessing an application to port to persistent
memory, the programmer must be careful to recognize
which data structures need to be hosted in persistent mem-
ory. Tight coupling between different data structures can
quickly lead to an unexpected escalation in the number of
data structures that need to be persisted.

Originally, we assumed that persisting memcached’s
central hash table was sufficient. However, after study-
ing memcached’s other data structures, we quickly de-
termined that they were too tightly coupled, even though
they logically belonged to different modules. More specif-
ically, although the metadata structures of the slab alloca-
tor and LRU cache exist somewhat independently, some

of their metadata is sprinkled in the key-value pair objects
themselves. These objects also form nodes in the hash
table. Making these key-value pairs persistent had a rip-
ple effect on these other data structures. Furthermore, for
correct instantaneous warmup, we also needed to persist
the slab allocator’s state. We could, in principle, keep the
LRU cache nonpersistent, but then rebuilding the LRU
lists on-the-fly would significantly distrupt memcached’s
original architecture where the LRU cache’s state is con-
sistent with the hash table’s state, as well as the slab
allocator’s state. With these insights, we decided that all
these structures needed to reside in persistent memory.

Lesson 2: Failure-atomic transactions might become
necessary. As identified by a number of prior works [4, 6,
8, 15, 20, 27, 33], failure-atomic durable transactions be-
come necessary for some applications to correctly modify
persistent data structures, in the presence of failures.

We initially assumed that correctly persisting the data
structures of memcached would be straightforward. We
were wrong: The code paths for processing different client
requests in pmemcached are complex and touch most
of the aforementioned modules’ data structures in the
process. For example, a get request modifies the LRU
cache (moving the accessed key-value pair to the front of
the LRU list), then proactively traverses a small part of
the LRU list to determine if some “expired” objects can
be reclaimed, and reclaims them whenever possible; this
updates the slab allocator and the hash table. All this state
needs to be persisted correctly, including when there is a
failure in the middle of the operation. Ensuring failure-
atomicity for all this computation without failure-atomic
transactions is practically infeasible, if not impossible.

We used our in-house persistent transaction library
in pmemcached. The library contains accessor macros
to transactionally read and write persistent objects and
macros to begin and commit transactions. We enclosed
pmemcached’s code that accesses and modifies persis-
tent data structures within transactions. The transactional
accessors were hand-coded, which turned out to be a te-
dious undertaking, producing approximately 7K LOC of
instrumented loads and stores.

Lesson 3: Code duplication may be unavoidable. If the
programmer needs to maintain legacy code for platforms
that do not support persistent memory, code duplication
may be unavoidable. This is mostly borne out of the instru-
mentation needed for transactional accesses to persistent
data. Because the transaction code paths were signifi-
cantly complex in pmemcached, we ended up duplicating
approximately 40% of the functions from memcached.
The new versions of these functions executed transaction-
ally instrumented code.
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Lesson 4: Determining what to persist is hard. Modern
data center applications are complex, with several dis-
parate modules touching the same data in different ways.
If the data moves to persistent memory, all such modules
are affected. At the same time, some of these modules
could continue processing co-existing nonpersistent data
in the same way. At certain program points (e.g., library
code), it becomes difficult to determine whether an ac-
cessed data object is persistent or not.

We ran into this situation when memcached used a
common function to populate the value of a key-value
pair. The function was at the end of deeply nested chain
of function calls that were initiated for two different pur-
poses: (i) to read a put request from a client, and (ii) to
populate the response buffer for a get request. The former
case used a persistent key-value pair and the latter case
used a nonpersistent buffer. Discriminating between the
two required either changing the signatures of every func-
tion in the call path, or passing state information to this
function, breaking modularity. To expedite development,
we employed a simple hack that issues persistence primi-
tives (cache line writebacks/flushes and persist barriers)
for the value buffer irrespective of whether the buffer was
persistent or not. This hack worked, because the scenario
was simple – populate and persist a buffer. It may not
work in more complex circumstances, requiring more
disruptive changes.

Lesson 5: Persistent pointers are tricky. Relying on the
mmap interface to map persistent files in application ad-
dress spaces has its challenges, one of which relates to
pointer implementations. mmap does not guarantee that
a given file will always map to the same virtual address
range. As a result, pointer implementations as virtual
addresses may not work correctly across restarts.

There are several workarounds to this problem most
of which boil down to implementing pointers as offsets
from some specified location in the virtual address space.
We chose to use self-relative pointers. Self-relative point-
ers store the offset of the target from the pointer’s own
virtual address. We require special getter/setter functions
to read/write these pointers. While the concept sounds
simple, programmers must be careful – most of our pro-
gram crashes happened when self-relative pointers were
dereferenced as virtual addresses. Furthermore, the de-
fault assignment operator for structures, which typically
does a direct bitwise copy, does not work correctly with
self-relative pointer fields. We needed a special copy con-
structor implementation. This drawback does not exist in
other base+offset style pointer implementations.

Lesson 6: Bypassing transactional accessors is risky.
Transactional instrumentation can lead to significant

performance overheads (e.g., logging for transactional
writes). This instrumentation can be avoided in select
cases, such as initializing a newly allocated persistent
object before linking it into globally visible data struc-
tures. However, programmers must ensure that cache line
writebacks/flushes follow the “naked” stores to correctly
order them relative to surrounding stores and transac-
tional writes; not doing so can lead to inconsistencies
in the face of failures. Additionally, once a naked store
persists, rollback of the enclosing transaction may not be
able to restore the target’s old value.

We encountered several instances where the instrumen-
tation bypass optimization was effective. However, there
were some tricky cases where such bypasses would lead
to data inconsistencies. For instance, we first thought we
could bypass all initialization writes to a newly allocated
key-value pair within a transaction (the slab allocator is
used to allocate all the key-value pairs). Initialization
writes default values in various fields of the key-value
pair (e.g., key/value size, zero out pointers fields). How-
ever, we subsequently realized that the slab allocator and
the hash table data structure were using the same pointer
field to link objects in free lists and hash bucket overflow
lists respectively. Applying a naked store to initialize
the pointer to NULL breaks the slab allocator’s free list
structure if the enclosing transaction subsequently aborts.

Lesson 7: Persistent and nonpersistent objects interact
in unexpected ways. Persistent and nonpersistent objects
can exhibit non-trivial dependencies. We discovered a
dependency between the client request processing session
objects and persistent key-value pairs. The session objects
directly reference key-value pairs. In return, the key-value
pairs themselves track these nonpersistent references (the
session objects are nonpersistent) using an internal ref-
erence counter for lazy reclamation. This dependency
between the request session objects and key-value pairs
leads to memory leaks if a key-value pair, K, is removed
from the hash table and there is a power failure before
outstanding nonpersistent references to K retire and decre-
ment K’s reference counter to 0.

We need to persistently track such outstanding non-
persistent references. To that end, we added a per-thread
persistent list of “pending reclamation” objects. The trans-
action that removes a key-value pair from the hash table,
puts it in the thread’s pending reclamations list, which can
be used to reclaim objects correctly during recovery. The
object is taken out of that list when the reference counter
of the object goes down to 0.

Lesson 8: Initialization of semantically nonpersistent
data colocated with persistent data is tricky. Program-
mers frequently find it convenient to co-locate nonpersis-
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tent data in persistent objects. Identifying whether such
nonpersistent fields need to be re-initialized after a restart
event may be important for correctness. In pmemcached,
the reference counters discussed above are semantically
nonpersistent – they primarily track outstanding refer-
ences from client request session objects. Resetting the
reference counters of key-value pairs in the hash table to 1
is important to avoid memory leaks similar to the one de-
scribed above. We do so by adding a persistent generation
number [8] to each key-value pair. This must be equal
to pmemcached’s global persistent generation number,
which is incremented (and persisted) at each restart. A
generation number mismatch forces lazy reinitialization
of a key-value pair’s nonpersistent fields.

Lesson 9: Use of atomics needs to be rethought. It can
be problematic to use atomic read-modify-write instruc-
tions, such as compare-and-swap, on persistent data if
the update needs to be rolled back when the enclosing
transaction aborts. memcached manages its hash table
size counter using compare-and-swap based atomic incre-
ments/decrements. This needs to be updated transaction-
ally in pmemcached, meaning that the compare-and-swap
had to be replaced with a small critical section protected
by a (new) lock on the hash table size.

Lesson 10: Critical sections can pose significant prob-
lems. Lock-based critical sections are widely used in mul-
tithreaded applications to mediate access to shared data.
Similar practices will be required for shared access to
data hosted in persistent memory. This poses significant
challenges in some cases. In particular, code that gets
wrapped in a persistent transaction can end up executing
critical sections that access persistent objects. Further-
more, the transaction’s scope can be much larger than
that of the critical section, complicating the question of
when the thread should release the lock guarding a critical
section – the locks cannot be released when the critical
section ends since its transactional writes will not take
effect until the enclosing transaction commits. Releasing
the locks can lead to data races.

One “safe” approach, which we applied in pmem-
cached, postpones the lock release to the end of the en-
closing transaction (our transactional API provides hooks
to do so). However, this leads to expansion of the critical
section, which in turn can lead to deadlocks and scalability
bottlenecks. We ran into instances of threads deadlocking
on themselves, which we resolved using reentrant pthread
locks. In other cases, we resolved the inter-thread dead-
locks by ensuring that locks are acquired in a specific
order (by address of the lock).

For the scalability problems, we were able to eliminate
expansion of some critical sections by moving the critical

section to the end of the transaction; e.g., hash table size
increment/decrement. However, other critical sections
were harder to postpone because the computation in them
was significantly tangled up with the enclosing transac-
tion (e.g., memory allocation). In the end, we could not
entirely resolve the scalability problems, the effects of
which are visible in our evaluation. This problem can
be addressed by significantly changing pmemcached’s
high level architecture, which we wanted to avoid. Alter-
nately programmers can leverage advanced transactional
features, such as open nesting [2, 4, 24] or transaction
boosting [17], which adds complexity to manage compen-
sating actions to correctly handle aborts. Our transaction
library does not support such features.

4 Evaluation
Our pmemcached port turned out to be a major reengi-
neering exercise, requiring about 4 months of an expe-
rienced researcher’s time. It persists enough of its state
during execution that a warm up requires only the fol-
lowing steps: mmap the persistent region file, recover
various in-flight transactions (which typically takes a few
hundred microseconds at most), load the persistent root
pointer that identifies the root structure that hosts pmem-
cached’s state information, and initialize pmemcached’s
background and foreground worker threads. All this work
leads to sub-millisecond warm up intervals, irrespective
of the dataset size.

We however wanted to measure the common-case per-
formance overheads required to make this near instant
warm up possible. To that end, we conducted perfor-
mance experiments on Intel’s Software Emulation Plat-
form [12, 35] using the YCSB [9] workload generator.

The emulator we used is a dual-socket 16-core proces-
sor with 512GB of DRAM, 384GB of which is configured
as “persistent” memory, and the rest operates as conven-
tional DRAM. In addition, the load latency as well as
persist barrier latency to the persistent memory can be
configured. For our experiments, we configured the load
latency to 300 nanoseconds (as an estimate for higher
latency persistent memory), and the persist barrier latency
to 100 nanoseconds. The latter aligns with Intel’s re-
cent deprecation of their pcommit instruction and require-
ment of the Asynchronous DRAM Refresh (ADR) feature,
which ensures that on-chip memory controller buffers are
flushed on power failure [29]. We simulated support for
asynchronous cache-line writebacks, not flushes, in our
experiments since they lead to significantly better cache
locality (and performance) than cache line flushes, which
evict flushed cache lines from processor caches.

We measured the performance of three implementa-
tions: 1) original memcached 2) memcached-pm which
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(c) YCSB workloadc (100r)
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Figure 1: Scalability results for YCSB workloads (workloade, not included here, contains range queries that are not supported by
memcached; workloadd’s performance is similar to workloadb’s). r = read percentage, u = update percentage, rw = read-modify-
write percentage. This is the default configuration where the key is a string ranging from 5 to 23 bytes, and value is a 1KB block;
request distribution is zipfian. All the key-value stores were initialized to contain 10 million key-value pairs. The key-value store
threads were all hosted on one socket (8 threads at most, one per core). The 8 YCSB threads were all hosted on the other socket.

is identical to memcached, but runs on the (slower) per-
sistent memory, and 3) pmemcached, which uses undo
logging for failure-atomicity [4, 8, 27]. This three way
comparison lets us decouple the overhead due to slower
persistent memory from that of managing persistence.

Figure 1 depicts the performance of YCSB workloads.
When running a single thread, memcached-pm suffers
a 10–15% performance degradation relative to mem-
cached because persistent loads are configured to take
300 nanosecond. pmemcached performs significantly
worse, by 40–60%, due to the transactional instrumenta-
tion required for failure-atomic updates to internal state.
The write cost is higher, due to the cost of writing and per-
sisting the transaction log. As a result, we observe greater
degradation for pmemcached on write-heavy workloads
(workloada and workloadf) compared to the other read-
heavy ones. (workloadb and workloadc).

As we grow the number of worker threads, lock con-
tention becomes the primary scalability bottleneck, and
memcached-pm catches up with memcached. pmem-
cached has somewhat mixed results in that its throughput
comes within 10–15% of memcached’s throughput for
read heavy workloads, whereas its throughput remains 40–
60% that of memcached for write heavy ones. This again
reflects the overheads of transactional writes, but more im-
portantly, it reflects the scalability problems we discussed
in § 3. More specifically, critical section inflation leads
to significantly higher contention for the slab allocator
and LRU cache locks in pmemcached compared to mem-
cached. The higher latency of transactional writes further
exacerbates the problem. While these performance results
are not comprehensive, we believe they are representative
of expected overheads in pmemcached.

5 Conclusion
We presented our unexpectedly complex effort making
memcached persistent without changing its high level
architecture. In the process, we encountered several sur-
prises and learned many important lessons related to pro-
grammability challenges that we believe will be applica-
ble in other application contexts. Overall, a major port of
any complex application will likely be a non-trivial under-
taking even though it may not seem so in the beginning.
Many of the challenges we faced (e.g., failure atomicity
requirements, code duplication) can be entirely elimi-
nated with language support for transactions [4, 34, 32].
Programmers will still need to address other challenges
on their own (e.g., interactions between persistent and
nonpersistent objects, critical section inflation).

Performance results of pmemcached, in failure-free
executions, are mixed. Slowdown for read dominated
loads is modest (10–15% in multithreaded runs), whereas
slowdown in write dominated loads is high (40–60% in
multithreaded runs). Though transactional instrumenta-
tion, critical section inflation, etc. seem to be the primary
reasons for the slowdown, we believe the fundamental
problem is related to our strategy of not rearchitecting
memcached. A more careful restructuring of the archi-
tecture could lead to less inter-module dependency, and
more efficient and scalable transaction execution. That
does not guarantee that we would avoid the programming
challenges we encountered with pmemcached. While the
findings in our pmemcached work may not apply verba-
tim to other application contexts, the lessons we learned
should be broadly pertinent. In the end, architecting such
systems from scratch is likely the best approach. A more
modest goal of fast warm up, instead of instantaneous
warm up, may also be a reasonable compromise.
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