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Abstract 

There is need of differentiated I/O service when appli-

cations with diverse performance-needs share a storage-

device. NVMe specification provides a method called 

Weighted-Round-Robin-with-urgent-priority (WRR) 

which can help in providing such differentiated I/O ser-

vice. In Round-Robin arbitration all I/O queues are 

treated to be of equal priority, leading to symmetric I/O 

processing. While in WRR arbitration, queues can be 

marked urgent, high, medium or low, with provision for 

different weightage for each category. Onus is on host 

to associate priority with I/O queues and define weights.  

We find that very little has been done in current Linux 

ecosystem when it comes to supporting WRR and mak-

ing benefits reach to application. In this paper we pro-

pose a method that introduces WRR support in Linux 

NVMe driver. This method delivers WRR capability to 

applications without the need of rebuilding them. Un-

like affinity-based approach, it does not limit compute-

ability of application. Our results demonstrate that mod-

ified driver indeed provides differentiated I/O perfor-

mance among applications. Proposed work modifies 

only NVMe driver and is generic enough to be included 

in mainstream Linux kernel for supporting WRR. 

 

1. Introduction 

One of the design goals of NVM Express (NVMe) 

specification [1] is to get most performance out of the 

SSDs connected to PCI Express bus. It increases paral-

lelism by providing many I/O submission and comple-

tion queues which are shared between host (usually 

driver) and storage device. NVMe specification de-

scribes arbitration methods using which NVMe control-

ler determines how commands should be processed 

from available submission queues. Each controller sup-

ports round-robin arbitration method (RR), in which all 

submission queues are treated to be of same priority. 

They are iterated in round-robin fashion and equal 

numbers of commands are fetched from selected queue. 

Another arbitration method is weighted round robin 

with urgent priority class (WRR), in which queues can 

be marked urgent, high, medium or low. Different 

weights can be specified for high, medium and low by 

using set-features command. Urgent is given highest 

priority (except admin queue) and other types of queues 

are traversed in round-robin fashion and commands are 

fetched according to respective weights. 

WRR arbitration can be used to build a differentiated 

I/O service that allows certain applications to obtain 

higher I/O performance than others. However, current 

Linux NVMe driver does not support WRR. It always 

configures NVMe controller to use round-robin method. 

SPDK user-space framework [2] has support for WRR, 

but it requires applications to affine themselves to spe-

cific cores. We propose and implement a method in 

NVMe driver that couples NVMe WRR feature with 

existing io-priority-framework of Linux. This method 

has several distinct advantages. It allows applications to 

use prioritized service without sacrificing compute-

ability. There exists flexibility of changing I/O service 

dynamically at run-time. It does not require changing 

source-code of application. Since this method is imple-

mented at lowermost place in host NVMe stack, both 

user-mode and kernel-mode applications (like file-

system, journaling, block-filters etc.) can make use of 

prioritized service. 

Remainder of this paper is organized as follows: Sec. 2 

describes I/O queue design of NVMe driver; Sec. 3 

describes affinity-based scheme to utilize WRR. Pro-

posed scheme and its implementation are described in 

Sec. 4. Evaluation results are present in Sec. 5. Sec. 6 

summarizes related work and conclusion of this work is 

described in Sec. 7.  

 

2. Existing I/O queue design in NVMe 
Driver 

In order to improve scalability, current NVMe driver 

follows multi-queue design of Linux block layer [3]. In 

multi-queue design, two set of queues namely software-

queues and hardware-queues are used. Software queues 

are equal to number of CPU cores present on the ma-

chine, while hardware queues depends on device capa-

bility. I/O commands sent by an application running on 

a core are placed to corresponding software queue at-

tached to that core. NVMe driver reports number of 

hardware queues to block layer. Mapping is established 

between software and hardware queues, and I/Os move 

from software to hardware queue according to that 

mapping. When hardware queues are more or equal to 

number of software queues, 1:1 mapping is performed. 



In this case a fast, NUMA-local path is established be-

tween application and NVMe device. If hardware 

queues are less in number than software queues, two or 

more software queues share a hardware queue.  

Each hardware queue reported to block-layer by NVMe 

driver is actually an I/O queue-pair consisting one sub-

mission queue (SQ) and one completion queue (CQ). 

Doorbell registers exist for each SQ and CQ. Com-

mands are placed in a SQ and corresponding doorbell 

register in incremented to notify the device. Device pro-

cesses commands and places completion entry in corre-

sponding CQ. Association between SQ and CQ is speci-

fied at the time of SQ creation. Each SQ can be associ-

ated with only one CQ (1:1 mapping). It is permissible 

to have multiple SQs mapped to single CQ (N:1 map-

ping).  Current NVMe driver creates one I/O queue-pair 

with 1:1 mapping per CPU core.  

Another relevant field in SQ is queue-priority, which 

can be set as urgent, high, medium or low. In RR mode 

priority is ignored by Controller. 

 

3. Affinity-based WRR support method 

SPDK user-space NVMe driver has affinity-based sup-

port for WRR. In this method, there exists one I/O 

queue-pair (1 SQ, 1 CQ) per core. Queue-priorities are 

assigned to available submission-queues in round-robin 

fashion. As shown in Fig. 1, this makes each core host 

one type (urgent, high, medium or low) of queue. Ap-

plication thread needs to affine itself to a core (or subset 

of available cores) hosting specific type of queue to 

obtain a certain kind of I/O service. 

If application thread does not tie itself explicitly, OS 

can schedule it on available cores at will, and this will 

lead to arbitrary I/O performance as shown in Fig. 2. 

Therefore, it becomes mandatory for applications to 

affine themselves. Moreover, compute-ability is re-

duced as application has less cores (than physically pre-

sent) to run. 

 

4. Proposed method: I/O scheduling class 
based WRR support 

4.1. New queue organization and I/O classification 

To avoid the problem of arbitrary I/O performance, it is 

necessary to host all four types of submission-queues on 

each core. We introduce queue-pair with 4:1 mapping 

i.e. four submission queues are associated with one 

completion queue. Each core hosts four types (urgent, 

high, medium and low) of submission queues.  

Fig. 3: I/O priority based WRR 

Application needs a way to specify I/O service. Current 

I/O system calls (read, pread, readv etc.) do not have 

provision to pass operation-specific hint/flag which can 

be used to determine I/O service class. Introducing a 

new system call will also require rewriting applications 

to use new API/system-call. Therefore, we propose re-

Fig. 1: Application tied to core(s) for WRR 

Fig. 2: Arbitrary I/O performance 



using existing I/O scheduling classes [4] and map them 

to NVMe I/O priorities. There are four types of I/O 

scheduling classes which can be used by application to 

indicate I/O service. CFQ scheduler implements I/O 

service for these classes. Since NVMe I/O stack does 

not use CFQ scheduler, it is safe to reuse I/O class in-

formation. As shown in Fig. 3, application is free to be 

scheduled on any core and I/O will be placed in appro-

priate SQ depending on I/O scheduling-class of applica-

tion.  

4.2. Implementation 

Current NVMe driver creates I/O queue pair with 1:1 

mapping (1 SQ, 1 CQ) per core. We modified it to sup-

port queue pair with N: 1 mapping (N SQ, 1 CQ) per 

core. A new module parameter named sq_per_core is 

introduced which specifies how many submission-

queues per core should be created.  

insmod nvme.ko sq_per_core=4 

When this parameter is specified, driver configures con-

troller to function in WRR mode. When this parameter 

has value 1 or is not specified, driver continues to func-

tion in RR mode with existing 1:1 mapping. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4: Simplified I/O stack 

 

 

 

 

 

 

 

Fig. 5: Mapping I/O scheduling classes to NVMe priorities 

 

As shown in Fig. 4, application thread can specify I/O 

scheduling class either with the help of ionice utility [5], 

or with the use of ioprio_set API [4]. I/O scheduling 

class information is stored in task_struct of thread. In 

our implementation, NVMe driver obtains I/O schedul-

ing class information by accessing task_struct of thread 

performing I/O. Thereafter it maps scheduling-class to 

NVMe I/O priority (shown in Fig. 5) and places com-

mand in appropriate SQ. When application is made to 

run without specifying any I/O class, it belongs to 

‘none’ class and its I/O operations are placed in medi-

um-priority queue. 

4.3. Maximum I/O queues supported by NVMe Device  

NVMe Device may have less number of submission-

queues than required for 4:1 mapping per core. For ex-

ample, on a machine with 64 cores, 256 submission-

queues are required to form 64 queue-pairs with 4:1 

mapping while device may support maximum 128 sub-

mission queues. In our implementation, driver will han-

dle this scenario by creating 32 queue-pair with 4:1 

mapping (requiring 128 submission queues). These 32 

queue-pairs are shared among 64 cores. This may re-

duce degree of parallelism. Therefore, maximum queue-

count of device and count of CPU-cores on the machine 

should be considered while enabling WRR. 

Above scenario is applicable for 1:1 mapping as well 

(and handled in same way) when machine has large 

number of cores and, therefore, even 1:1 mapping re-

quires more queues than actually present in NVMe de-

vice.  

 4.4. Limitation of I/O priority framework  

Current I/O priority framework in Linux does not cater 

to buffered I/O, especially buffered-write. Rather, it is 

meant for reads and writes reaching directly to disk. At 

times, thread submitting I/O to storage device can be 

different from the one which actually issued I/O, and in 

that case original scheduling-class information cannot 

be determined. 

Most block-level schedulers including CFQ suffer from 

this problem. Split-level I/O scheduling [6] places 

hooks at multiple places in I/O stack to record infor-

mation of the process that issued I/O. These I/O stack 

changes can improve the efficacy of our implementation 

since originating process information can be determined 

more accurately. 

5. Experiment Results 

Proposed method was implemented in NVMe Driver of 

Linux 4.10 Kernel, and evaluated on Dell R720 ma-

chine with 32 cores (2 NUMA nodes) and 32GB of 

memory. All the evaluations were performed on Sam-

sung PM 1725a SSD which supports WRR arbitration. 

§5.1 provides bandwidth distribution results for various 

workloads after applying WRR. §5.2 shows background 

IO throttling on NVMe. In §5.3 we measure overhead 

of driver-changes. §5.4 presents use-case of applying 

differentiated I/O service in virtual-machines. 



5.1. Differentiated performance with Flexible I/O (FIO) 

Fig. 6 shows IOPS distribution and Fig. 7 shows 

throughput distribution among three applications with 

different io-priorities, generating read/write workload. 

 

Fig. 6: IOPS distribution among applications 

Fig. 7: Throughput distribution among applications 

Each application consists of 4 fio jobs [7] sending IO at 

QD 64. Relative difference among low, medium and 

high priorities is being controlled by three different 

weight combinations – 8/12/20, 8/16/24 and 8/8/8. 

Weights can be altered using nvme-cli tool [8]. RR 

mode results are with base driver. 

With RR mode, all three applications yield nearly same 

IOPS/bandwidth. Same happens when equal weightages 

are applied for high/medium/low priority in WRR 

mode. While with different weightages, differentiated 

performance is clearly visible. 

5.2. Foreground/background performance control 

Fig. 8 shows IOPS trend of a process (foreground) do-

ing 4K random reads for 5 minutes. During its run, an-

other process (background) issues 4K random write for 

one-minute burst, launched twice. This causes sharp 

decline in the performance of foreground process. 

In RR mode, we have no means to throttle I/O perfor-

mance of background process. In WRR mode, we put 

the background process in low priority (weightage value 

1), and foreground process in high priority (weightage 

value 16 and 128). With increase in weight difference, 

background process experiences more throttling which 

helps foreground process in retaining its performance. 

Fig. 8: Foreground process IOPS over time 

5.3. Overhead measurement 

In order to quantify overhead of driver-changes, we 

measured latency of modified driver against base driver 

(shown in Table 1). Read-latency is measured with 4KB 

random workload at queue depth 1, while write-latency 

is measured with 4KB sequential workload at queue 

depth 1. Results indicate minimal overhead.  

Latency(µSec) Base driver Modified driver 

Read 90.31 90.48 

Write 18.69 18.78 

Table 1: Latency comparison against base driver 



5.4. Differentiated performance among Virtual Machines 

In this experiment we build a use-case that applies dif-

ferentiated I/O service to virtual machines. Table 2 

shows random-read performance within three Virtual 

Machines in RR and WRR mode.  

 

VM (Read IOPS) RR WRR 

VM1 (High) 141K 208K 

VM2 (Medium) 143K 142K 

VM3 (Low) 142K 76K 

Table 2: I/O performance of Virtual Machines 

Each VM, with 8 virtual CPUs and 8GB RAM, was 

hosted using KVM/QEMU. Each virtual machine had 

three virtual disks (hosted on NVMe SSD) attached to 

it. To increase disk performance qemu-kvm makes use 

of separate threads, named iothread [9], for issuing I/O. 

All iothreads running inside VM1 were assigned best-

effort class; this made VM1 high-priority. Similarly 

VM2 was made medium-priority and VM3 was made 

low-priority. Weightages for high, medium and low 

were set as 24, 16 and 8. FIO 4K random read bench-

mark was run within each VM. As shown in Table 2, 

with WRR mode it becomes possible to provide differ-

entiated I/O service to virtual-machines. 

6. Related work 

In this work we have taken Linux IO priorities and 

passed them down to NVMe device, linking them to 

prioritized submission queues. Similar work has been 

done for SATA HDDs and it got included in Linux ker-

nel recently (4.10 kernel) [10]. This work translates 

‘realtime’ class IO to NCQ [11] high-priority, and as a 

result of that, improves tail-latency in certain work-

loads.  

Currently NVMe WRR is not natively supported in 

Linux. SPDK user-space driver has affinity-based sup-

port discussed in earlier sections. NVMeDirect [12] is 

another user-space framework which proposes differen-

tiated I/O service for NVMe. Application source must 

be modified to make use of it. Since new interface (li-

brary) resides in user-space, kernel-space applications 

(file-systems, device-mappers) cannot take advantage of 

it. Moreover, it implements just two levels of I/O ser-

vice – prioritized, and non-prioritized. 

Linux has a resource control framework, named Cgroup 

[13], which provides weight-based distribution of disk 

bandwidth/IOPS among various processes. However, 

weight-based distribution policy is available only for 

devices which are using CFQ scheduler. It cannot be 

used for NVMe and other multi-queue block devices. 

Researchers have done work to add support in Cgroup 

for proportional sharing of I/O resource on NVMe [14]. 

This implementation resides completely in software and 

is not built upon WRR, which is a hardware service i.e. 

implemented by NVMe controller. We believe that it is 

possible to implement a full-fledged hardware-assisted 

(i.e. built upon WRR) proportional I/O sharing service 

within Cgroup. And comparing that with software-only 

service will be a good topic for future research. 

7. Conclusion 

We introduce a method to enable prioritized queues in 

Linux NVMe Driver, and demonstrate that WRR arbi-

tration can help providing differentiated I/O service to 

applications. It is possible to apply WRR on per-IO 

basis, but that requires introduction of new API and, 

therefore, rewriting applications to use that. This work 

delivers WRR capability to applications without the 

need of reprogramming, and without sacrificing their 

compute-ability. It establishes the link between existing 

Linux io-priority-framework and NVMe I/O priorities. 

As a future work, we plan to get these changes included 

in mainstream kernel. 
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