
Enabling NVMe WRR support in Linux Block Layer

Kanchan Joshi (joshi.k@samsung.com), Praval Choudhary (praval.ch@samsung.com), Kaushal

Yadav (y.kaushal@samsung.com)

 Samsung Semiconductors India R&D, India

Abstract

There is need of differentiated I/O service when appli-

cations with diverse performance-needs share a storage-

device. NVMe specification provides a method called

Weighted-Round-Robin-with-urgent-priority (WRR)

which can help in providing such differentiated I/O ser-

vice. In Round-Robin arbitration all I/O queues are

treated to be of equal priority, leading to symmetric I/O

processing. While in WRR arbitration, queues can be

marked urgent, high, medium or low, with provision for

different weightage for each category. Onus is on host

to associate priority with I/O queues and define weights.

We find that very little has been done in current Linux

ecosystem when it comes to supporting WRR and mak-

ing benefits reach to application. In this paper we pro-

pose a method that introduces WRR support in Linux

NVMe driver. This method delivers WRR capability to

applications without the need of rebuilding them. Un-

like affinity-based approach, it does not limit compute-

ability of application. Our results demonstrate that mod-

ified driver indeed provides differentiated I/O perfor-

mance among applications. Proposed work modifies

only NVMe driver and is generic enough to be included

in mainstream Linux kernel for supporting WRR.

1. Introduction

One of the design goals of NVM Express (NVMe)

specification [1] is to get most performance out of the

SSDs connected to PCI Express bus. It increases paral-

lelism by providing many I/O submission and comple-

tion queues which are shared between host (usually

driver) and storage device. NVMe specification de-

scribes arbitration methods using which NVMe control-

ler determines how commands should be processed

from available submission queues. Each controller sup-

ports round-robin arbitration method (RR), in which all

submission queues are treated to be of same priority.

They are iterated in round-robin fashion and equal

numbers of commands are fetched from selected queue.

Another arbitration method is weighted round robin

with urgent priority class (WRR), in which queues can

be marked urgent, high, medium or low. Different

weights can be specified for high, medium and low by

using set-features command. Urgent is given highest

priority (except admin queue) and other types of queues

are traversed in round-robin fashion and commands are

fetched according to respective weights.

WRR arbitration can be used to build a differentiated

I/O service that allows certain applications to obtain

higher I/O performance than others. However, current

Linux NVMe driver does not support WRR. It always

configures NVMe controller to use round-robin method.

SPDK user-space framework [2] has support for WRR,

but it requires applications to affine themselves to spe-

cific cores. We propose and implement a method in

NVMe driver that couples NVMe WRR feature with

existing io-priority-framework of Linux. This method

has several distinct advantages. It allows applications to

use prioritized service without sacrificing compute-

ability. There exists flexibility of changing I/O service

dynamically at run-time. It does not require changing

source-code of application. Since this method is imple-

mented at lowermost place in host NVMe stack, both

user-mode and kernel-mode applications (like file-

system, journaling, block-filters etc.) can make use of

prioritized service.

Remainder of this paper is organized as follows: Sec. 2

describes I/O queue design of NVMe driver; Sec. 3

describes affinity-based scheme to utilize WRR. Pro-

posed scheme and its implementation are described in

Sec. 4. Evaluation results are present in Sec. 5. Sec. 6

summarizes related work and conclusion of this work is

described in Sec. 7.

2. Existing I/O queue design in NVMe
Driver

In order to improve scalability, current NVMe driver

follows multi-queue design of Linux block layer [3]. In

multi-queue design, two set of queues namely software-

queues and hardware-queues are used. Software queues

are equal to number of CPU cores present on the ma-

chine, while hardware queues depends on device capa-

bility. I/O commands sent by an application running on

a core are placed to corresponding software queue at-

tached to that core. NVMe driver reports number of

hardware queues to block layer. Mapping is established

between software and hardware queues, and I/Os move

from software to hardware queue according to that

mapping. When hardware queues are more or equal to

number of software queues, 1:1 mapping is performed.

In this case a fast, NUMA-local path is established be-

tween application and NVMe device. If hardware

queues are less in number than software queues, two or

more software queues share a hardware queue.

Each hardware queue reported to block-layer by NVMe

driver is actually an I/O queue-pair consisting one sub-

mission queue (SQ) and one completion queue (CQ).

Doorbell registers exist for each SQ and CQ. Com-

mands are placed in a SQ and corresponding doorbell

register in incremented to notify the device. Device pro-

cesses commands and places completion entry in corre-

sponding CQ. Association between SQ and CQ is speci-

fied at the time of SQ creation. Each SQ can be associ-

ated with only one CQ (1:1 mapping). It is permissible

to have multiple SQs mapped to single CQ (N:1 map-

ping). Current NVMe driver creates one I/O queue-pair

with 1:1 mapping per CPU core.

Another relevant field in SQ is queue-priority, which

can be set as urgent, high, medium or low. In RR mode

priority is ignored by Controller.

3. Affinity-based WRR support method

SPDK user-space NVMe driver has affinity-based sup-

port for WRR. In this method, there exists one I/O

queue-pair (1 SQ, 1 CQ) per core. Queue-priorities are

assigned to available submission-queues in round-robin

fashion. As shown in Fig. 1, this makes each core host

one type (urgent, high, medium or low) of queue. Ap-

plication thread needs to affine itself to a core (or subset

of available cores) hosting specific type of queue to

obtain a certain kind of I/O service.

If application thread does not tie itself explicitly, OS

can schedule it on available cores at will, and this will

lead to arbitrary I/O performance as shown in Fig. 2.

Therefore, it becomes mandatory for applications to

affine themselves. Moreover, compute-ability is re-

duced as application has less cores (than physically pre-

sent) to run.

4. Proposed method: I/O scheduling class
based WRR support

4.1. New queue organization and I/O classification

To avoid the problem of arbitrary I/O performance, it is

necessary to host all four types of submission-queues on

each core. We introduce queue-pair with 4:1 mapping

i.e. four submission queues are associated with one

completion queue. Each core hosts four types (urgent,

high, medium and low) of submission queues.

Fig. 3: I/O priority based WRR

Application needs a way to specify I/O service. Current

I/O system calls (read, pread, readv etc.) do not have

provision to pass operation-specific hint/flag which can

be used to determine I/O service class. Introducing a

new system call will also require rewriting applications

to use new API/system-call. Therefore, we propose re-

Fig. 1: Application tied to core(s) for WRR

Fig. 2: Arbitrary I/O performance

using existing I/O scheduling classes [4] and map them

to NVMe I/O priorities. There are four types of I/O

scheduling classes which can be used by application to

indicate I/O service. CFQ scheduler implements I/O

service for these classes. Since NVMe I/O stack does

not use CFQ scheduler, it is safe to reuse I/O class in-

formation. As shown in Fig. 3, application is free to be

scheduled on any core and I/O will be placed in appro-

priate SQ depending on I/O scheduling-class of applica-

tion.

4.2. Implementation

Current NVMe driver creates I/O queue pair with 1:1

mapping (1 SQ, 1 CQ) per core. We modified it to sup-

port queue pair with N: 1 mapping (N SQ, 1 CQ) per

core. A new module parameter named sq_per_core is

introduced which specifies how many submission-

queues per core should be created.

insmod nvme.ko sq_per_core=4

When this parameter is specified, driver configures con-

troller to function in WRR mode. When this parameter

has value 1 or is not specified, driver continues to func-

tion in RR mode with existing 1:1 mapping.

Fig. 4: Simplified I/O stack

Fig. 5: Mapping I/O scheduling classes to NVMe priorities

As shown in Fig. 4, application thread can specify I/O

scheduling class either with the help of ionice utility [5],

or with the use of ioprio_set API [4]. I/O scheduling

class information is stored in task_struct of thread. In

our implementation, NVMe driver obtains I/O schedul-

ing class information by accessing task_struct of thread

performing I/O. Thereafter it maps scheduling-class to

NVMe I/O priority (shown in Fig. 5) and places com-

mand in appropriate SQ. When application is made to

run without specifying any I/O class, it belongs to

‘none’ class and its I/O operations are placed in medi-

um-priority queue.

4.3. Maximum I/O queues supported by NVMe Device

NVMe Device may have less number of submission-

queues than required for 4:1 mapping per core. For ex-

ample, on a machine with 64 cores, 256 submission-

queues are required to form 64 queue-pairs with 4:1

mapping while device may support maximum 128 sub-

mission queues. In our implementation, driver will han-

dle this scenario by creating 32 queue-pair with 4:1

mapping (requiring 128 submission queues). These 32

queue-pairs are shared among 64 cores. This may re-

duce degree of parallelism. Therefore, maximum queue-

count of device and count of CPU-cores on the machine

should be considered while enabling WRR.

Above scenario is applicable for 1:1 mapping as well

(and handled in same way) when machine has large

number of cores and, therefore, even 1:1 mapping re-

quires more queues than actually present in NVMe de-

vice.

 4.4. Limitation of I/O priority framework

Current I/O priority framework in Linux does not cater

to buffered I/O, especially buffered-write. Rather, it is

meant for reads and writes reaching directly to disk. At

times, thread submitting I/O to storage device can be

different from the one which actually issued I/O, and in

that case original scheduling-class information cannot

be determined.

Most block-level schedulers including CFQ suffer from

this problem. Split-level I/O scheduling [6] places

hooks at multiple places in I/O stack to record infor-

mation of the process that issued I/O. These I/O stack

changes can improve the efficacy of our implementation

since originating process information can be determined

more accurately.

5. Experiment Results

Proposed method was implemented in NVMe Driver of

Linux 4.10 Kernel, and evaluated on Dell R720 ma-

chine with 32 cores (2 NUMA nodes) and 32GB of

memory. All the evaluations were performed on Sam-

sung PM 1725a SSD which supports WRR arbitration.

§5.1 provides bandwidth distribution results for various

workloads after applying WRR. §5.2 shows background

IO throttling on NVMe. In §5.3 we measure overhead

of driver-changes. §5.4 presents use-case of applying

differentiated I/O service in virtual-machines.

5.1. Differentiated performance with Flexible I/O (FIO)

Fig. 6 shows IOPS distribution and Fig. 7 shows

throughput distribution among three applications with

different io-priorities, generating read/write workload.

Fig. 6: IOPS distribution among applications

Fig. 7: Throughput distribution among applications

Each application consists of 4 fio jobs [7] sending IO at

QD 64. Relative difference among low, medium and

high priorities is being controlled by three different

weight combinations – 8/12/20, 8/16/24 and 8/8/8.

Weights can be altered using nvme-cli tool [8]. RR

mode results are with base driver.

With RR mode, all three applications yield nearly same

IOPS/bandwidth. Same happens when equal weightages

are applied for high/medium/low priority in WRR

mode. While with different weightages, differentiated

performance is clearly visible.

5.2. Foreground/background performance control

Fig. 8 shows IOPS trend of a process (foreground) do-

ing 4K random reads for 5 minutes. During its run, an-

other process (background) issues 4K random write for

one-minute burst, launched twice. This causes sharp

decline in the performance of foreground process.

In RR mode, we have no means to throttle I/O perfor-

mance of background process. In WRR mode, we put

the background process in low priority (weightage value

1), and foreground process in high priority (weightage

value 16 and 128). With increase in weight difference,

background process experiences more throttling which

helps foreground process in retaining its performance.

Fig. 8: Foreground process IOPS over time

5.3. Overhead measurement

In order to quantify overhead of driver-changes, we

measured latency of modified driver against base driver

(shown in Table 1). Read-latency is measured with 4KB

random workload at queue depth 1, while write-latency

is measured with 4KB sequential workload at queue

depth 1. Results indicate minimal overhead.

Latency(µSec) Base driver Modified driver

Read 90.31 90.48

Write 18.69 18.78

Table 1: Latency comparison against base driver

5.4. Differentiated performance among Virtual Machines

In this experiment we build a use-case that applies dif-

ferentiated I/O service to virtual machines. Table 2

shows random-read performance within three Virtual

Machines in RR and WRR mode.

VM (Read IOPS) RR WRR

VM1 (High) 141K 208K

VM2 (Medium) 143K 142K

VM3 (Low) 142K 76K

Table 2: I/O performance of Virtual Machines

Each VM, with 8 virtual CPUs and 8GB RAM, was

hosted using KVM/QEMU. Each virtual machine had

three virtual disks (hosted on NVMe SSD) attached to

it. To increase disk performance qemu-kvm makes use

of separate threads, named iothread [9], for issuing I/O.

All iothreads running inside VM1 were assigned best-

effort class; this made VM1 high-priority. Similarly

VM2 was made medium-priority and VM3 was made

low-priority. Weightages for high, medium and low

were set as 24, 16 and 8. FIO 4K random read bench-

mark was run within each VM. As shown in Table 2,

with WRR mode it becomes possible to provide differ-

entiated I/O service to virtual-machines.

6. Related work

In this work we have taken Linux IO priorities and

passed them down to NVMe device, linking them to

prioritized submission queues. Similar work has been

done for SATA HDDs and it got included in Linux ker-

nel recently (4.10 kernel) [10]. This work translates

‘realtime’ class IO to NCQ [11] high-priority, and as a

result of that, improves tail-latency in certain work-

loads.

Currently NVMe WRR is not natively supported in

Linux. SPDK user-space driver has affinity-based sup-

port discussed in earlier sections. NVMeDirect [12] is

another user-space framework which proposes differen-

tiated I/O service for NVMe. Application source must

be modified to make use of it. Since new interface (li-

brary) resides in user-space, kernel-space applications

(file-systems, device-mappers) cannot take advantage of

it. Moreover, it implements just two levels of I/O ser-

vice – prioritized, and non-prioritized.

Linux has a resource control framework, named Cgroup

[13], which provides weight-based distribution of disk

bandwidth/IOPS among various processes. However,

weight-based distribution policy is available only for

devices which are using CFQ scheduler. It cannot be

used for NVMe and other multi-queue block devices.

Researchers have done work to add support in Cgroup

for proportional sharing of I/O resource on NVMe [14].

This implementation resides completely in software and

is not built upon WRR, which is a hardware service i.e.

implemented by NVMe controller. We believe that it is

possible to implement a full-fledged hardware-assisted

(i.e. built upon WRR) proportional I/O sharing service

within Cgroup. And comparing that with software-only

service will be a good topic for future research.

7. Conclusion

We introduce a method to enable prioritized queues in

Linux NVMe Driver, and demonstrate that WRR arbi-

tration can help providing differentiated I/O service to

applications. It is possible to apply WRR on per-IO

basis, but that requires introduction of new API and,

therefore, rewriting applications to use that. This work

delivers WRR capability to applications without the

need of reprogramming, and without sacrificing their

compute-ability. It establishes the link between existing

Linux io-priority-framework and NVMe I/O priorities.

As a future work, we plan to get these changes included

in mainstream kernel.

References

[1] NVM Express 1.2.1 specification

http://www.nvmexpress.org

[2] Storage Performance Development Kit.

http://www.spdk.io/

[3] M. Bjørling et al., “Linux block IO: introducing

multi-queue SSD access on multi-core systems,” in

Proc. of the 6th Int. Systems and Storage Conf., 2013.

[4] Block IO priorities,

https://www.kernel.org/doc/Documentation/block/ioprio

.txt

[5] Ionice utility, https://linux.die.net/man/1/ionice

[6] Suli Yang et al., “Split-level I/O scheduling”, SOSP,

2015.

[7] FIO, http://freecode.com/projects/fio

[8] nvme-cli, https://github.com/linux-nvme/nvme-cli

[9] Towards multi-threaded device emulation in

QEMU, https://vmsplice.net/~stefan/stefanha-kvm-

forum-2014.pdf

[10] “A tail of latency, IOPS & IO priority”

http://events.linuxfoundation.org/sites/events/files/slides

/LinuxFast_Vault_2017_v2.pdf

[11] ATA/ATAPI command set,

http://www.t13.org/Documents/UploadedDocuments/do

cs2013/d2161r5-ATAATAPI_Command_Set_-_3.pdf

[12] Hyeong-Jun Kim et al., “NVMeDirect: A user-

space I/O framework for application specific optimiza-

tion on NVMe SSDs, in HotStorage, 2016.

[13] Cgroups,

https://www.kernel.org/doc/Documentation/cgroup-

v2.txt

http://www.nvmexpress.org/
http://www.spdk.io/
https://www.kernel.org/doc/Documentation/block/ioprio.txt
https://www.kernel.org/doc/Documentation/block/ioprio.txt
https://linux.die.net/man/1/ionice
http://freecode.com/projects/fio
https://github.com/linux-nvme/nvme-cli
https://vmsplice.net/~stefan/stefanha-kvm-forum-2014.pdf
https://vmsplice.net/~stefan/stefanha-kvm-forum-2014.pdf
http://events.linuxfoundation.org/sites/events/files/slides/LinuxFast_Vault_2017_v2.pdf
http://events.linuxfoundation.org/sites/events/files/slides/LinuxFast_Vault_2017_v2.pdf
http://www.t13.org/Documents/UploadedDocuments/docs2013/d2161r5-ATAATAPI_Command_Set_-_3.pdf
http://www.t13.org/Documents/UploadedDocuments/docs2013/d2161r5-ATAATAPI_Command_Set_-_3.pdf
https://www.kernel.org/doc/Documentation/cgroup-v2.txt
https://www.kernel.org/doc/Documentation/cgroup-v2.txt

[14] Sungyong Ahn et al., “Improving I/O resource

sharing of linux cgroup for NVMe SSDs on multi-core

systems”, in Hotstorage, 2016.

