Deduplicating Compressed Contents in Cloud Storage Environment

Zhichao Yan, Hong Jiang
University of Texas Arlington
zhichao.yan@mavs.uta.edu
hong.jiang @uta.edu

Abstract

Data compression and deduplication are two common
approaches to increasing storage efficiency in the cloud
environment. Both users and cloud service providers
have economic incentives to compress their data before
storing it in the cloud. However, our analysis indicates
that compressed packages of different data and differ-
ently compressed packages of the same data are usual-
ly fundamentally different from one another even when
they share a large amount of redundant data. Existing
data deduplication systems cannot detect redundant data
among them. We propose the X-Ray Dedup approach to
extract from these packages the unique metadata, such as
the “checksum” and “file length” information, and use it
as the compressed file’s content signature to help detect
and remove file level data redundancy. X-Ray Dedup is
shown by our evaluations to be capable of breaking in
the boundaries of compressed packages and significantly
reducing compressed packages’ size requirements, thus
further optimizing storage space in the cloud.

1 Introduction

Due to the information explosion [1, 3], data reduc-
tion technologies such as compression and deduplica-
tion have been developed to improve the space efficiency
in storage systems, including the cloud storage environ-
ment. Lossless data compression tries to find repeated
strings within the specific range of the individual files
and replaces them with a more compact coding scheme.
It reduces bits by identifying and eliminating statistical
redundancy. Data deduplication divides data into fixed-
size or variable-size chunks, identifies and removes the
redundant chunks across all the files by unique finger-
prints of these chunks, and reassembles the chunks to
serve the subsequent access operations on the data.
However, we have observed several problems in ex-
isting data deduplication systems with compressed con-
tents. First, they cannot identify redundant data between
the compressed and uncompressed versions of the ex-
actly same contents, because the compressed contents,
being encoded by the compression algorithm, will have
very different string patterns from their uncompressed
counterparts. Second, different compression algorithms

Yujuan Tan*
Chongqing University
tanyujuan @ gmail.com
Corresponding Author

Hao Luo
University of Nebraska Lincoln
hluo@cse.unl.edu

999

Cloud Storage

Kale

i Original RARed
Folder t Zipped
Folder m Folder

\/

Figure 1: A user scenario on cloud storage environment

Folder

will generate different compressed data of the same con-
tents that render fingerprint-based redundancy identifi-
cation difficult. Third, very similar but different digital
contents (e.g., files or data streams), which would other-
wise present excellent deduplication opportunities, will
become fundamentally distinct compressed packages af-
ter applying even the same compression algorithm.

To understand the potential negative impact of the
above observed problems, we describe a simple but ar-
guably common use case in a cloud storage environment
as shown in Figure 1. Three users, Tom, Kate and Bob,
use the same cloud storage service to store their data; and
they share substantial contents among their individual lo-
cal folders (e.g., taking the same courses, working on the
same projects, having similar tastes in movies, music,
etc.). Both users and cloud providers have economic in-
centives to compress their data before storing it in the
cloud. To help make the point, we assume the extreme
case where the three local folders are identical. Tom
directly stores the original folder to the cloud servers,
while Kate and Bob choose different compression soft-
ware (i.e., zip and rar) to compress their local folders be-
fore storing them to the cloud servers. The cloud storage
servers must store all these three different data streams.
Obviously, they are actually of different formats of rep-
resentation for the same data contents (folder), and it is

enough to store only one copy from the perspective of
information preservation. Unfortunately, the existing da-
ta deduplication methods will not be able to detect and
remove this kind of data redundancy because the zip and
rar algorithms will encode the data stream in differen-
t ways, making the two output streams different from
each other. This is also the reason why traditional da-
ta deduplication systems try to skip deduplicating com-
pressed archives because they may share little redundant
data in their binary representations with the original un-
compressed files, even though they may have the same
digital contents [7]. As cloud storage becomes a digital
content aggregating point in the digital universe, differ-
ent users will likely share the same digital contents with
others, often with different compression methods due to
their own habits and preferences. As a result, it is ar-
guable that this type of hidden data redundancy already
exists widely in deduplication-based storage systems and
will likely increase with time. Thus, it is necessary to
detect and remove this kind of redundancy for a more
efficient cloud storage system.

Our observation of prevailing compression algorithm-
s, such as zip, 7z, rar, pea, tar.gz, tar.bz or tar.xz, indicate
that they contain some “integrity check” mechanisms to
protect their compressed contents. More specifically,
some, such as tar.gz, tar.bz or tar.xz, will only protect
the metadata (they compress a single archive file gener-
ated from tar, and tar will perform integrity check on its
archived files’ header); while others, such as zip, 7z, rar
or pea, will protect all compressed files, meaning that
they will perform integrity check on all their compressed
files’ contents. We discover that this kind of mechanism,
along with some other metadata (file length), within the
compressed package can be used as a file signature to de-
tect data redundancy. As a result, it can be used to detect
the potential redundancy between compressed files and
uncompressed files, and among differently compressed
files.

In summary, this paper makes the following contribu-
tions: (1) it studies the potential data redundancy be-
tween compressed files and uncompressed files, and a-
mong differently compressed files; (2) it proposes the
X-Ray Dedup approach to identify the redundant files
across the (differently) compressed files and uncom-
pressed files in the cloud storage environment; and (3)
it evaluates X-Ray Dedup to demonstrate its substan-
tial improvements over the traditional data deduplication
method.

2 X-Ray Dedup Approach

In this section, we will introduce some basic information
on typical compressed packages, then elaborate on our
X-Ray Dedup approach.

struct tar_header{

char name[100];
char mode[8];
char uid[8];

tar package
I filel header

filel content

char gid|[8];

i file2 header
char size[12];
char mtime([12]; file2 content
char chksum[8]; | [R
char typeflag; _ﬁleN header
char linkname[100];

char magic[6];
char version[2];
char uname[32];
char gname[32];
char devmajor|[8];
char devminor|[8];
char prefix[155];
char padding[12];

gzip,jtp%xz

tar.gz, tar.bz or tar.xz
package

chksum only protect
header content integrity

Figure 2: Compression flow for gzip, bzip2 or xz

2.1 Format of Compressed Package

Linux/Unix users usually archive their files into a folder
before using one of the various compression tools (e.g.,
gzip, bzip2,xz, etc.) to compress it. Consequently, a
great number of compressed packages have been gener-
ated with a suffix of “tar.gz”, “tar.bz” or “tar.xz”. Some
systems will run a script to automatically translate the
directory into a specific compressed package. As shown
in Figure 2, the basic work flow is to archive the folder,
treat it as a single file and compress it. Tar will stack each
file’s header and content together. However, the check-
sum field only protects the file header’s data integrity.
Compression tools will compress the tar package, which
is comprised of both metadata and data.

Windows users usually use a compression program,
e.g., 7zip, peazip, rar, etc., to directly compress the
folder, which results in compressed packages suffixed
with “7z”, “pea” or “rar”. These tools are also widely
used, for example, the “7z” and “peazip” programs work
across the Linux and Windows platforms, and the com-
mercial software WinRAR has more than 500 millions
users around the world. These compression algorithms
evolved from the “zip” algorithm, and they usually cal-
culate a “CRC32” checksum per file for data integrity.
Besides CRC32, some tools can choose more complex
checksum schemes such as MD5, SHA1, RIPEMD-160,
SHA256, SHAS512, BLAKE?2, etc., which can be lever-
aged as the file’s content signature for data deduplication.

2.2 System Overview and Operations

Based on our observation, we propose an approach,
called X-Ray Dedup, to leverage the metadata informa-
tion (checksum and file length) as the file’s content signa-
ture within the compressed package to identify the redun-
dant data between compressed files and uncompressed
files, and among differently compressed files. Specifical-
ly, we calculate the files’ checksums information in the

CLRNNT3

“tar.gz”, “tar.bz” and “tar.xz” packages and directly use

9 <.

checksums existing in the “7z”, “pea” or “rar” packages.

transfer agent transfer agent transfer agent

chunk store chunk store chunk store

Storage Server Storage Server Storage Server

| unique chunks + file recipe ‘:
. — o

chunk level
redundant checker

task
agent

transfer
agent

file signature file signature chunking and
store identification fingerprinting module

Master Server

compressed file
metadata store

¥
»)

-3
a .

< Chu“lf > +<d§lt§l chunks>

i _fingerprints

package -
recipe

transfer
agent compressed file
task metadata extractor | | {
1
agent S|

lient Side

zip package ! 3

{ unique file |+ {

{

rar package

Figure 3: System overview

Figure 3 shows a typical cloud storage system inte-
grated with our X-Ray Dedup approach. The transfer
agent is responsible for data transfer between clients and
servers. The system usually contains at least one mas-
ter server that manages the storage tasks from different
clients. Once a client sends a file to the master server, it
will perform file level data deduplication before perform-
ing chunk level data deduplication. In this step, the sys-
tem will first remove redundant files. Then, it will iden-
tify redundant data chunks, generate file recipe metadata
(i.e., chunk mapping information) that helps reconstruct
the original file and remove the redundant chunks. In the
last step, it will store the unique data chunks into chunk
stores within the storage servers.

The X-Ray Dedup’s workflow is shown in Figure 3.
It consists of 4 main steps, along with the type of da-
ta generated by each step. In Step 1, the compressed
file metadata extractor module on the client side
extracts the metadata of the compressed package by
parsing through the compressed package and collecting
the corresponding metadata information (i.e., name, un-
compressed length and checksum). In Step 2, a file
signatures store is used to help the file signature
identification module identify and remove file-level
data redundancy by its recorded files’ metadata entries.
In Step 3, the unique (non-redundant) files are chun-
ked to generate data chunks and their individual finger-
prints. In Step 4, the conventional chunk-level dedupli-
cation will be executed to generate file recipes and u-
nique chunks. Finally, the previously generated pack-
age recipes, file recipes and unique chunks are stored to
the storage servers. In other words, X-Ray Dedup adds
an additional level of deduplication exclusively for com-
pressed files, on top of the traditional deduplication sys-
tems.

In order to detect all redundant files in a cloud stor-

"éomprcsscd file metadata list

Filel: name, length, checksum
' File2: name, length, checksum
! File3: name, length, checksum '

age environment, one possible solution is to calculate all
files” checksums and construct a file metadata key-value
store. The scope of the key-value store can be defined by
the users to limit the overhead on building and maintain-
ing it. It is very similar to existing hash store for file-level
data deduplication, except that it works with a differen-
t hash format that represents each individual files con-
tent to filter out files. More specifically, if we choose the
same file-level hash signature as the one used in conven-
tional data deduplication systems, such as“SHA1” (by
configuring or extending checksum methods of compres-
sion tools on the cloud side), we can combine this struc-
ture with the existing data deduplication hash store.

In this work, we leverage the most popular checksum
(CRC32) within the compressed packages. It is then
combined with the “original file length” to constitute a
file’s signature and help detect data redundancy at the file
level as follows. First, two files are considered redundant
only if they have identical checksums and equal original
file lengths. That is, file-level redundancy can be detect-
ed by configuring the system with an extra comparison
step to compare and verify whether files have identical
CRC32 values and original file lengths. Second, before
removing the redundant files, a package recipe is con-
structed for the storage server to be able to later recover
the compressed package. Each package recipe contains
all the records (usually in the form of other compressed
packages’ pointer information) of the compressed files of
corresponding package. After the redundant files within
a compressed package are identified, a new compressed
package without them is generated. The new package,
combined with the package recipe, enables the restora-
tion of the original compressed package.

3 Evaluation

In this section, we will introduce the evaluation environ-
ment, present and analyze some preliminary results.

3.1 Experimental Environment

We have collected two freely available code packages
(coreutils and Linux kernel) as our data set. There are
20 versions of coreutils and 11 versions of Linux ker-
nel, all in compressed packages. We run the experi-
ments under Ubuntu — 14.04 with the ext4 file system,
and compressed packages are generated from both the
Ubuntu and Windows7T platforms. We use Destor [2] as
the chunk level deduplication engine. It is designed for
backup applications with chunk level data deduplication.
We have added the file-level data duplication feature for
compressed files to it to integrate our X-Ray Dedup ap-
proach. In Table 1, we list the compression tools that we
have used in this work.

Table 1: Compression tools

tar gz X7 7z rar
ubuntu 1.27.1 1.6 | 5.1.0a | 9.20 4.20
windows 1.28-1 16 | 522 15.098 | 5.31

Table 2: Sizes (KiB) of different compression formats under the Ubuntu /
Windows platforms

coreutils-8.25 linux-4.5-rc5
tar 49990 /49990 | 642550 /642550
Xz 559175591 86287 / 86287

gz 12784 /12784
7z 6169 /5723
rar 12402 /12401

132608 / 132609
93561 /89437
156310/ 155135

3.2 Results and Analysis

Compressed Content Study: evaluating data redun-
dancy among different compression formats. Table 2
lists the various sizes of different formats for a specif-
ic version of selected datasets under both the Ubuntu
and Windows platforms. We use the default parameters
to convert the data package downloaded from the Inter-
net into different package formats. We find that com-
pression tools can significantly reduce the original digi-
tal contents’ sizes. It can significantly reduce the costs
for both users and cloud service providers. We use the
chunk-level data deduplcation engine to study data re-
dundancy among the compressed packages. As shown
in Table 3, we find that nearly all pairs have 0% data
redundancy, a few pairs have 0.05%-7.63% data redun-
dancy. Except for “tar.xz”, which has generated 100% i-
dentical compressed packages from both the Ubuntu and
Windows platforms. We further verify that they share
0% redundancy with the compressed packages gener-
ated by xz —5.0.8. Although most packages have the
same sizes across the two platforms, our study shows
that: (1) except for “tar.xz”, the compressed packages
are fundamentally different from each other even under
the same compression algorithm; (2) for the same digital
contents, different compressed algorithms will generate
fundamentally different data streams; (3) a compressed
package itself has very low data redundancy (0-0.05%)
at the chunk level. All these results indicate that tradi-
tional data deduplication methods cannot detect data
redundancy in the compressed packages.
Decompressed Content Study: evaluating the da-
ta redundancy among different packages. We decom-
press various versions of packages and apply the chunk
level duduplication engine on them. As shown in Fig-
ure 4, we plot both local and global data redundancies,
where the former represents the redundancy within the
current version and the latter represents the redundan-
cy among all versions. We find that most packages
have very low local data redundancy within themselves
(5.29%-6.48% in coreutils and 0.57%-2.25% in Lin-
ux). Although both the local and global data redundancy
rates vary over different versions, the global data redun-
dancies are very high across different versions, indicat-

Table 3: Comparison of redundancy ratio (in percentage) between different
compressed packages between the same content, whose row is Ubuntu and
column is Windows

coreutils linux
XZ gz Tz rar XZ gz Tz rar
Xz 100 | O 0 0 0 0 0 0.05
coreutils % 0 76 | 0 0 0 0 0 0.05
Tz 0 0 0 0 0 0 0 0.05
rar | O 0 0 1.0 | 0 0 0 0.05
XZ 0 0 0 0 100 | O 0 0.05
linux gz 0 0 0 0 0 56 | 0 0.05
7z 0 0 0 0 0 0 0 0.05
rar | O 0 0 0 0 0 0 0.24

ing that high data redundancy exists among these pack-
ages (32.95%-81.45% in coreutils and 14.98%-83.84%
in Linux). All these results indicate that there are a lot
of duplicate files within these compressed packages,
which can be detected and removed by X-Ray Dedup.

X-Ray Dedup Study: evaluating how much data
can be deduplicated by X-Ray Dedup. In Figure 5,
we show three kinds of data redundancy rate across all
versions of the compressed packages, namely, chunk lev-
el redundancy, file level redundancy and compressed re-
dundancy. Compressed redundancy is defined as the ratio
of the total size of compressed intact files’ size divides
and the total size of compressed package. Chunk lev-
el redundancy indicates the maximal redundancy across
these packages. In this study, we collect the informa-
tion about the sizes before and after compression under
the compression tool “rar”, so the compressed redundan-
cy is specific to “rar”. File level redundancy vary from
1.39%-26.46% in coreutils and 9.04%-55.55% in Linux.
X-Ray Dedup can help find this kind of redundant data
and eliminate it. As a result, it can reduce the size of
compressed packages by 1.61%-35.78% in coreutils and
11.05%-65.59% in Linux with its file-level data dedupli-
cation. It is worth noting that,for one particular version
of the Linux dataset, the compressed redundancy is a bit
higher than its chunk level redundancy. This is because
the compression algorithm encodes data by its statisti-
cal redundancy. Meanwhile, we find that some coreutils
versions have made major modifications on most files,
leading to a very low file level redundancy. As a result,
X-Ray Dedup can scan compressed packages and opt out
performing file level deduplication. However, extracting
metadata information from these low-redundancy com-
pressed packages is still necessary and in fact important
because there would be high file level redundancy in the
compressed packages of the subsequent versions. We de-
fine the deduplication factor for X-Ray Dedup as the ratio
of the compressed redundancy to the chunk level redun-
dancy. We find that X-Ray Dedup can reduce a signif-
icant amount of redundant data in compressed pack-
ages in traditional data deduplication system (the d-
eduplication factor is 22.20% in coreutils and 65.60%
in linux kernel on average).

0.9 Lo.o
s
£ 0.8 A A 08z
o 4 A L E'
E 0.7 \A A\ / A R \A 0.7 o
3 0.6 AR \ 0.6 2
ERER Lo.s®
£ 0.4 S toaE
= Noa| TE
£ 0.3 03§
= 021 T local 1,52
o —4a—global el
S 0.1 Lo &
R 2 -
w00

(a) coreutils (20 versions)

W10
0.9 F0.9
e Ju—
50.84 / F0.85
‘:‘0 7 A—A \A/A F0.7E
5064 \ / o.6 =
£ A s
5051 \y H
& 0.44 L0.42
s =
5034 F0.3 &
a 2
=0.24 —u—Jocal *0.2‘;
bt
50.11 i T4 global Lg%
001 = p—r—p—r p p—t—t% (0

(b) linux (11 versions)

Figure 4: Real data redundancy throughout different versions of decompressed packages

1.0+ —=— chunk level redundancy
—e— file level redundancy
—4— compressed redundancy

0. 0+———F—T T T T T T T T T Tt

(a) coreutils

—=— chunk level redundancy
—o— file level redundancy
0.9 —— compressed redundancy

0.0+ T T

T T T 1

(b) linux

Figure 5: Compressed redundancy information of the X-Ray Dedup approach throughout all compressed packages

4 Related Work

Data deduplication was proposed to remove redundant
data in backup application [9]. As more and more da-
ta migrates to the cloud, it has been integrated within
the cloud platform [8]. Different from the backup stor-
age systems where chunk-level deduplication dominates,
there exists strong evidence indicating that file-level d-
eduplication can achieve comparable compression ratio
to chunk-level deduplication in the cloud environmen-
t [6]. However, it remains a challenge to find redundan-
t data within a compressed package or among different
compressed packages because conventional methods for
detecting data redundancy usually scan the compressed
stream itself without touching, let alone leveraging its
internal information. Migratory compression [S] and M-
tar [4] try to reorganize data to improve space efficiency.
X-Ray Dedup can scan and extract metadata information
to further help identify and remove redundant files across
the compressed files and uncompressed files.

5 Acknowledgment

The authors wish to thank the reviewers for their con-
structive comments. We are also grateful to our shep-
herd, Professor Xiaosong Ma, for her very helpful
feedback on this paper’s revision. This work was
supported in part by National Natural Science Foun-
dation of China (NSFC) under Grant No.61402061,
No0.61309004, Chongqing Basic and Frontier Research
Project of China under Grant No.cstc2013jcyjA40016,
No.cstc2013jcyjA40025, Research Fund for the Doctor-
al Program of Higher Education of China under Grant

No0.20130191120031, and NSF CNS-1116606.

References

[1] EMC. Managing storage: Trends, challenges, and options(2013-
2014). https://education.emc.com/content/_common/
docs/articles/Managing_Storage_Trends_Challenges_
and_Options_2013_2014.pdf, 2013.

[2] Fu, M., FENG, D., Hua, Y., HE, X., CHEN, Z., XIA, W,
ZHANG, Y., AND TAN, Y. Design tradeoffs for data deduplica-
tion performance in backup workloads. In Proceedings of the 13th
USENIX Conference on File and Storage Technologies (2015), p-
p. 331-344.

[3]1 GANTZ, J., AND REINSEL, D. The digital universe in 2020: Big
data, bigger digital shadows, and biggest growth in the far east.
https://www.emc.com/collateral/analyst-reports/
idc-the-digital-universe-in-2020.pdf, 2012.

[4] LIN, X., DougLis, F., L1, J., L1, X., Ricci, R., SMALDONE,
S., AND WALLACE, G. Metadata considered harmful ... to dedu-
plication. In Proceedings of the 7th USENIX Conference on Hot
Topics in Storage and File Systems (2015), pp. 11-11.

[5] LIN, X., LU, G., DOUGLIS, F., SHILANE, P., AND WALLACE,
G. Migratory compression: Coarse-grained data reordering to im-
prove compressibility. In Proceedings of the 12th USENIX Con-
ference on File and Storage Technologies (2014), pp. 257-271.

[6] MEYER, D. T., AND BOLOSKY, W. J. A study of practical dedu-
plication. In Proceedings of the 9th USENIX Conference on File
and Stroage Technologies (2011), pp. 1-1.

[7] TAN, Y., JIANG, H., FENG, D., T1AN, L., YAN, Z., AND ZHOU,
G. Sam: A semantic-aware multi-tiered source de-duplication
framework for cloud backup. In Parallel Processing (ICPP), 2010
39th International Conference on (Sept 2010), pp. 614-623.

[8] VRABLE, M., SAVAGE, S., AND VOELKER, G. M. Cumulus:
Filesystem backup to the cloud. In Proccedings of the 7th Confer-
ence on File and Storage Technologies (2009), pp. 225-238.

[9]1 ZHu, B., L1, K., AND PATTERSON, H. Avoiding the disk bottle-
neck in the data domain deduplication file system. In Proceedings
of the 6th USENIX Conference on File and Storage Technologies
(2008), pp. 18:1-18:14.

