
Neutrino: Revisiting Memory Caching for Iterative Data Analytics

Erci Xu*, Mohit Saxena†, and Lawrence Chiu†

*Ohio State University, †IBM Research Almaden
xu.1556@osu.edu,{msaxena,lchiu}@us.ibm.com

Abstract
In-memory analytics frameworks such as Apache Spark are
rapidly gaining popularity as they provide order of magni-
tude performance speedup over disk-based systems for iterative
workloads. For example, Spark uses the Resilient Distributed
Dataset (RDD) abstraction to cache data in memory and itera-
tively compute on it in a distributed cluster.

In this paper, we make the case that existing abtractions
such as RDD are coarse-grained and only allow discrete cache
levels to be used for caching data. This results in inefficient
memory utilization and lower than optimal performance. In
addition, relying on the programmer to enforce caching deci-
sions for an RDD makes it infeasible for the system to adapt
to runtime changes. To overcome these challenges, we propose
Neutrino that employs fine-grained memory caching of RDD
partitions and adapts to the use of different in-memory cache
levels based on runtime characteristics of the cluster. First, it
extracts a data flow graph to capture the data access dependen-
cies between RDDs across different stages of a Spark applica-
tion without relying on cache enforcement decisions from the
programmer. Second, it uses a dynamic-programming based al-
gorithm to guide caching decisions across the cluster and adap-
tively convert or discard the RDD partitions from the different
cache levels.

We have implemented a prototype of Neutrino as an exten-
sion to Spark and use four different machine-learning work-
loads for performance evaluation. Neutrino improves the aver-
age job execution time by up to 70% over the use of Spark’s
native memory cache levels.

1 Introduction
Traditional disk-based big data frameworks, for exam-
ple Apache Hadoop, scale out the computation across
multiple nodes in a distributed cluster. However, they
fall short for the needs of the recently emerging iterative
workloads such as clustering, inference and regression
algorithms for machine learning [3]. These workloads
require data to be cached in memory across different it-
erations.

Apache Spark [8, 5] is one of the most popular sys-
tems that is custom designed for serving iterative queries

and use the Resilient Distributed Dataset (RDD) abstrac-
tion to cache data in memory. As a result, memory effi-
ciency becomes critical to the overall performance [7, 4].
A Spark job is composed of Transformations (e.g. map,
flatMap); and Actions (e.g. count, reduce). A RDD
is typically created by loading data in an Action from
HDFS wherein each HDFS block on disk represents a
RDD partition in memory. The programmer can man-
ually prescribe the system to cache the loaded RDD in
a given cache level across different actions. Otherwise,
the RDD is discarded from memory after the action is
completed. Table 1 shows the different cache levels and
their tradeoffs. These cache levels store all partitions of a
RDD in serialized (compact) or deserialized (fast) mem-
ory cache levels. Alternatively, the RDD can be stored
outside the Spark JVM heap (off heap) in memory and
on disk.

In this paper, we find that coarse-grained cache man-
agement using RDD abstraction and discrete cache levels
results in inefficient memory utilization and lower per-
formance. First, all partitions of a RDD are stored in the
same cache level across all worker nodes regardless of
runtime characteristics such as the memory required for
the RDD partition and free memory on a worker node.
Second, the system relies on the application programmer
to enforce caching decisions for a RDD using persist and
unpersist interfaces exposed to the programmer. This
makes it infeasible for moving a RDD or its partitions
from one caching level to another.

In this paper, we address these challenges by designing
Neutrino- a new distributed memory management sys-
tem - implemented as an extension to Spark. Neutrino
eliminates the need for the programmer to manually es-
timate the memory needs of serialized or deserialized
cache levels; and enforce caching decisions based on
cluster configuration. Instead, the programmer now sim-
ply uses a new adaptive cache level supported by Neu-
trino. Neutrino automatically extracts a data flow graph
that tracks the access dependency of different RDDs used

1



0	
20	
40	
60	
80	

100	
120	
140	

10	 20	 30	 40	 50	

Si
ze
	in
	M

em
or
y(
G
B)
 

DataSize(GB) 
Serialized	 Deserialized	

Figure 1: Serialized and Deserialized Data Size in
Spark Memory: Serialized data has a size in memory
similar as of the dataset on disk, while size nearly triples
for deserialized format.

in different actions/stages of a Spark job.
Next, Neutrino uses this data flow graph and a cost

model to compute the fine-grained cache level of each
partition in a RDD. The cost model is based on a dynamic
programming algorithm that tries to optimize the total
job execution time by guiding adaptive caching decisions
on each worker node to make the most efficient use of
aggregate cluster memory. It accounts for the memory
requirements for each partition in a certain cache level,
free memory on each worker node, and data flow depen-
dencies of RDDs. This is achieved by using two novel
operations - convert and discard - implemented and used
internally by Neutrino to move RDD partitions between
different cache levels or remove them from memory re-
spectively. As a result, a RDD could have a fraction of its
partitions in deserialized or serialized cache levels, and
remaining uncached on HDFS.

The remainder of the paper is structured as follows.
Section 2 motivates Neutrino by demonstrating the trade-
offs for coarse-grained cache levels in Spark. Section 3
describes the design of Neutrino prototype; followed by
Section 4 that compares the performance of Neutrino
against Spark for four machine-learning iterative work-
loads.

2 Motivation
We now describe the different cache levels in Spark and
their tradeoffs for memory usage and performance.

Deserialized Data in Memory. Serialization [1, 5] is
an operation that converts in-memory object structures
(e.g. string, graphs, etc.) into a stream of bytes that are
written on disk or transferred over the network. Dese-
rialization is the reverse operation. In Spark, a dataset
read from HDFS is converted into a structured RDD that
represents application-specific in-memory objects. For
example, a text corpus of data read from HDFS can be
structured into a RDD representing a vector of words for
a clustering-based ML application.

Figure 1 shows the size of deserialized and serialized
data in Spark memory when a text corpus of increasing

Level Format Location Advantage
Mem Deser Deserialized In-Heap Fast
Mem Ser Serialized In-Heap Compact
Mem Off Serialized Off-Heap Less GC
Mem Disk Deserialized

in Memory
Memory & Disk Large

Table 1: Popular Cache Levels in Spark

Mem_DeSer	

Mem_Ser	

Mem_Off	

0	

10	

20	

30	

40	

50	

60	

70	

10	 20	 30	 40	 50	 60	 70	 80	 90	 100	

Ex
ec
u&

on
	T
im

e(
Se
c)
 

Dataset	Size(GB) 

Figure 2: Performance of Spark Cache Levels

size is loaded into memory. Deserialization can result in
nearly triple the size as compared to serialized data. This
is because deserialized data reconstructs the structural in-
formation (such as links in a graph, length of data types)
within the memory object that is excluded in the serial-
ized byte stream. In contrast, data in serialized format
is almost identical in size as its size on disk. In general,
even with the use of highly efficient serialization algo-
rithms [1], the difference in memory footprint of data in
serialized and deserialized formats can be up to an order
of magnitude based on the data type [2, 5].

Spark Cache Levels. Table 1 shows the different
cache levels provided by Spark. The application pro-
grammer has to select one of these levels for a RDD; oth-
erwise the RDD is discarded from memory after a Spark
Action. Each Spark cache level tradesoff between perfor-
mance, memory usage, garbage collection overhead, and
fault-tolerance. The most popular cache levels store the
complete RDD in memory in one of the three cache lev-
els: deserialized (Mem Deser), or serialized (Mem Ser)
in Spark memory, or outside Spark’s JVM heap in se-
rialized format within a distributed memory filesystem
(Mem Off) [6].

Figure 2 shows the performance of a Spark job per-
forming word-count on a dataset that ranges between 10
to 100 GB. Our cluster is composed of five worker nodes
that provides a total of 100 GB Spark cache memory. The
performance of Mem Deser cache level is up to 24 times
better than Mem Ser and Mem Off as there is no extra
overhead for deserializing data during the job execution.
However, it starts to drop for datasets greater than 40 GB
in size because then the dataset grows beyond 100 GB
of cache space in deserialized format. As a result, the
RDD partitions that do not fit in memory need to be

2



Figure 3: Neutrino Architecture: Different components
of the Neutrino architecture implemented as extensions
to Spark.

read from HDFS when accessed. In contrast, job exe-
cution times grow almost linearly for both Mem Ser and
Mem Off as they store all data in memory in serialized
format. Mem Ser is faster than Mem Off because it does
not incur extra memory copies for moving data to mem-
ory outside Spark’s heap. We also observe that Mem Ser
results in unused memory in the cluster for dataset sizes
between 50-90 GB.

These results show that the programmer can not eas-
ily select the most suitable cache level as it is difficult to
statically account for different data types and free mem-
ory at runtime in the cluster. Second, a coarse-grained
selection of a cache level for a RDD may be inflexible
to make the most effective use of free cluster memory.
We now show how Neutrino addresses these challenges
using adaptive caching by extracting a data flow graph
to capture the access dependencies and using a runtime
cost model to guide fine-grained conversion of RDD par-
titions between different cache levels.

3 System Design
In this section, we describe the design principles for
Neutrino and how we have implemented a prototype for
adaptive caching for managing memory in Spark.

Figure 3 shows the three main components of
Neutrino architecture: adaptive caching implemented
within the Spark Executors running on each worker
node (Section 3.1), generation of the data flow graph
(Section 3.2), and the runtime cost model implemented
as a (dynamic cache scheduling) algorithm at the Spark
Master to trigger convert and discard operations of adap-
tive caching on the different executors (Section 3.3).

3.1 Adaptive Caching in Neutrino
Neutrino provides programmers a new cache level Adap-

tive that enables to provide fine-grained cache manage-
ment by moving RDD partitions between cache levels at
runtime.

The Spark master directs the executors on different
worker nodes to apply a coarse-grained cache level to all
partitions of a RDD. The Spark block manager in each
executor applies the same cache level directive to all par-
titions read from HDFS. We extend the partition struc-
ture to add an extra attribute that defines its cache level in
Neutrino. As a result, when the Spark master distributes
the executors in Neutrino to work on a given partition,
it also assigns a cache level when loading that partition
into memory.

At runtime, adaptive caching can move a partition
across different cache levels or remove it from memory
completely based on the inputs from the DP Scheduling
algorithm. We enable the executor to perform this us-
ing three operations on a partition: cache, discard, and
convert. The cache operation places the partition in the
given cache level similar to Spark.

Spark identifies each partition by a global identifier
and can asynchronously discard a partition. As a result,
the memory is actually not freed immediately after is-
suing the asynchronous discard. We integrate this API
in the Neutrino adaptive caching as it does not block
the discard operation. The Neutrino adaptive caching
verifies the completion of the asynchronous discard by
checking the free capacity of the executor in the cache
and convert operations. This ensures that the space for
the discarded partition is not reused before it is actually
discarded. As discard is asynchronous, its overhead is al-
ways overlapped by a cache or convert operation for the
next job.

In Spark, a RDD partition can not be transformed be-
tween different cache levels, instead a RDD needs to be
discarded from memory and then cached again in another
level. Neutrino also provides a mechanism to convert
RDD partitions between different cache levels. We cur-
rently support conversion from deserialized to serialized
cache levels and vice versa. The conversion requires ex-
tra computation to (de)-serialize a RDD partition. As
a result, we perform conversion only on-demand when
a RDD partition is used and cached for the executing
job. A convert from deserialized to serialized cache level
frees up space to be reused for loading more partitions
in memory or converting another partition to the deseri-
alized level. A convert from serialized to deserialized
cache level improves performance for computing over
the partition by making use of the un-utilized memory
in the cluster.

3.2 Data Flow Generation
As shown in Figure 3, Neutrino first extracts the data
flow graph which is the order in which the different

3



Figure 4: K-Nearest Neighbor (KNN) Application
RDDs are accessed in a Spark job. We can extract a data
flow graph using different approaches, e.g. static analy-
sis of the program, or by actually executing the program
on a smaller dataset. We use the second approach to ex-
tract the RDD access order by executing the program on
a smaller dataset.

A Spark application is split into different jobs and the
data flow graph captures the access order of RDDs in
different jobs’ execution. We retrieve the access order by
instrumenting the getOrCompute API in the master node.
This API is used whenever a RDD is loaded from HDFS
or computed using another RDD. The access order is re-
trieved as a table of key-value pairs where each key rep-
resents a job id and the value is the list of RDDs that are
used in this job. The order of RDD access across jobs is
dependent on how Transformations and Actions are ap-
plied in a Spark program. For example, in the K-Nearest
Neighbor (KNN) Application (see Figure 4), the testing
and training RDDs are loaded from HDFS datasets, and
testVec and trainVec vector RDDs are created from them
in the map Transformations. KNNjoin represents a se-
ries of Actions applied iteratively on these testVec and
trainVec RDDs. Each iteration represents an action or
stage. The dataflow graph generated by Neutrino repre-
sents all four RDDs used in the first stage, and following
iterative stages only include the vectorized RDDs. The
dataflow graph captures the RDD access order, hence it
can be generated on a relatively small dataset and used
for different iterations or job executions.

3.3 Dynamic Cache Scheduling at Runtime
Neutrino extends the Spark master to maintain runtime
information and guide adaptive caching decisions at the
executors. We maintain a partitionStatus map at the mas-
ter node that records the status of each partition. It in-
cludes the blockId of the partition as the key, and a value
that is a combination of the serialized/deserialized sizes
of the partition, location of the partition, current cache
level, and the pending action on the partition. Each
record in partitionStatus map is 48 bytes, and it takes
no more than 512 MB of memory space for a very large
petabyte dataset.

Figure 5 shows how the Neutrino master generates

Figure 5: Neutrino KNN Execution Flow

Figure 6: Dynamic Cache Scheduling Algorithm

the caching decisions for a Spark K-Nearest Neighbor
application (see Figure 4 with two RDDs created from
the training and testing datasets. The two datasets are
mapped into vectors and the compute tasks are created
based on the location of the dataset partitions. Before
the tasks are scheduled on the different worker nodes,
Neutrino master uses the Dynamic Cache scheduling al-
gorithm to generate the decisions for adaptive caching to
trigger the cache, convert or discard operations for se-
lecting the cache level of each RDD partition. For exam-
ple, without the Dynamic Cache Scheduling generating
caching decisions in Figure 5, the vectorized datasets as
RDDs will be cached in a cache level, which might over-
flow the memory if deserialized or leave memory under-
utilized if serialized.

Figure 6 shows the Dynamic Cache Scheduling algo-
rithm. It computes the minimum time to execute a Spark
application for a given data flow graph (rdd seq) and par-
tition status map (pMap). rdd seq[i] is the list of RDDs

4



Figure 7: System Comparison: Neutrino vs. Spark

used in the ith stage/action of the data flow graph. pMap
represents the cache level and location of each partition
in the system. The dy sched algorithm uses dynamic
programming to compute the minimum execution time
at the ith stage by exploring all possible combinations of
available operations (convert, cache, discard) applied to
the different partitions at stages i and later. It does not
explore infeasible combinations such as caching with in-
sufficient memory or convert non-cached partitions. The
functions Accessing and Executing compute the time to
read data from the given cache level (partition map) in
the ith stage, and the time to apply the selected oper-
ations at the end of ith stage respectively (also shown
as Executing Cache Decisions in Figure 5). To limit the
number of possible combinations to explore in each stage
and use memory fairly across different executors in the
cluster, we apply the cache operations at the granularity
of a configurable fraction of a RDD. For example, we
can apply a cache operation such as convert 25% of the
partitions of a RDD from deserialized to serialized cache
level to save memory space uniformly across all worker
nodes.

4 Evaluation
We compare Neutrino against Spark’s native caching
levels: Mem Ser and Mem Deser. The experiments
were performed on a cluster of six worker nodes, each
equipped with Intel i5-2400 3.1 GHz CPU, one 500 GB
disk, 8 GB DRAM out of which Spark uses 6 GB mem-
ory. We use HDFS v2.6.3 with a block size of 128 MB
and Spark v1.5.0 with four MLlib workloads: K-Means,
KNN, Latent Dirichlet Allocation (LDA), and Logistic
Regression. These workloads cover the three different
popular categories of ML workloads including inference,
nearest neighbor, and regression; and iteratively query
one or multiple RDDs.

Figure 7 shows the average job execution time for
Spark Mem Ser and Mem Deser cache levels relative
to Neutrino. We evaluate three scenarios with different
dataset size: (1) deserialized dataset size < cluster mem-
ory, (2) deserialized dataset size = cluster memory, and
(3) serialized dataset size = cluster memory.

Neutrino outperforms Spark cache levels in most sce-

narios for all three workloads. In Scenario 1, Neutrino
is about 45-60% faster than Spark Mem Ser because it
deserializes all partitions and makes more efficient use
of unused cluster memory than Mem Ser. Neutrino is up
to 7% slower than Spark Mem Deser because of the ex-
tra computation overhead for dynamic cache scheduling
and additional cache or convert operations. The discard
operation is asynchronous and its overhead gets over-
lapped with the job computation time. In Scenario 2,
Neutrino is about 16-35% and 5-66% faster than Spark
Mem Ser and Mem Deser cache levels respectively. This
is because Spark Mem Deser starts missing the memory
cache and has to recompute partitions from HDFS. In
contrast, Neutrino always hits in the memory and keeps
RDD partitions in both formats. Spark Mem Ser has
an overhead for deserializing data during job execution.
In Scenario 3, Neutrino serializes all RDD partitions in
memory and is almost identical in performance to Spark
Mem Ser. The performance gap between Neutrino and
Spark Mem Deser increases to 46-70% because of more
frequent cache misses in Spark Mem Deser.

5 Conclusions and Future Directions
In this paper, we take a fresh look on a very pressing area
of memory caching for iterative data analytics. We make
a case for fine-grained caching with a new dynamic cache
scheduling algorithm. The results look promising and we
plan to build upon current work. In future, we will con-
tinue to work in two main directions: (1) improve data
flow generation process to track dependencies for itera-
tive workloads that can result in non-deterministic execu-
tion flows, and (2) improve the pruning technique to re-
duce the exploration space and provide stronger fairness
guarantees for the dynamic cache scheduling algorithm.
References
[1] Kyro: Java serialization and cloning. https://github.com/

EsotericSoftware/kryo, 2016.

[2] Project Tungsten: Bringing spark closer to bare metal. https:
//databricks.com/blog/2015/04/28/project-tungsten-
bringing-spark-closer-to-bare-metal.html, 2016.

[3] Spark MLlib. http://spark.apache.org/docs/latest/
mllib-guide.html, 2016.

[4] ANANTHANARAYANAN, G., GHODSI, A., WANG, A., BORTHAKUR, D.,
KANDULA, S., SHENKER, S., AND STOICA, I. Pacman: Coordinated mem-
ory caching for parallel jobs. In NSDI (2012).

[5] ARMBRUST, M., DAS, T., DAVIDSON, A., GHODSI, A., OR, A., ROSEN,
J., STOICA, I., WENDELL, P., XIN, R., AND ZAHARIA, M. Scaling spark
in the real world: Performance and usability. PVLDB (2015).

[6] LI, H., GHODSI, A., ZAHARIA, M., SHENKER, S., AND STOICA, I.
Tachyon: Reliable, memory speed storage for cluster computing frame-
works. In SOCC (2014).

[7] PU, Q., LI, H., ZAHARIA, M., GHODSI, A., AND STOICA, I. Fairride:
Near-optimal, fair cache sharing. In NSDI (2016).

[8] ZAHARIA, M., CHOWDHURY, M., DAS, T., DAVE, A., MA, J., MC-
CAULY, M., FRANKLIN, M. J., SHENKER, S., AND STOICA, I. Resilient
distributed datasets: A fault-tolerant abstraction for in-memory cluster com-
puting. In NSDI (2012).

5


